

Conversational PowerShell

By Don Jones

Copyright© 2016

Conversational PowerShell

Published by Conversational Geek Inc.

www.conversationalgeek.com

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

Trademarks
Conversational Geek, the Conversational Geek logo and J. the Geek are trademarks of
Conversational Geek™. All terms mentioned in this book that are known to be
trademarks or service marks have been appropriately capitalized. We cannot attest to
the accuracy of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis.
The author and the publisher shall have neither liability nor responsibility to any person
or entity with respect to any loss or damages arising from the information contained in
this book or programs accompanying it.

Additional Information
For general information on our other products and services, or how to create a custom
Conversational Geek book for your business or organization, please visit our website at
ConversationalGeek.com

Publisher Acknowledgments

All of the folks responsible for the creation of this guide:

Author: Don Jones

Project Editor: J. Peter Bruzzese

Copy Editor: John Rugh

Content Reviewer(s): Karla Reina

Note from the Author

I’ve been working with Windows PowerShell since… wow, since
before it was released in 2006. Now I feel old. Thanks. Anyway,
it’s been a really interesting ride, because the product was
basically in stealth mode for the first couple of years.

As Microsoft continued to invest in it, and then build other
things on top of it, it became really clear that this was the
future! And of course, now it’s the present. Although it’s easy
to not realize it, PowerShell probably represents one of the
most impactful and fundamental technology shifts that
Microsoft has made since moving from MS-DOS to Windows.
Yeah, it’s that big of a deal. And if you’re not sure why it’s such
a big deal – well, you’ve picked up the right book.

Don Jones

The “Conversational” Method

We have two objectives when we create a “Conversational”
book: First, to make sure it’s written in a conversational tone
so that it’s fun and easy to read. Second, to make sure you, the
reader, can immediately take what you read and include it into
your own conversations (personal or business-focused) with
confidence.

These books are meant to increase your understanding of the
subject. Terminology, conceptual ideas, trends in the market,
and even fringe subject matter are brought together to ensure
you can engage your customer, team, co-worker, friend and
even the know-it-all Best Buy geek on a level playing field.

“Geek in the Mirror” Boxes

We infuse humor into our books through both cartoons and
light banter from the author. When you see one of these
boxes it’s the author stepping outside the dialog to speak
directly to you. It might be an anecdote, it might be a personal
experience or gut reaction and analysis, it might just be a
sarcastic quip, but these “geek in the mirror” boxes are
something you don’t want to skip.

In these boxes I can share just about anything
on the subject at hand. Read ’em!

Who the Shell Cares?

It’s incredibly easy to look at PowerShell and just dismiss it as
another tech-geek tool for getting stuff done. That’s largely
because… well, that’s what it is. It’s just another tool for
administering servers, client computers, and IT services. So…
yeah. That’s it. Move on to the next book on your reading list.

Oh, wait, there’s actually a bit more to it. Think back to the
days when people mainly got around in horse-drawn carriages.
Those carriages were built by hand, and it could take weeks to
put one together. When they were first invented, even
automobiles were built by hand. Every one of them was a

unique creation, with its own quirks and custom-fit pieces.
Then Henry Ford came along with his mass-production factory
lines and changed everything. It wasn’t just a matter of
producing cars faster: they could now be produced more
consistently. Every one exactly alike. That reduced
manufacturing expenses, since nobody had to deal with
unique, “one-off” vehicles anymore. And lowering expenses
meant lowering prices, too, meaning a ton more people could
afford cars. Automation changed not only the automobile
industry, but the entire world.

And that’s why PowerShell matters. Yeah, it’s just another tool
for accomplishing the same things you’ve always accomplished.
You’re not achieving anything new, necessarily. You’re still
building a car, so to speak. But PowerShell shifts you over to a
different way of achieving those things, and it’s that shift that’s
important. PowerShell lets you accomplish things in less time –
which lowers costs. It lets you be more consistent – which
reduces errors. And PowerShell acts as a platform upon which
you can build other, even more amazing things that further
automation, consistency, and reduced costs.

So What is PowerShell?

PowerShell is a command-line interface for managing
technology systems and services. Big words, and not an
especially novel idea. In the 1980s, MS-DOS was also a
command-line interface. Novell’s NetWare operating system
operated largely from a command-line interface. Unix and
Linux have always been predominantly run from command-line
interfaces.

So wait, Microsoft just stole this idea?

Totally. Why reinvent the wheel?

Command-line interface simply means that, instead of clicking
graphical buttons and whatnot to get things done, you type
commands into a big text box. Like in basically every hacker
movie Hollywood ever made.

Command-line interfaces – or CLIs, if we can go truly geeky –
have disadvantages and advantages compared to the graphical
stuff Microsoft has traditionally used for administration. On the
down side, a CLI doesn’t just lay out all your options in front of
you. There are no menus to poke around in to see what you
can do, and no icons to help you figure out what’s what. You
have to know what the commands are, and you have to know
what they do. Oh, and you have to be a pretty good typist. So
there can be this huge learning curve with PowerShell,
although it does a few things specifically to try and lower that
curve a bit. We’ll dig into those things in a moment.

On the up side, the things you type into a CLI are just text,
right? I mean, if you were trying to complete some complex,
multi-step task, you could theoretically plan it all out by just
typing the commands into Notepad or something. Well, it turns
out that’s actually a thing. When you type a bunch of
commands into a text file, that text file is called a script. And
the CLI can run the script – essentially, it just opens the text
file, reads it, and then starts running whatever commands are
in there. This is a big deal, because it means you only have to
hammer out the commands one time. The next time you need
to accomplish that task, you just run the script. So although it
might take you a while to get the script right the first time,

from then on, you could run it with no effort. This is exactly
what Ford did, right? I’m sure it took a long time to get the
production line machinery all perfectly set up, but once he did,
cars just flowed through the process nice and easy. Contrast
that to clicking around in a graphical wizard or something – you
can’t really make that any faster. There’s no practical way to
tell the computer, “OK, right here, move the cursor to about an
inch down and two inches across, and then click.” So every
time you do something in a graphical interface like that, you’re
burning the same amount of time, over and over.

So that’s the promise and the price of PowerShell: being able
to accomplish things faster and more consistently by using
scripts, but having to learn all the commands to do so.

How’s the Uptake Been?

Pretty good. Here’s the thing you have to understand: a lot of
guys and gals got into IT operations because Windows NT
Server – as it was known at the time – was easy to use. You
clicked a few icons, you checked a few checkboxes, and you
were on your way. In fact, Microsoft probably owes much of its
success to those guys and gals. The company made running a
server so darn easy that anyone could do it. You didn’t need
some super highly trained network god who’d been through
months of training on NetWare (which was dominant at the
time). You just needed someone who was pretty good with
their home Windows computer. So a lot of people got into the
industry based on the promise of Windows being easy to learn
and easy to use.

And then Microsoft rips it all away with this PowerShell thing.
So there’ve been some hard feelings. But the thing is,
Microsoft has moved beyond those one-off departmental file
servers that provided the company’s initial success. They are
thinking cloud-scale now. Graphical administration is fine when
you’re running a server or two, but you can’t run a thousand

servers that way. So the company adapted (and that took a
long time), and PowerShell is the answer now.

Don’t underestimate the sour grapes,
though. I’ve been literally yelled at about

PowerShell, as if I’d personally planned the
whole thing.

But Microsoft did a clever thing with PowerShell, because they
knew the shift away from graphical administration would tick
people off. Especially people working in smaller companies
who might only have a handful of servers, and who might not
actually need what PowerShell was offering. PowerShell can
actually be run “behind the scenes,” sort of, acting as the
engine underneath a traditional graphical interface. So, you
click your buttons, you check your checkboxes, and so on, but
the computer invisibly runs PowerShell commands “under the
hood” to make stuff happen. That way, administrators can still
have a graphical administrative experience if that’s what’s right
for them. Or, if they need the advantages of PowerShell, they
can use it directly. Everyone wins.

The Big Takeaways

PowerShell is a command-line interface, where administrators
type commands into a big text box to administer computers
and services. It’s got a bigger learning curve than a graphical
user interface, but it enables a much better level of automation
and consistency. Once you’ve invested in learning PowerShell,
the payoff can be big in terms of time saved and errors
avoided. And, more than ten years into its life, PowerShell’s a
pretty mature platform upon which Microsoft has been
building lots of other amazing stuff.

Learning PowerShell

As I pointed out already, learning PowerShell definitely involves
a bit of investment, because you have to know what
commands to type. And simply memorizing all the commands
isn’t an option. Windows Server 2012R2 ships with more than
3,000 commands. On top of that, nearly every Microsoft server
product – Exchange, SharePoint, System Center, SQL Server,
you name it – adds in a few hundred more. Then there are the
non-Microsoft products that use PowerShell, like VMware
vSphere, NetApp storage servers, and so on. Oh, and all the
commands created by members of the community. So yeah,
probably just under a million commands to learn.

PowerShell v1.0 shipped with about 150
commands, so it seemed feasible to learn

‘em all. 2.0 shot the count up past 500, and
it’s been growing exponentially ever since.

So how do you learn this thing?!? Well, it turns out that
PowerShell itself is willing to help you.

Knowing the Rules

PowerShell commands are all named using a pretty rigid
syntax, which can make it easier to guess the name of the
command that might do what you need. Each command’s
name consists of a verb (and the verbs come from a fixed list),
a hyphen, and a noun. So, Get-ADUser would retrieve a list of
users from Active Directory. Set-Service would modify the
settings for a background service. Stop-Process would… well,
you probably get the idea. Knowing these rules is the key to
finding the commands you need.

Finding What You Need

The Get-Command command searches across all the
commands currently installed on your computer. It accepts
wildcards, so running something like Get-Command *User*
would return a list of all commands that have “user” in their
name. Or, run something like Get-Command –Noun Service to
see what commands can work with services. Or Get-Command
–Verb Start to see all the commands that use “Start” for the
verb part of their name. With a little guesswork, it becomes
pretty easy to find the command you need for a given task.

Asking for Help

Once you have the command you need, you’re probably going
to want to know how to make it do what you want. For that,
just ask for help. Running Get-Help Get-Service, for example,
will display extensive help options for the Get-Service
command. Or, run Get-Help Stop-Process –Full to display help
for Stop-Process, including examples on how to use the
command.

Since PowerShell v3.0, help doesn’t actually
come pre-installed. You need to open a shell

as Administrator and run Update-Help to
download the help content.

The Big Takeaways

So although PowerShell doesn’t come with menus and icons to
help you find your way, it does come with some easy tools and
straightforward rules that help you find what you need. You’re
not consigned to a life of trying to find examples on Google,
either, as the provided help files usually contain a lot of
examples (I’ve seen as many as two dozen for one command)
that help you actually see how a given command is meant to
be used.

And yeah, it actually is that straightforward. I didn’t say “easy,”
though. I mean, you do need to know a lot about the
technology you’re working with. For example, you wouldn’t
know to search for commands containing “user” if you didn’t
know that Active Directory has “user” objects that represent
humans. In fact, I’d say the toughest part about learning
PowerShell is that it tends to expose how little we sometimes
know about the technologies that have been lurking beneath
those graphical interfaces!

So, What Can PowerShell Do?

Anything.

Well, not really. Although, sort of. Okay, look, this is actually a
really fun part of the PowerShell story.

First, PowerShell is built on Microsoft’s .NET Framework, which
essentially means that PowerShell can do anything the
Framework can do. That’s a lot. And if you’re not comfortable
using the Framework directly, that’s fine, because the whole
point of a PowerShell command is to be a friendly, well-
documented wrapper around .NET stuff. When you run Get-
Service, you’re running .NET under the hood. But anything in

.NET is fair game, whether there’s a “wrapper” command or
not.

Second, PowerShell has strong connections to the Force
Windows Management Instrumentation, or WMI. WMI
contains a ton of management and administrative information
and functionality, and PowerShell makes it easy to get to. Many
PowerShell commands are actually “wrappers” around WMI
stuff, making it all easier and more consistent.

Third, PowerShell can use older software modules written in
Microsoft’s Component Object Model (COM) and Distributed
COM (DCOM). That lets PowerShell hook up to a lot of legacy
technologies that might not have any .NET functionality.

Fourth and finally, PowerShell can run external command-line
utilities and applications, like Netstat.exe, Ping.exe, Tracert.exe,
and so on. So anything you’ve done under Windows’ old
Command Line world still works in almost exactly the same
way.

And best of all, you can mix and match all of these technologies
right from a single script. So you can really just take the best of
every world, use whatever’s available to get the job done, and
munge (that’s a technical term) it all together into a PowerShell
script. It’s pretty awesome.

PowerShell also supports embedded C# code,
further expanding the crazy things you can do

with it.

Focus on Commands

Although PowerShell’s ability to connect to all those acronyms
(.NET, WMI, COM, and their friends) is a huge benefit, the shell
really shines when you’re using its commands. .NET, as one
example, is a really a friendly thing for developers, but it’s
kinda hostile to the way administrators work. Admins aren’t
usually programmers, after all, and .NET is all about
programming. PowerShell commands can kind of translate that
into something more admin-friendly. So Microsoft, other
vendors, and even the general community tend to produce
PowerShell commands to provide admins with a consistent,
easier-to-use way of accessing all those underlying
technologies.

By the by, it’s worth pointing out that in PowerShell-speak,
command is a generic word that encompasses several distinct
things:

 A cmdlet (pronounced “command-let”), which is

written in .NET and designed to run natively inside

PowerShell.

 A function, which is a PowerShell script that can look,

act, smell, and taste like a cmdlet (tastes like chicken).

 An application, which is usually an external thing like

Tracert.exe.

 A script, which is just a bunch of PowerShell commands

strung together in a particular order.

Shopping for Commands

PowerShell bundles commands into modules. Most often,
modules are related to a specific set of related tasks or
technologies. There’s a module for managing Active Directory,

a module for messing with shared folders, a module for SQL
Server, and so on. Modules simply make it easier to load up an
entire set of commands all at once, so you can use them.

The Windows operating system, depending on the version,
comes with bunches of modules (especially from Windows 8
on, and from Windows Server 2012 on). Most Microsoft server
products come with modules, too, and you usually obtain them
by installing that product’s administrative tools onto your
computer. Other modules might be downloaded from the
Internet.

There are a few commands you’ll want to know with regard to
modules:

 Get-Module –ListAvailable will show the modules

installed on your computer. Well, if they’re installed in

the correct location. Hopefully they are.

 Find-Module (available in PowerShell v5 and later, or if

you’ve installed PowerShell Package Manager on older

versions) can search for modules in the online

PowerShell Gallery. Install-Module can download and

install modules from the Gallery.

Be a little careful. Microsoft might run
PowerShell Gallery, but they don’t vet or
approve what people put into it. So, you

know, proceed with due caution.

The Big Takeaways

So what can PowerShell do? A lot – and the list grows longer
every day. The ability for developers to extend PowerShell by
writing in C# or even C++, and for PowerShell to use existing
WMI, COM, and external application functionality, means
PowerShell has extensive reach.

You Mentioned Stuff Built Atop PowerShell?

Oh, yeah. Back in 2002, a guy at Microsoft named Jeffrey
Snover wrote something called the “Monad Manifesto” (an
annotated version is at
https://www.penflip.com/powershellorg/monad-manifesto-
annotated). It laid out what became a four-version vision for
PowerShell, and pretty much the entire document has, at this
point, come true. PowerShell started as the foundation for a lot
of cool stuff. Not a lot of people really read the Manifesto back
in the day (although “Monad” was the code-name for what
became PowerShell), but it turns out that Snover had a really
almost prophetic vision for what PowerShell needed to
become. And, as the guy steering the ship for the Windows
Management Framework product team (that’s the team that
produces PowerShell, amongst other goodies), he was able to
make it happen.

https://www.penflip.com/powershellorg/monad-manifesto-annotated)
https://www.penflip.com/powershellorg/monad-manifesto-annotated)

Snover, who is now a Technical Fellow at
Microsoft, is a hilarious dude. Check out

snoverisms.com for some of his pithier pieces
of wisdom.

Remoting

Version 2 of PowerShell introduced Remoting, a technology
built on the open Web Services for Management (WS-MAN; we
loves our acronyms!). It basically lets one computer send
commands to bunches of other computers – in parallel! – and
wait for them all to do whatever they’ve been told. It suddenly
made it easier for administrators to manage dozens, hundreds,
or thousands of computers as easily as managing one. And
Remoting itself served as the foundation for…

Workflow

You can’t build Rome in a day, and you can’t always administer
a computer in a single command. Sometimes, you need to do
something that will require dozens or hundreds of commands,
and some of them might take a long time to run. To make
things more complicated, the computer might have to reboot
in the middle of everything, or there might be the possibility of
a network or power failure at some point. Ideally, you want the
computer to pick up where it left off, right? Well, that’s what
Workflow is all about. Basically, you write a script, and the
underlying Workflow engine makes sure it runs, even if that
means being interrupted and picking back up later. And thanks
to Remoting, you can push workflows out to multiple
computers to run them in parallel! Workflow was born in
PowerShell v3.

Workflow can actually get crazy-complicated.
This shameless oversimplification has been

brought to you by Don Jones and
Conversational Geek.

Desired State Configuration

Introduced in PowerShell v4, Desired State Configuration (or…
wait for it… DSC! More acronyms!) is kind of the penultimate
pinnacle of PowerShell prosperity. DSC leverages all the
investment Microsoft has been making in PowerShell since
2006, including the thousands of commands that have been
written along the way.

Essentially, DSC lets you write a more-or-less-plain-English
document that describes what a computer should look like
once it’s fully configured and operational. It doesn’t need to
contain code, or the actual instructions for configuring the
computer. You just write down what the computer should be
when it’s all over. DSC then takes over and makes it happen.
And, if you want it to, DSC will sit there like a mother hen,
putting the computer’s configuration back the way you want it
whenever things change for some reason. It’s awesome stuff.

The Big Takeaways

PowerShell sits as the bedrock of a lot of amazing, incredibly
useful tools and technologies. Since its introduction in 2006,
the product and its supporting technologies have continued to
grow, and now form a major part of Microsoft’s strategy for
business systems administration and automation. Yeah, all
those folks back in 2006 who said, “oh, it’s just another
VBScript, it’ll never catch on”, probably don’t have jobs
anymore.

But WHAT’S IT LOOK LIKE???

Oh, right. Sorry, I just get so excited about what PowerShell can
do that I… well, nevermind, let’s just get into it. Suppose I want
to find out what version of Windows my computer is running:

PS C:\> Get-CimInstance -ClassName Win32_OperatingSystem |
>>> Select-Object -Property Version,ServicePackMajorVersion

Version ServicePackMajorVersion
------- -----------------------
10.0.10240 0

Not too difficult. And it’s just as easy to find out from a remote
computer:

PS C:\> Get-CimInstance -ClassName Win32_OperatingSystem –
ComputerName CLIENT-B |

>>> Select-Object -Property Version,ServicePackMajorVersion

Version ServicePackMajorVersion
------- -----------------------
10.0.10240 0

And I can even, without a lot of hassle, turn that into a
standalone tool – a command, if you will – that other people
can use. For example, I can create the following in a text file
named Get-OSVersion.ps1:

In this script, I’ve added a Param() block, which lets me indicate
I want someone to provide a computer name as input. You can
see at the end of line 5 where that parameter “placeholder”
(it’s called a variable) is used. To run the script:

It’s really that easy to get started. I mean, yeah, you’ve got to
know what the commands are, but finding those can be part of
the fun (as can a basic education on PowerShell). But how’d I
come up with all that?

Finding the Commands

I obviously had a bit of an advantage here, since I’ve been
doing this for a minute, but I almost always start with a Get-
Command search. In this case, I’d read about the
Win32_OperatingSystem thing and how it had something to do
with something called CIM (acronyms!). I ran Get-Command
Win32 and it came up empty. See, even I get it wrong
sometimes! So I ran Get-Command *CIM* and got several hits
back. I read the help on a few of those until one of them, Get-
CimInstance, seemed to make sense. I read the examples, and
decided to play around with it.

Start in the Console

I always experiment in the PowerShell console window first. It’s
kind of the de facto way to use the shell. And I relied on a trick I
haven’t yet shared with you (here it comes): Tab. Like, the
actual Tab key on the keyboard. Left-hand side. Go on, look for
it. Turns out, PowerShell uses the Tab key really nicely. I typed
Get-CimI and hit Tab… and the command name was
completed. Then I typed a space, a hyphen, and hit Tab again
to cycle through the parameter names until I found –
ClassName. Space again, and then I typed Win32_Op, got bored
of typing, and hit Tab to complete the class name. Then I hit
Enter to see the results.

I basically kept fussing around until I got the output I wanted.
The initial output had more than I wanted, so I used Select-
Object (which I learned in my basic PowerShell education) to
grab just the pieces of information I wanted. Then I went back
(the Up Arrow key recalls what you typed previously) and
added the –ComputerName parameter to query a remote
computer. That worked, so I kept fussing around to get what I
wanted.

This particular example requires that the
remote computer have Remoting enabled,

and that you have Administrator privileges to
it. I made sure of those in advance.

Making a Tool

Once I got it working at the command line, I copied and pasted
my working command into the PowerShell Integrated Scripting
Environment (or ISE; ACRONYMS!). It’s basically a script editor,
and although it’s fairly bare-bones, it gets the job done. Plus,
it’s built into Windows.

I immediately ran the command in the ISE, just to make sure it
had copied and pasted correctly. I’ve messed that up in the
past, believe it or not; it’s worth taking the “baby steps”
approach and testing.

Then, I replaced the hardcoded computer name with a
parameter, added the Param() block, and saved the file so I
could test it. You saw the results.

The $ComputerName variable could have
been named anything; it didn’t have to have

that name just because it went with the
–ComputerName parameter.

I start literally every tool and script I write in the same exact
way. Even after 10 years of the shell stuff, I always start right in
the console, running a single command until I get what I want. I
figure out all my errors in the console, get everything all

tweaked and perfect – and then move it into the script. When
I’m ready to add to the script, it’s back to the console to test
the next command. That way, I’m always sure of what the
command is doing, and what I’m supposed to be typing.

The Big Takeaways

Although PowerShell has massive abilities, the shell itself is a
pretty simple little guy. Using it isn’t necessarily complex,
although it can initially be a challenge to find the commands
you need. But once you start to learn a few commands, it tends
to snowball until all of a sudden one day, you know hundreds
of ‘em.

And PowerShell does make it really easy to take working
commands and turn them into self-contained little tools – and
that, my friend, is where the PowerShell investment pays off.
After you figure out a command or two and put them into a
script, you’ll never have to figure them out again.

Getting a Basic PowerShell Education

Which I suppose brings me to your next question: now that
you’re getting conversational in PowerShell, what’s next?

Do me a favor: don’t make Google your primary learning
mechanism. I live near a quick-care clinic, and I see more
people being treated for bloody foreheads after banging their
heads on their desk after trying to learn PowerShell by
Googling stuff. Just say no.

Microsoft’s Virtual Academy (MVA! Acronyms!) has some great
getting-started video tutorials starring my good friend Jason
Helmick, and the inventor of PowerShell, Jeffrey Snover. Those
are free, and they’re a great place to start. My other good
friend (I only have two), Jeffery Hicks, helped me write a book

called “Learn Windows PowerShell in a Month of Lunches,” and
I obviously think it’s a great place to start. Both the book and
the MVA will help you wrap your head around some of
PowerShell’s eccentricities, so you know what’s happening
under the hood. Once you’ve digested that material, you’re
cleared to start Googling again, because the stuff you find will
start to make sense.

Some people sometimes post dumb, and
wrong, stuff on the Internet, so be a skeptic.

So let’s say you get some basic education under your belt.
What next?

Well, I’d say get to work. Pick some project at work, something
that you find personally dull and repetitive, and automate it.
But don’t pick the largest, most insane process you can find to
start with! Bite off something smaller, first. Maybe write a little
tool to unlock user accounts, or to reset user passwords (hint:
Get-Random is fun for generating randomized new passwords).

As you tackle this first task, and probably every task after it, you
will run into problems. It’s cool. Just take a deep breath and ask
for help. There are Q&A forums on PowerShell.org, on places
like ServerFault.com, and even on Microsoft’s own TechNet
bulletin boards. And if someone gives you the answer you
need, (A) thank them, and (B) make sure you understand why
the answer solves the problem. If you don’t, ask again, because
the “why” is the most important piece of the puzzle.

Get Yourself Involved!

Alright, we’re nearing the end of this thing, so I wanted to
leave you on a really upbeat note. Here’s the most awesome
news about PowerShell:

People. Love. It.

No kidding. By and large, Windows administrators tend to keep
to themselves. They don’t typically form great big user groups,
hang out in chat rooms discussing their technologies, or wear
polo shirts with jokes that are only funny if you’re a geek. But
with PowerShell, they absolutely do all of those things. And if
you’re going to use PowerShell (and you totally should), then
you need to know where to find these fellow Shellers, so that
you can hang out with them and learn their jokes. And the
secret hand sign (not kidding).

Start at PowerShell.org. It’s run by a nonprofit organization that
I happen to head up, and it’s chock full of free ebooks, Q&A
forums, webinars, you name it. We run an annual conference
called PowerShell + DevOps Global Summit
(powershellsummit.org), and we work with a lot of great
vendors who make tools to help make PowerShell even more
fun and powerful. We publish all kinds of articles, and the best
part is that everyone contributes. Even total newcomers can
kick in an article about how they conquered some problem in
the shell, and those articles help everyone else who comes
along later. Also, secret hand sign.

From there, you can start branching out. Did you know that a
lot of Microsoft’s PowerShell code (especially for DSC) is in a
public repository? Yup! Head to github.com/powershell and
you’ll see bunches of open source code you can not only get,
but you can also contribute to. Fix a bug, improve a comment,
it’s all welcome.

Look for a local user group. There’s bunches of them, all over
the world (we keep a list at PowerShell.org), and user groups
are a great way to geek out, and often enjoy pizza, with like-
minded PowerShell fans. But whatever you do, get involved.
Nothing makes technology easier than having friends along to
help you through the hard times and congratulate you on your
achievements, and it feels fantastic to give something back
when you can.

I hope to see you there!

NOTES

NOTES

