

Effective Windows
PowerShell
Grok Windows PowerShell and Get More From It.

Keith Hill Copyright © 2007-2009
3/8/2009

Table of Contents
Introduction .. 1

Item 1: Four Cmdlets that are the Keys to Discovery within PowerShell .. 1

Key #1: Get-Command .. 1

Key #2: Get-Help ... 2

Key #3: Get-Member ... 5

Key #4: Get-PSDrive .. 6

PowerShell 2.0 Update... 7

Item 2: Understanding Output .. 8

Output is Always a .NET Object .. 8

Function Output Consists of Everything That Isn't Captured ... 9

Other Types of Output That Can't Be Captured .. 11

Item 3: Know What Objects Are Flowing Down the Pipeline .. 12

Item 4: Output Cardinality - Scalars, Collections and Empty Sets - Oh My! ... 15

Working with Scalars ... 15

Working with Collections ... 16

Working with Empty Sets ... 17

Item 5: Use the Objects, Luke. Use the Objects! ... 19

Item 6: Know Your Output Formatters .. 22

Item 7: Understanding PowerShell Parsing Modes .. 31

Item 8: Understanding ByPropertyName Pipeline Bound Parameters.. 35

Item 9: Understanding ByValue Pipeline Bound Parameters.. 38

Item 10: Error Handling ... 42

Terminating Errors ... 42

Non-terminating Errors .. 42

Error Variables ... 43

Working with Non-Terminating Errors ... 45

Handling Terminating Errors .. 46

Trap Statement .. 46

Try / Catch / Finally .. 48

Item 11: Regular Expressions - One of the Power Tools in PowerShell ... 50

PowerShell 2.0 Update... 51

Item 12: Comparing Arrays ... 51

Item 13: Use Set-PSDebug -Strict In Your Scripts - Religiously .. 53

PowerShell 2.0 Update... 55

Item 14: Commenting Out Lines in a Script File ... 55

PowerShell 2.0 Update... 56

Item 15: Using the Output Field Separator Variable $OFS .. 57

Page 1

Introduction
I am a big fan of the “Effective” series of programming books from Effective COM to Effective XML. Without

trying to be too presumptuous, I wanted to capture some of the tidbits I have picked up over the last couple of

years using Windows PowerShell interactively and writing production build and test scripts. These items were

written for PowerShell 1.0. Where appropriate I have added PowerShell 2.0 Update sections to discuss how the

item is affected by the upcoming 2.0 release. As a final note, a number of the PowerShell code snippets shown

use functionality from the PowerShell Community Extensions which can be downloaded from

http://www.codeplex.com/PowerShellCX.

Item 1: Four Cmdlets that are the Keys to Discovery within PowerShell
This first item is pretty basic and I debated whether or not it belongs in an "Effective PowerShell" article.

However, these four cmdlets are critical to figuring out how to make PowerShell do your bidding and that makes

them worth covering. The following four cmdlets are the first four that you should learn backwards and

forwards. With these four simple-to-use cmdlets you can get started using PowerShell - effectively.

Key #1: Get-Command
This cmdlet is the sure cure to the blank, PowerShell prompt of death. That is, you just installed

PowerShell, fired it up and you're left looking at this:

Now what? Many applications suffer from the "blank screen of death" i.e. you download the app, install it and

run it and now you're presented with a blank canvas or an empty document. Often it isn't obvious how to get

started using a new application. In PowerShell, what you need to get started is Get-Command to find all the

commands that are available from PowerShell. This includes all your old console utilities, batch files, VBScript

files, etc. Basically anything that is executable can be executed from PowerShell. Of course, you didn't

download PowerShell just to run these old executables and scripts. You want to see what PowerShell can do.

Try this:

PS> Get-Command

CommandType Name Definition
----------- ---- ----------
Cmdlet Add-Content Add-Content [-Path] <Stri...
...

http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!788.entry

Page 2

Cmdlet Get-Command Get-Command [[-ArgumentLi...
...

By default, Get-Command lists all the cmdlets that PowerShell provides. Notice that Get-Command is one of

those cmdlets. Get-Command can list more information but how would you figure that out? This brings us to

the second command you need to know and will be using frequently in PowerShell.

Key #2: Get-Help
The Get-Help cmdlet provides help on various topics including what a specified cmdlet does, what parameters it

takes and usually includes examples of how to use the command. It will also provide help on general PowerShell

topics like globbing and operators. Say you want to know what all the help topics are in PowerShell. That’s

easy, just do this:

PS> Get-Help *

Name Category Synopsis
---- -------- --------
ac Alias Add-Content
asnp Alias Add-PSSnapin
...
Get-Command Cmdlet Gets basic informati...
Get-Help Cmdlet Displays information...
...
Alias Provider Provides access to t...
Environment Provider Provides access to t...
FileSystem Provider The PowerShell Provi...
Function Provider Provides access to t...
Registry Provider Provides access to t...
Variable Provider Provides access to t...
Certificate Provider Provides access to X...
...
about_Globbing HelpFile See Wildcard
about_History HelpFile Retrieving commands ...
about_If HelpFile A language command f...
about_logical_Operator HelpFile Operators that can b...
...

And if you only want to see the "about" help topics try this:

PS> Get-Help about*

Name Category Synopsis
---- -------- --------
about_Alias HelpFile Using alternate name...
about_Arithmetic_Oper... HelpFile Operators that can b...
about_Array HelpFile A compact data struc...
...

Now, let's try Get-Help on Get-Command and see what else we can do with Get-Command:

Page 3

PS> Get-Help get-command -detailed

NAME
 Get-Command

SYNOPSIS
 Gets basic information about cmdlets and about other elements of Wind
 ows PowerShell commands.
...

PARAMETERS
 -name <string[]>
 Gets information only about the cmdlets or command elements with
 the specified name. <String> represents all or part of the name o
 f the cmdlet or command element. Wildcards are permitted.

 -verb <string[]>
 Gets information about cmdlets with names that include the specif
 ied verb. <String> represents one or more verbs or verb patterns,
 such as "remove" or *et". Wildcards are permitted.

 -noun <string[]>
 Gets cmdlets with names that include the specified noun. <String>
 represents one or more nouns or noun patterns, such as "process"
 or "*item*". Wildcards are permitted.

 -commandType <CommandTypes>
 Gets only the specified types of command objects. Valid values fo
 r <CommandTypes> are:
 Alias ExternalScript
 All Filter
 Application Function
 Cmdlet (default) Script

TIP: You will want to use the -Detailed parameter with Get-Help otherwise you get very minimal parameter

information. Hopefully in PowerShell V3 they will fix the "default view" of cmdlet help topics to be a bit more

informative. There are a couple of things to learn from the help topic. First, you can pass Get-Command a

-CommandType parameter to list other types of commands. Let's try this to see what PowerShell functions are

available by default:

PS> Get-Command -commandType function

CommandType Name Definition
----------- ---- ----------
Function A: Set-Location A:
Function B: Set-Location B:
Function C: Set-Location C:
Function Clear-Host $spaceType = [System.Mana...
...
Function help param([string]$Name,[stri...

Page 4

...
Function man param([string]$Name,[stri...
Function md param([string[]]$paths); ...
Function mkdir param([string[]]$paths); ...
Function more param([string[]]$paths); ...
...
Function prompt 'PS ' + $(Get-Location) +...
...

Excellent. We could do the same for aliases, applications, external scripts, filters, and scripts. Also note that

Get-Command allows you search for cmdlets based on either a Noun or a Verb. There's a more compact form

that most of the PowerShell regulars use instead of these parameters though:

PS> Get-Command write-*

CommandType Name Definition
----------- ---- ----------
Cmdlet Write-Debug Write-Debug [-Message] <S...
Cmdlet Write-Error Write-Error [-Message] <S...
Cmdlet Write-Host Write-Host [[-Object] <Ob...
Cmdlet Write-Output Write-Output [-InputObjec...
Cmdlet Write-Progress Write-Progress [-Activity...
Cmdlet Write-Verbose Write-Verbose [-Message] ...
Cmdlet Write-Warning Write-Warning [-Message] ...

You can swap the wildcard char to find all verbs associated with a particular noun (usually the more useful

search):

PS> Get-Command *-object

CommandType Name Definition
----------- ---- ----------
Cmdlet Compare-Object Compare-Object [-Referenc...
Cmdlet ForEach-Object ForEach-Object [-Process]...
Cmdlet Group-Object Group-Object [[-Property]...
Cmdlet Measure-Object Measure-Object [[-Propert...
Cmdlet New-Object New-Object [-TypeName] <S...
Cmdlet Select-Object Select-Object [[-Property...
Cmdlet Sort-Object Sort-Object [[-Property] ...
Cmdlet Tee-Object Tee-Object [-FilePath] <S...
Cmdlet Where-Object Where-Object [-FilterScri...

Finally, we can pass a name to Get-Command to find out if this name will be interpreted as a command and if so,

what type of command: alias, application, cmdlet, external script, filter, function or script. In this usage, Get-

Command is like the UNIX which command on steroids. Let me show you what I mean:

Page 5

PS> Get-Command more

CommandType Name Definition
----------- ---- ----------
Function more param([string[]]$paths); ...
Application more.com C:\Windows\system32\more.com

Note that PowerShell tells me not only the location of applications like more.com, it also tells me what type of

command each is (function vs. application) as well as the function’s definition.

Note: The output order in version 1 does not indicate which command PowerShell will execute when there are

commands with the same name. This has been fixed in version 2.

If you wanted to use the Windows more.com executable, you would need to use the command more.com.

However, there is even more information to be found here than meets the eye. This brings us to our third key

cmdlet – Get-Member.

Key #3: Get-Member
The single biggest concept that takes a while to sink in with most people using PowerShell for the first time is

that just about everything is (or can be) a .NET object. That means when you pipe information from one cmdlet

to another it quite often isn't text and if it is, it is still an object i.e. a System.String object. However, quite often

it is some other type of object and being new to PowerShell, you may not know what type of object it is or what

you can do with that object. Let's take a further look at what information (i.e. objects) Get-Command outputs.

In order to do this, we will use Get-Member like so:

PS> Get-Command more.com | Get-Member

 TypeName: System.Management.Automation.ApplicationInfo

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
ToString Method System.String ToString()
CommandType Property System.Management.Automation.CommandTyp...
Definition Property System.String Definition {get;}
Extension Property System.String Extension {get;}
Name Property System.String Name {get;}
Path Property System.String Path {get;}
FileVersionInfo ScriptProperty System.Object FileVersionInfo {get=[Sys...

Isn't this interesting. Unlike the UNIX which command that only gives us the path to the application, PowerShell

gives a bit more information. Let's examine the FileVersionInfo property associated with this ApplicationInfo

object:

Page 6

PS> Get-Command more.com | Foreach {$_.FileVersionInfo}

ProductVersion FileVersion FileName
-------------- ----------- --------
6.0.6000.16386 6.0.6000.1638... C:\Windows\system32\more.com

This is just an inkling of the power of being able to access objects instead of information in unstructured, text

form. Get-Member is also handy for discovering what properties and methods are available on .NET objects.

PS> Get-Date | Get-Member

 TypeName: System.DateTime

Name MemberType Definition
---- ---------- ----------
Add Method System.DateTime Add(TimeSpan value)
AddDays Method System.DateTime AddDays(Double value)
AddHours Method System.DateTime AddHours(Double va...
AddMilliseconds Method System.DateTime AddMilliseconds(Do...
AddMinutes Method System.DateTime AddMinutes(Double ...
...

You can also find out information about static properties and methods like so:

PS> [System.Math] | Get-Member -static

 TypeName: System.Math

Name MemberType Definition
---- ---------- ----------
Abs Method static System.Single Abs(Single value), sta...
Acos Method static System.Double Acos(Double d)
Asin Method static System.Double Asin(Double d)
Atan Method static System.Double Atan(Double d)
Atan2 Method static System.Double Atan2(Double y, Double x)
BigMul Method static System.Int64 BigMul(Int32 a, Int32 b)
...

Key #4: Get-PSDrive
Another major concept in PowerShell that you need to grok is that the file system is just one of several types of

drives that can be manipulated by the same cmdlets you use to manipulate the file system. How do you find out

which drives are available in PowerShell? Use the Get-PSDrive command:

PS> Get-PSDrive

Name Provider Root CurrentLocation
---- -------- ---- ---------------
Alias Alias
C FileSystem C:\

Page 7

cert Certificate \
D FileSystem D:\
E FileSystem E:\
Env Environment
Function Function
G FileSystem G:\
H FileSystem H:\
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE
M FileSystem M:\
Variable Variable

All these drives can be manipulating using same cmdlets you use to manipulate the file system. What are

those? Use Get-Command *-Item* to find out:

PS> Get-Command *-Item*

CommandType Name Definition
----------- ---- ----------
Cmdlet Clear-Item Clear-Item [-Path] <String[]...
Cmdlet Clear-ItemProperty Clear-ItemProperty [-Path] <...
Cmdlet Copy-Item Copy-Item [-Path] <String[]>...
Cmdlet Copy-ItemProperty Copy-ItemProperty [-Path] <S...
Cmdlet Get-Item Get-Item [-Path] <String[]> ...
Cmdlet Get-ItemProperty Get-ItemProperty [-Path] <St...
Cmdlet Invoke-Item Invoke-Item [-Path] <String[...
Cmdlet Move-Item Move-Item [-Path] <String[]>...
Cmdlet Move-ItemProperty Move-ItemProperty [-Path] <S...
Cmdlet New-Item New-Item [-Path] <String[]> ...
Cmdlet New-ItemProperty New-ItemProperty [-Path] <St...
Cmdlet Remove-Item Remove-Item [-Path] <String[...
Cmdlet Remove-ItemProperty Remove-ItemProperty [-Path] ...
Cmdlet Rename-Item Rename-Item [-Path] <String>...
Cmdlet Rename-ItemProperty Rename-ItemProperty [-Path] ...
Cmdlet Set-Item Set-Item [-Path] <String[]> ...
Cmdlet Set-ItemProperty Set-ItemProperty [-Path] <St...

There you have it. The four cmdlets that you need to know to effectively find your way around Windows

PowerShell. Use Get-Command to find out what commands are available. Use Get-Help to find out how to use

those commands and the PowerShell language. Use Get-Member to figure out what properties, methods and

events are available on those .NET objects you'll be dealing with in PowerShell. Finally, use Get-PSDrive to find

out which type of drives you can operate on besides the file system.

PowerShell 2.0 Update
Get-Command has been updated to display commands with the same name in the order in which PowerShell

will execute them. If Get-Help can’t find a topic title with the Name you specified, it will now search the help

contents and list those topics where the specified name is found in the body of the help topic. Get-Member no

longer displays compiler generated methods like get_Name/set_Name by default. If you really want to see the

compiler generated methods you can use the –Force parameter.

Page 8

Item 2: Understanding Output
In shells that you may have used in the past, everything that appears on the stdout and stderr streams is

considered "the output". In these other shells you can typically redirect stdout to a file using the redirect

operator >. And in some shells like Korn shell, you can capture stdout output to a variable like so:

DIRS=$(find . | sed.exe -e 's/\//\\/g')

If you wanted to capture stderr in addition to stdout then you can use the stream redirect operator like so:

DIRS=$(find . | sed.exe -e 's/\//\\/g' 2>&1)

You can do the same in PowerShell:

PS> $dirs = Get-ChildItem -recurse
PS> $dirs = Get-ChildItem -recurse 2>&1

Looks about the same in PowerShell so what's the big deal? Well there are a number of differences and

subtleties in PowerShell that you need to be aware of.

Output is Always a .NET Object
First, remember that PowerShell output is always a .NET object. That output could be a System.IO.FileInfo

object or a System.Diagnostics.Process object or a System.String object. Basically it could be any .NET object

whose assembly is loaded into PowerShell including your own .NET objects. Be sure not to confuse PowerShell

output with the text you see rendered to the screen. Later on in Item 6: Know Your Output Formatters I cover

the notion that when a .NET object is about to "hit" the host (console) PowerShell uses some fancy formatting

technology to try to determine the best "textual" representation for the object. However, when you capture

output to a variable, you are not capturing the text that was rendered to the host. You are capturing the .NET

object(s). Let's look at an example:

PS> Get-Process PowerShell

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 425 9 32660 16052 181 31.63 5128 powershell

Now let's capture that output and examine its type:

PS> $procs = Get-Process PowerShell
PS> $procs.GetType().Fullname
System.Diagnostics.Process

As you can see, a System.Diagnostics.Process object has been stored in $procs and not the text that was

rendered to the screen. But what if we really wanted to capture the rendered text? In this case, we could use

the Out-String cmdlet to render the output as a string which we could then capture in a variable e.g.:

http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!811.entry

Page 9

PS> $procs = Get-Process PowerShell | Out-String
PS> $procs.GetType().Fullname
System.String
PS> $procs

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 479 9 32660 16052 181 31.72 5128 powershell

Another nice feature of Out-String is that it has a Width parameter that allows you to specify the maximum

width of the text that is rendered. This is handy when there is wide output that you don't want wrapped or

truncated to the width of your host.

Function Output Consists of Everything That Isn't Captured
I've seen this problem bite folks time and time again on the PowerShell newsgroup. It usually happens to those

of us with programming backgrounds that are familiar with C style functions. What you need to be aware of is

that in PowerShell, a function is a bit different. While a function in PowerShell does provide a separate scope for

variables and a convenient way to invoke the same functionality multiple times without breaking the DRY

principle, the way it deals with output can be confusing at first. Essentially a function handles output in the

same way as any PowerShell script that isn't in a function. What does that mean? Let's look at an example.

PS> function bar {
>> $procs = Get-Process svchost
>> "Returning svchost process objects"
>> return $procs
>> }
>>

That should return an array of System.Diagnostic.Process objects, right? We told PowerShell to "return $procs".

Let's check the output:

PS> $result = bar
PS> $result | foreach {$_.GetType().Fullname}
System.String
System.Diagnostics.Process
System.Diagnostics.Process
System.Diagnostics.Process
...

Whoa! Why is the first object System.String? Well a quick look at its value and you'll see why:

PS> $result[0]

Returning svchost process objects

Notice that the informational message we thought we were displaying to the host actually got returned as part

of the output of the function. There are a couple of subtleties to understand here. First, the return keyword

allows you to exit the function at any particular point. You may also "optionally" specify an argument to the

return statement that will cause the argument to be output just before returning. "return $procs" does not

http://en.wikipedia.org/wiki/DRY

Page 10

mean that the function’s only output is the contents of the $procs variable. In fact this construct is semantically

equivalent to "$procs; return".

The second subtlety to understand is this. The line:

"Returning svchost process objects"

is equivalent to this:

Write-Output "Returning svchost process objects"

That makes it clear that the string is considered part of the function’s output.

Now what if we wanted to make that information available to the end user but not the script consuming the

output of the function? Then we could have used Write-Host like so:

PS> function bar {
>> $Proc = Get-Process svchost
>> Write-Host "Returning svchost process objects"
>> return $Proc
>> }
>>

Write-Host does not contribute to the output of the function. It writes directly and immediately to the host.

This might all seem obvious now but you have to be diligent when you write a PowerShell function to ensure

you get only the output you want. This usually means redirecting unwanted output to $null (or optionally type

casting the expression with the unwanted output to [void]). Here's an example:

PS> function LongNumericString {
>> $strBld = new-object System.Text.StringBuilder
>> for ($i=0; $i -lt 20; $i++) {
>> $strBld.Append($i)
>> }
>> $strBld.ToString()
>> }
>>

Note that we don't need to use the return keyword like we do in C style function. Whatever expressions and

statements that have output will contribute to the output of our function. This is part of a PowerShell function

behaving like ordinary PowerShell script. In the function above, we obviously want the output of

$strBld.ToString() to be the function's only output but we get the following output instead:

PS> LongNumericString

 Capacity MaxCapacity Length
 -------- ----------- ------
 16 2147483647 1
 16 2147483647 2
 16 2147483647 3

Page 11

 16 2147483647 4
 16 2147483647 5
 16 2147483647 6
 16 2147483647 7
 16 2147483647 8
 16 2147483647 9
 16 2147483647 10
 16 2147483647 12
 16 2147483647 14
 16 2147483647 16
 32 2147483647 18
 32 2147483647 20
 32 2147483647 22
 32 2147483647 24
 32 2147483647 26
 32 2147483647 28
 32 2147483647 30
012345678910111213141516171819

Yikes! That is probably more than what you were expecting. The problem is that the StringBuilder.Append()

method returns the StringBuilder object which allows you to cascade calls to Append. Unfortunately, now our

function outputs 20 StringBuilder objects and one System.String object. It is simple to fix though, just throw

away the unwanted output like so:

PS> function LongNumericString {
>> $strBld = new-object System.Text.StringBuilder
>> for ($i=0; $i -lt 20; $i++) {
>> [void]$strBld.Append($i)
>> }
>> $strBld.ToString()
>> }
>>
PS> LongNumericString
012345678910111213141516171819

Other Types of Output That Can't Be Captured
In the previous section we saw one instance of a particular output type - Write-Host - that doesn't contribute

to the stdout output stream. In fact, this type of output can't be captured except by the host. The argument to

Write-Host's -object parameter is sent directly to the host’s console bypassing the stdout output stream. So

unlike stderr output that can be captured as shown below, Write-Host output doesn't use streams and

therefore can't be redirected.

PS> $result = remove-item ThisFilenameDoesntExist 2>&1
PS> $result | foreach {$_.GetType().Fullname}
System.Management.Automation.ErrorRecord

Write-Host output can only be captured using the Start-Transcript cmdlet. Start-Transcript logs everything that

happens during a PowerShell session except, unfortunately, legacy application output. Keep in mind that Start-

Transcript is meant more for session logging than individual script logging. For instance, if you normally invoke

Page 12

Start-Transcript in your profile to log your PowerShell session, a script that calls Start-Transcript will generate an

error because you can't start a nested transcript. You have to stop the previous one first.

Here is the run down on the forms of output that can't be captured except via Start-Transcript:

1. Direct to Host output via Write-Host & Out-Host

2. Debug output via Write-Debug or -Debug on a cmdlet

3. Warning output via Write-Warning

4. Verbose output via many cmdlets that output extra information to the host when -Verbose is specified

5. Stdout or stderr from an executable.

That's it. Just remember to keep an eye on what statements and expressions are contributing to the output of

your PowerShell functions. Testing is always a good way to verify that you are getting the output you expect.

Item 3: Know What Objects Are Flowing Down the Pipeline
To use Windows PowerShell pipelines effectively, it helps to know what objects are flowing down the pipeline.

Sometimes objects get transformed from one type to another. Without the ability to inspect what type is being

used at each stage of the pipeline the results you see at the end can be mystifying. For example, the following

question came up on the microsoft.public.windows.powershell newsgroup:

“Given a set of sub directories in a known directory, I need to CD into each directory and execute a command. “

One approach to solving this is:

PS> Get-Item * | Where {$_.PSIsContainer} | Push-Location -passthru |
>> Foreach {du .; Pop-Location}

That worked fine for the du utility when specifying the current directory using '.'. However, in the spirit of

experimentation I thought I would try specifying the full path. I was a bit surprised when it didn't work:

PS> Get-Item * | Where {$_.PSIsContainer} | Push-Location -passthru |
>> Foreach {du $_.Fullname; Pop-Location}

Du v1.31 - report directory disk usage
Copyright (C) 2005-2006 Mark Russinovich
Sysinternals - www.sysinternals.com

No matching files were found.
...

To see what is going on here let's use Get-Member:

PS> Get-Item * | Where {$_.PSIsContainer} | Get-Member

 TypeName: System.IO.DirectoryInfo

http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!800.entry

Page 13

Name MemberType Definition
---- ---------- ----------
Create Method System.Void Create(), System.Void C...
...

Get-Member shows DirectoryInfo objects flowing out of the “where” stage of the pipeline which is what I

expected. Let's look further down the pipeline:

PS> Get-Item * | Where {$_.PSIsContainer} | Set-Location -PassThru | Get-Member

 TypeName: System.Management.Automation.PathInfo

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
ToString Method System.String ToString()
Drive Property System.Management.Automation.PSDriveInfo Drive {...
Path Property System.String Path {get;}
Provider Property System.Management.Automation.ProviderInfo Provid...
ProviderPath Property System.String ProviderPath {get;}

Now Get-Member is showing PathInfo objects flowing out of the “Set-Location” stage of the pipeline? I did not

expect that. What’s going on here? Apparently Set-Location took our DirectoryInfo objects and turned them

into PathInfo objects and passed those down the pipeline honoring the -PassThru parameter. However in this

case, Set-Location didn't “pass thru” the original object. It gave us an entirely new object! You will notice that

the PathInfo object doesn't have a Fullname parameter but it does have several path related parameters. Now

which one of those should we use? Let's use the Format-List cmdlet to see all values of the PathInfo object

output by Set-Location.

PS> Get-Item * | Where {$_.PSIsContainer} | Set-Location -PassThru |

>> Select -First 1 | Format-List *

Drive :

Provider : Microsoft.PowerShell.Core\FileSystem

ProviderPath : C:\Bin

Path : Microsoft.PowerShell.Core\FileSystem::C:\Bin

Now that we can see the property values it is pretty obvious that the ProviderPath property is the one to use

when passing the path to a legacy executable. It is very doubtful that such an executable would understand how

to interpret the Path property. Note that in this example I also used Select -First 1 to pick off the first directory.

This is handy if the command outputs a lot of objects. There's no point in waiting for potentially thousands of

objects to be processed when all you need is to see the property values for one of them.

One thing to note about Get-Member for this scenario is that it outputs a lot of type member information that is

just noise when all you want to know is the type names of the objects. Get-Member also only shows you the

type information once for each unique type of object. This gives you no sense of how many objects of the

Page 14

various types are passing down the pipe. This information is easy to access via the GetType() method that is

available on all .NET objects e.g.:

PS> Get-ChildItem | Foreach {$_.GetType().FullName}
System.IO.DirectoryInfo
System.IO.DirectoryInfo
System.IO.DirectoryInfo
System.IO.DirectoryInfo
System.IO.DirectoryInfo
System.IO.DirectoryInfo
System.IO.FileInfo
System.IO.FileInfo
System.IO.FileInfo

GetType() returns a System.RuntimeType object that has all sorts of interesting information. The property we

are interested in is FullName. If I had used Get-Member instead I would have gotten about 125 lines of text

surrounding the two lines indicating the type names. In fact this sort of filter is so handy that it is worth putting

in your profile:

PS> filter Get-TypeName {if ($_ -eq $null) {'<null>'} else {$_.GetType().Fullname }}
PS> Get-Date | Get-TypeName
System.DateTime

The PowerShell Community Extensions provides this filter; however, its implementation is a bit more robust.

For instance, there are occasions when it is also important to know that no objects were passed down the

pipeline. Our simple Get-TypeName filter isn't so helpful here:

PS> @() | Get-TypeName

We get no output, which is perhaps a reasonable indication that no objects were output down the pipe.

However, with the PSCX implemention of this filter, we wanted to provide a bit more guidance in this situation

e.g.:

PS> @() | Get-TypeName
WARNING: Get-TypeName did not receive any input. The input may be an empty collection.
You can either prepend the collection expression with the comma operator e.g.
",$collection | gtn" or you can pass the variable or expression to Get-TypeName as an
argument e.g. "gtn $collection".

PS> ,@() | Get-TypeName -full
System.Object[]

In summary, when debugging the flow of objects down the pipe be sure to take advantage of Get-Member to

show you what properties and methods are available on those objects. Use Format-List * to show you all the

property values on those objects. And use our handy little Get-TypeName filter to see the type names of each

and every individual object passed down the pipe in the order that the next cmdlet will see them.

Page 15

Item 4: Output Cardinality - Scalars, Collections and Empty Sets - Oh My!
In Item 2: Understanding Output, we covered a lot of ground with respect to PowerShell output. However,

there is a bit more you need to understand to use PowerShell effectively. This item concerns the cardinality of

PowerShell output. That is, when does PowerShell output a scalar (single value) versus a collection (multiple

values)? And in some cases, there is no output at all which I refer to as an empty set. I use the term collection

in a broad manner for various types of collections including arrays.

Working with Scalars
Working with scalars in PowerShell is straight forward. All the examples below generate scalar values:

PS> $num = 1
PS> $str = "Hi"
PS> $flt = [Math]::Pi
PS> $proc = (get-process)[0]
PS> $date = Get-Date

However you may be dealing with scalars when you think you are working with collections. For instance, when

you send a collection down the pipe, PowerShell will automatically "flatten" the collection, meaning that each

individual element of the collection is sent down the pipe, one after the other. For example:

PS> filter Get-TypeName {$_.GetType().Fullname}
PS> $array = "hi",1,[Math]::Pi,$false
PS> $array | Get-TypeName
System.String
System.Int32
System.Double
System.Boolean

In fact, the downstream pipeline stages do not operate on the original collection as a whole. The vast majority

of the time this collection flattening behavior within the pipeline is what you want. Otherwise, you would have

to write script like this to manually flatten the collection:

PS> foreach ($item in $array) {$item} | Get-TypeName

Note that this would require us to manually flatten every collection with the insertion of an extra

foreach statement in the pipe. Since pipelines are typically used to operate on the elements of a sequence and

not the sequence as a whole, it is very sensible that PowerShell does this flattening automatically. However,

there may be times when you need to defeat the flattening. There's good news and bad news on this topic.

First, let’s dispense the bad news. Technically you can't defeat this behavior. PowerShell always flattens

collections. The good news is that we can work around PowerShell’s flattening behavior by creating a new

collection that contains just one element - our original collection. PowerShell provides us with a nice shortcut to

do just that. For example, this is how I would modify the previous example to send an array intact down the

pipe and not each element:

PS> ,$array | Get-TypeName
System.Object[]

http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!816.entry

Page 16

The change is subtle. Notice the comma just before $array? That is the unary comma operator and

it instructs PowerShell to wrap the object following it, whatever that object is, in a new array that contains a

single element - the original object. PowerShell is still doing its flattening work, we just introduced another

collection to get the result that we wanted.

Another feature of PowerShell that is somewhat unique with respect to scalar handling is how the foreach

statement handles scalars. For example, the following script might surprise some C# developers:

PS> $vars = 1
PS> foreach ($var in $vars) { "`$var is $var" }
$var is 1

This is because in languages like C#, the variable $vars would have to represent a collection (IEnumerable) or you

would get a compiler error. This isn't a problem in PowerShell because if $vars is a scalar, PowerShell will treat

$vars as if it were a collection containing just that one scalar value. Again, this is a good thing in PowerShell;

otherwise, if we wrote code like this:

PS> $files = Get-ChildItem *.sys
PS> foreach ($file in $files) { "File is: $file" }
File is: C:\config.sys

We would need to modify it to do special handling for the case where Get-ChildItem finds only one .SYS file. Our

script code does not have to suffer the "line noise" necessary to do the check between scalar versus collection

data shapes. Now the astute reader may ask “What if Get-ChildItem doesn't find any .SYS files?”. Hold that

thought for a bit.

Working with Collections
Working with collections in PowerShell is also straight forward. All the examples below generate collections:

PS> $nums = 1,2,3+7..20
PS> $strs = "Hi", "Mom"
PS> $flts = [Math]::Pi, [Math]::E
PS> $procs = Get-Process

Sometimes you may want to treat the result of a command as a collection, even though it may return a single

(scalar) value. PowerShell provides a convenient operator to ensure this - the array subexpression operator.

Let's look at our Get-ChildItem command again. This time we will force the result to be a collection:

PS> $files = @(Get-ChildItem *.sys)
PS> $files.GetType().Fullname
System.Object[]
PS> $files.length
1

In this case, only one file was found. It is important for you to know when you are dealing with a scalar versus a

collection because both collections and FileInfo's have a Length property. I have seen this trip up more than a

Page 17

few people. Given that the unary comma operator always wraps the original object in a new array, what does

the array subexpression operator do when it operates on an array? Let's see:

PS> $array = @(1,2,3,4)
PS> $array.rank
1
PS> $array.length
4

As we can see, in this case the array subexpression operator has no effect. Again, the astute reader should be

asking about the case where Get-ChildItem returns nothing?

Working with Empty Sets
Let’s address the issue of a command that doesn’t return any output. This is a somewhat tricky area of

PowerShell that you should understand in order to avoid script errors. First, let’s document a few rules:

1. Valid output can consist of no output i.e. what I’ve been calling an empty set

2. When assigning output to a variable in PowerShell, $null is used to represent an empty set.

3. The foreach statement iterates over a scalar once, even if that scalar happens to be $null.

Seems simple, right? Well, these rules combine in somewhat surprising ways that can cause problems in your

scripts. Here is an example:

PS> function GetSysFiles { }
PS> foreach ($file in GetSysFiles) { "File: $file" }
PS>

GetSysFiles has no output so the foreach statement had nothing to iterate over since the invocation of

GetSysFiles returned no output. So far, so good but let's try a variation. Assume that our function invocation

takes a long argument list which leads us to want to put the function invocation on its own line like so:

PS> $files = GetSysFiles SomeReallyLongSetOfArguments
PS> foreach ($file in $files) { "File: $file" }
File:

Hmm, now we got output and all we did was introduce an intermediate variable to contain the output of the

function. Honestly this violates the Principle of Least Surprise in my opinion. Let me explain what is happening.

By using the temp variable we have invoked rule #2 - assigning to a variable results in our empty set getting

converted to $null when it is assigned to $files. This seems reasonable so far. Unfortunately our foreach

statement abides by rule #3 even when the scalar value is $null. In general, PowerShell handles references to

$null quite nicely. Notice that our string substitution above in the foreach statement didn't error when it

encountered the $null. It just didn't print anything for $null. However, .NET framework methods aren't nearly

as forgiving:

PS> foreach ($file in $files) { "Basename: $($file.Substring(0,$file.Length-4))" }
You cannot call a method on a null-valued expression.

Page 18

At line:1 char:16
+ $file.Substring(<<<< 0,$file.Length-4)
Basename:

Houston, we’ve got a problem. That means that you really need to be careful when using foreach to iterate over

the results of a command where you aren't sure what the cardinality of the results will be and if your script

won't tolerate iterating over $null. Note that using the array subexpression operator can help here but it is

crucial to use it in the correct place. Again, an issue with the language that should be fixed. For example, the

following placement does not work:

PS> foreach ($file in @($files)) { "Basename: $($file.Substring(0,$file.Length-4))" }
You cannot call a method on a null-valued expression.
At line:1 char:16
+ $file.Substring(<<<< 0,$file.Length-4)
Basename:

Since $files was already set to $null, the array subexpression operator just creates an array with a single

element, $null, which foreach happily iterates over.

What I recommend is to put the function call entirely within the foreach statement if the function call is terse.

The foreach statement obviously knows what to do when the function has no output. If the function call is

lengthy, then I recommend that you do it this way:

PS> $files = @(GetSysFiles SomeReallyLongSetOfArguments)
PS> foreach ($file in $files) { "Basename: $($file.Substring(2))" }
PS>

When you apply the array subexpression operator directly to a function that has no output, you will get an

empty array and not an array with a $null in it.

If you would like your functions to be able to return empty arrays, use the comma operator as shown below to

ensure that the results you return are in array form.

function ReturnArrayAlways {
 $result = @()
 # Do something here that may add 0, 1 or more elements to array $result
 # $result = 1
 # or
 # $result = 1,2
 ,$result
}

Page 19

Item 5: Use the Objects, Luke. Use the Objects!
Using Windows PowerShell requires a shift in your mental model with respect to how a shell deals with

information. In most shells like cmd.exe, Korn shell, C shell, Bash, etc you deal primarily with information in text

form. For instance the output of ls or ps is text which is then cut, prodded and parsed to coax out the required

pieces of information. As it turns out, PowerShell provides very handy text manipulation functions like:

 -like

 -notlike

 -match

 -notmatch

 -replace

 -eq

 -ne

 -ceq (case-sensitive)

 -cne (case-sensitive)

Note that by default, PowerShell treats all text (actually System.String objects) in a case-insensitive manner

when performing comparisons or regular expression search and replace operations. Because of these handy

string manipulation features, it is very easy to "fall back" into the old way of string cutting, parsing and string

comparisons. Sometimes this is unavoidable even in PowerShell but many times you can use the object

provided to you. The benefits are often:

 Easier to understand code

 Easier to avoid mistakes (changing output formats, bad regexes, incorrect comparison technique)

 Better performance

Let's look at an example. The following issue came up in the public.microsoft.windows.powershell newsgroup.

“How do you test the output of dir a.k.a. Get-ChildItem to filter out directories leaving only the files to be

operated on further down the pipeline?”

Here's an approach to this problem that I think of as "falling back" into the old ways:

PS> Get-ChildItem | Where {$_.mode -ne "d"}

First let me point out that this command doesn't work but more importantly it relies on string comparisons to

determine whether or not an item passing down the pipeline is a folder. If you are bent on doing the filtering

the "old way" then the following will work however it is easy to get the string comparison wrong if you aren’t

careful:

PS> Get-ChildItem | Where {$_.mode -notlike "d*"}

There is a better approach for this type of problem - the PowerShell way. PowerShell decorates every item that

is output by the Get-ChildItem and the other *-Item cmdlets with additional properties. This is even

http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!791.entry

Page 20

independent of which provider is being used: file system, registry, function, etc. We can see those extra

properties, all of which are prefixed with PS, by using our old friend Get-Member like so:

PS Function:\> New-Item -type function "foo" -value {} | Get-Member

 TypeName: System.Management.Automation.FunctionInfo

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
ToString Method System.String ToString()
PSDrive NoteProperty System.Management.Automation.PSDriveInfo ...
PSIsContainer NoteProperty System.Boolean PSIsContainer=False
PSPath NoteProperty System.String PSPath=Microsoft.PowerShell...
PSProvider NoteProperty System.Management.Automation.ProviderInfo...
CommandType Property System.Management.Automation.CommandTypes...
Definition Property System.String Definition {get;}
Name Property System.String Name {get;}
Options Property System.Management.Automation.ScopedItemOp...
ScriptBlock Property System.Management.Automation.ScriptBlock ...

One of those extra properties is PSIsContainer and this property tells us that the object is a container object. For

the registry, this means RegistryKey and for the file system it means directory (DirectoryInfo object). So this

problem can be solved more directly like so:

PS> Get-ChildItem | Where {!$_.PSIsContainer}

That is a bit less to type and is much less error prone. However what about this performance claim? OK let's try

both of these approaches (I'll also throw in the regex-based -notmatch) and measure their performance:

PS> $oldWay1 = 1..20 | Measure-Command {Get-ChildItem | Where {$_.mode -notlike "d*"}}
PS> $oldWay2 = 1..20 | Measure-Command {Get-ChildItem | Where {$_.mode -notmatch "d"}}
PS> $poshWay = 1..20 | Measure-Command {Get-ChildItem | Where {!$_.PSIsContainer}}

Here are the results:

PS> $oldWay1 | Measure-Object TotalSeconds -ave

Count : 1
Average : 169.2571743
Sum :
Maximum :
Minimum :
Property : TotalSeconds

PS> $oldWay2 | Measure-Object TotalSeconds -ave

Page 21

Count : 1
Average : 181.929144
Sum :
Maximum :
Minimum :
Property : TotalSeconds

PS> $poshWay | Measure-Object TotalSeconds -ave

Count : 1
Average : 61.5349126
Sum :
Maximum :
Minimum :
Property : TotalSeconds

So doing a little math, in PowerShell of course, we get:

PS> "{0:P0}" -f ((169.26 – 61.53) / 61.53)
175 %

Yikes! The string comparison approach using the Mode property is over 175% slower than using the

PSIsContainer property. With SoftwareFX’s PowerGadgets we can see this:

PS> $data = @{
>> 'Mode-Notlike' = $oldWay1.TotalSeconds
>> 'Mode-Notmatch' = $oldWay2.TotalSeconds
>> PSIsContainer = $poshWay.TotalSeconds
>> }
>>
PS> $data.Keys | Select @{n='Method';e={$_}},@{n='TotalSeconds';e={$data[$_]}} |
>> Out-Chart -Title "PSIsContainer vs Mode"
>>

http://powergadgets.com/

Page 22

PowerGadgets is pretty sweet. I use it when presenting version control usage reports to project managers. This

is off topic but I have one chart that displays the check-in activity per day. It is interesting to see the spike in

source code check-ins just prior to the conclusion of each milestone. :-)

The PowerShell console output gives you the illusion that you are only dealing with text but there are .NET

objects behind all that text output! You are often dealing with objects richer in information than System.String

and many times those objects have just the information you are looking for in the form of a property. You can

then extract that information without resorting to text parsing. For an additional example of operating on

object properties instead of textual output, check out my post on Sorting IPAddresses the PowerShell Way

(http://tinyurl.com/PsSortIP).

Item 6: Know Your Output Formatters
I have mentioned previously that Windows PowerShell serves up .NET objects for most everything. Get-

ChildItem outputs a sequence of System.IO.FileInfo and System.IO.DirectoryInfo objects output. Get-Date

outputs a System.DateTime object. Get-Process outputs System.Diagnostics.Process objects and Get-Content

outputs System.String objects (or arrays of them based on how -ReadCount is set). You get the idea.

PowerShell's currency is .NET objects. This isn't always obvious because of the way that PowerShell renders

these .NET objects to text for display on the host’s console. Let's imagine for a moment that we had to figure

out how to solve this problem ourselves.

Our first approach might be to rely on the ToString() method that is available on every .NET object. That would

work fine for some .NET objects e.g.:

http://powergadgets.com/
http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!793.entry
http://byfiles.storage.msn.com/y1pY1bPEHtvqE2GD2xmL7ZPHw5Nf6E7ugpfYD2mRENBsY84h3gE1N8MkWrMT6Ay5GmzWwqpuiTabD8

Page 23

PS> (Get-Date).ToString()
9/3/2007 10:21:23 PM

But not so well for others:

PS> (Get-Process)[0].ToString()
System.Diagnostics.Process (audiodg)

Hmm, that is certainly less than satisfying. Let's look at how the PowerShell team solved this problem. They

invented the notion of "views" for the common .NET types which could be tabular, list, wide or custom. For

.NET types PowerShell knows about it will declare a default view so you get decent text output without having to

specify a formatting cmdlet. For .NET types that PowerShell doesn’t know about it will choose a formatterIf you

don't specify a formatting cmdlet then PowerShell will choose a formatter based on the default view for

a .NET type which could be tabular, list, wide or custom.

Quick definition break: types versus objects. The System.DateTime class is a .NET type, there is only one of

these. The Get-Date cmdlet outputs an object which is an instance of the System.DateTime type. There can be

many DateTime objects based off the one definition of System.DateTime. PowerShell defines a view for the type

that gets applied to all instances (objects) of that type.

What if PowerShell doesn't define a view for a .NET type? This is a certainty because the possible set of .NET

types is infinite. I could create one right now called Plan9FromOuterSpace, compile it into a .NET assembly and

load it into PowerShell. How's PowerShell going to deal with the type it isn't familiar with? Let's see:

@'
public class Plan9FromOuterSpace {
 public string Director = "Ed Wood";
 public string Genre = "Science Fiction B Movie";
 public int NumStars = 0;
}
'@ > C:\temp\Plan9.cs

PS> csc /t:library Plan9.cs
PS> [System.Reflection.Assembly]::LoadFrom('c:\temp\Plan9.dll')
PS> New-Object Plan9FromOuterSpace

Director Genre NumStars
-------- ----- --------
Ed Wood Science Fiction B Movie 0

Through experimentation it seems that for up to four public properties, PowerShell will use a tabular view. If

the object has five or more public properties then PowerShell falls back to a list view.

There can be multiple views defined for a single .NET type. These views are defined in XML format files in the

PowerShell install directory:

Page 24

PS> Get-ChildItem $PSHOME*format*

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\System32\
 WindowsPowerShell\v1.0

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 1/24/2007 11:23 PM 22120 Certificate.format.ps1xml
-a--- 1/24/2007 11:23 PM 60703 DotNetTypes.format.ps1xml
-a--- 1/24/2007 11:23 PM 19730 FileSystem.format.ps1xml
-a--- 1/24/2007 11:23 PM 250197 Help.format.ps1xml
-a--- 1/24/2007 11:23 PM 65283 PowerShellCore.format.ps1xml
-a--- 1/24/2007 11:23 PM 13394 PowerShellTrace.format.ps1xml
-a--- 1/24/2007 11:23 PM 13540 Registry.format.ps1xml

The contents of these files look something like this:

<View>

 <Name>process</Name>

 <ViewSelectedBy>

 <TypeName>System.Diagnostics.Process</TypeName>

 <TypeName>Deserialized.System.Diagnostics.Process</TypeName>

 </ViewSelectedBy>

 <TableControl>

 <TableHeaders>

 <TableColumnHeader>

 <Label>Handles</Label>

 <Width>7</Width><Alignment>right</Alignment>

 </TableColumnHeader>

 <TableColumnHeader>

 <Label>NPM(K)</Label>

 <Width>7</Width><Alignment>right</Alignment>

 </TableColumnHeader>

 <TableColumnHeader>

 <Label>PM(K)</Label>

 <Width>8</Width><Alignment>right</Alignment>

 </TableColumnHeader>

 <TableColumnHeader>

 <Label>WS(K)</Label>

 <Width>10</Width><Alignment>right</Alignment>

 </TableColumnHeader>

 <TableColumnHeader>

 <Label>VM(M)</Label>

 <Width>5</Width><Alignment>right</Alignment>

 </TableColumnHeader>

 <TableColumnHeader>

 <Label>CPU(s)</Label>

 <Width>8</Width><Alignment>right</Alignment>

 </TableColumnHeader>

 <TableColumnHeader>

 <Width>6</Width><Alignment>right</Alignment>

 </TableColumnHeader>

 <TableColumnHeader />

 </TableHeaders>

 <TableRowEntries>

Page 25

 <TableRowEntry>

 <TableColumnItems>

 <TableColumnItem>

 <PropertyName>HandleCount</PropertyName>

 </TableColumnItem>

 <TableColumnItem>

 <ScriptBlock>[int]($_.NPM / 1024)</ScriptBlock>

 </TableColumnItem>

 <TableColumnItem>

 <ScriptBlock>[int]($_.PM / 1024)</ScriptBlock>

 </TableColumnItem>

 <TableColumnItem>

 <ScriptBlock>[int]($_.WS / 1024)</ScriptBlock>

 </TableColumnItem>

 <TableColumnItem>

 <ScriptBlock>[int]($_.VM / 1048576)</ScriptBlock>

 </TableColumnItem>

 <TableColumnItem>

 <ScriptBlock>

 if ($_.CPU -ne $()) {

 $_.CPU.ToString("N")

 }

 </ScriptBlock>

 </TableColumnItem>

 <TableColumnItem>

 <PropertyName>Id</PropertyName>

 </TableColumnItem>

 <TableColumnItem>

 <PropertyName>ProcessName</PropertyName>

 </TableColumnItem>

 </TableColumnItems>

 </TableRowEntry>

 </TableRowEntries>

 </TableControl>

</View>

The XML definition above is of the "table view" for the Process type. It defines the column attributes of the view

as well as the data that goes into each column, in some cases massaging the data into a more easily consumable

value (KB vs. bytes or MB vs. bytes). Here is the "wide view" definition for the Process type:

<View>

 <Name>process</Name>

 <ViewSelectedBy>

 <TypeName>System.Diagnostics.Process</TypeName>

 </ViewSelectedBy>

 <WideControl>

 <WideEntries>

 <WideEntry>

 <WideItem>

 <PropertyName>ProcessName</PropertyName>

 </WideItem>

 </WideEntry>

 </WideEntries>

 </WideControl>

</View>

Page 26

In this "wide view" the only property that PowerShell will display is the ProcessName. In searching the

DotNetTypes.format.ps1xml, we can find more definitions. The following StartTime "named view" isn't invoked

by default. You have to specify it by name to the Format-Table cmdlet:

<View>

 <Name>StartTime</Name>

 <ViewSelectedBy>

 <TypeName>System.Diagnostics.Process</TypeName>

 </ViewSelectedBy>

 <GroupBy>

 <ScriptBlock>$_.StartTime.ToShortDateString()</ScriptBlock>

 <Label>StartTime.ToShortDateString()</Label>

 </GroupBy>

 <TableControl>

 <TableHeaders>

 <TableColumnHeader>

 <Width>20</Width>

 </TableColumnHeader>

 <TableColumnHeader>

 <Width>10</Width>

 <Alignment>right</Alignment>

 </TableColumnHeader>

 <TableColumnHeader>

 <Width>13</Width>

 <Alignment>right</Alignment>

 </TableColumnHeader>

 <TableColumnHeader>

 <Width>12</Width>

 <Alignment>right</Alignment>

 </TableColumnHeader>

 </TableHeaders>

 <TableRowEntries>

 <TableRowEntry>

 <TableColumnItems>

 <TableColumnItem>

 <PropertyName>ProcessName</PropertyName>

 </TableColumnItem>

 <TableColumnItem>

 <PropertyName>Id</PropertyName>

 </TableColumnItem>

 <TableColumnItem>

 <PropertyName>HandleCount</PropertyName>

 </TableColumnItem>

 <TableColumnItem>

 <PropertyName>WorkingSet</PropertyName>

 </TableColumnItem>

 </TableColumnItems>

 </TableRowEntry>

 </TableRowEntries>

 </TableControl>

</View>

Why I am showing you all this? I think it is important to understand the magic behind how a .NET object, a

binary entity, gets rendered into text on your host’s console. With this knowledge, you should never forget that

you are dealing with .NET objects first and foremost.

Page 27

You may also be wondering if there is an easier way to figure out what views are available for any particular .NET

type. There is if you have the PowerShell Community Extensions installed. PSCX provides a handy script written

by Joris van Lier called Get-ViewDefinition and you can use it like so:

PS> Get-Viewdefinition System.Diagnostics.Process

Name : process
Path : C:\Windows\System32\WindowsPowerShell\v1.0\DotNetTypes.format.ps1xml
TypeName : System.Diagnostics.Process
SelectedBy : {System.Diagnostics.Process, Deserialized.System.Diagnostics.Process}
GroupBy :
Style : Table

Name : Priority
Path : C:\Windows\System32\WindowsPowerShell\v1.0\DotNetTypes.format.ps1xml
TypeName : System.Diagnostics.Process
SelectedBy : System.Diagnostics.Process
GroupBy : PriorityClass
Style : Table

Name : StartTime
Path : C:\Windows\System32\WindowsPowerShell\v1.0\DotNetTypes.format.ps1xml
TypeName : System.Diagnostics.Process
SelectedBy : System.Diagnostics.Process
GroupBy :
Style : Table

Name : process
Path : C:\Windows\System32\WindowsPowerShell\v1.0\DotNetTypes.format.ps1xml
TypeName : System.Diagnostics.Process
SelectedBy : System.Diagnostics.Process
GroupBy :
Style : Wide

From this output you can see that there are quite a few views that you might not have been aware of related to

the System.Diagnostics.Process .NET type that Get-Process outputs. Let's check out these alternate views:

PS> Get-Process | Format-Wide

audiodg csrss
csrss devenv
dexplore DPAgnt
DpHost dwm
EDICT ehmsas
ehtray explorer
FlashUtil9d Idle
ieuser iexplore
iexplore iexplore
...

Page 28

PS> Get-Process | Format-Table -View Priority

ProcessName Id HandleCount WorkingSet
----------- -- ----------- ----------
audiodg 1276 125 9592832
csrss 548 775 3440640
csrss 604 831 14360576
devenv 2632 974 93655040

 PriorityClass: Normal

ProcessName Id HandleCount WorkingSet
----------- -- ----------- ----------
dexplore 4324 401 4214784
DPAgnt 3300 133 2674688
DpHost 352 207 10928128

 PriorityClass: High

ProcessName Id HandleCount WorkingSet
----------- -- ----------- ----------
dwm 4072 235 86724608
...

PS> Get-Process | Format-Table -View StartTime

ProcessName Id HandleCount WorkingSet
----------- -- ----------- ----------
audiodg 1276 120 9572352
csrss 548 757 3432448
csrss 604 834 14360576
devenv 2632 974 93655040

 StartTime.ToShortDateString(): 8/31/2007

ProcessName Id HandleCount WorkingSet
----------- -- ----------- ----------
dexplore 4324 401 4214784

 StartTime.ToShortDateString(): 8/29/2007
...

What if you have forgotten what formatters are available to you in PowerShell? Don't forget that you can use

Get-Command like so:

Page 29

PS> Get-Command Format-*

CommandType Name Definition
----------- ---- ----------
Cmdlet Format-Custom Format-Custom [[-Property...
Cmdlet Format-List Format-List [[-Property] ...
Cmdlet Format-Table Format-Table [[-Property]...
Cmdlet Format-Wide Format-Wide [[-Property] ...

You are probably already pretty familiar with Format-Table. It presents data in tabular format. This is the

default format for many views including the default view for System.Diagnostics.Process. Format-Wide is also

pretty straight-forward. PowerShell displays a single property defined by PowerShell (i.e. the most interesting)

in multiple columns. Format-Custom is interesting but probably not a formatter that you will use that often - it

will be implicitly invoked for those .NET types that have custom views like System.DateTime:

<View>

 <Name>DateTime</Name>

 <ViewSelectedBy>

 <TypeName>System.DateTime</TypeName>

 </ViewSelectedBy>

 <CustomControl>

 <CustomEntries>

 <CustomEntry>

 <CustomItem>

 <ExpressionBinding>

 <PropertyName>DateTime</PropertyName>

 </ExpressionBinding>

 </CustomItem>

 </CustomEntry>

 </CustomEntries>

 </CustomControl>

</View>

DateTime is a ScriptProperty that PowerShell has defined like so:

PS> Get-Date | Get-Member -Name DateTime

 TypeName: System.DateTime

Name MemberType Definition
---- ---------- ----------
DateTime ScriptProperty System.Object DateTime {get=if ($this.DisplayHint -i...

This brings me to my favorite formatter that I use when I'm spelunking PowerShell output. Notice that the

Definition column above is truncated. Often when I want to see everything I will use the Format-List cmdlet.

This formatter outputs the various property values on individuals lines so that data is rarely truncated e.g.:

Page 30

PS> Get-Date | Get-Member -Name DateTime | Format-List

TypeName : System.DateTime
Name : DateTime
MemberType : ScriptProperty
Definition : System.Object DateTime {get=if ($this.DisplayHint -ieq "Date")
 {
 "{0}" -f $this.ToLongDateString()
 }
 elseif ($this.DisplayHint -ieq "Time")
 {
 "{0}" -f $this.ToLongTimeString()
 }
 else
 {
 "{0} {1}" -f $this.ToLongDateString(),
 $this.ToLongTimeString()
 };}

Now we can see the entire definition of the DateTime ScriptProperty. Note: PowerShell often defines

an abbreviated set of these property values to display by default with the Format-List cmdlet. It doesn't want

you to be overwhelmed with information. However, when you're spelunking you typically want to see all the

gory details. All you have to do to get all the property values listed is execute "format-list *". Check out the

default list format for a Process object:

PS> (Get-Process)[0] | Format-List

Id : 1284
Handles : 103
CPU :
Name : audiodg

versus what you get when you ask Format-List to give you everything:

PS> (Get-Process)[0] | Format-List *

__NounName : Process
Name : audiodg
Handles : 99
VM : 47075328
WS : 9027584
PM : 11141120
NPM : 3360
Path :
Company :
CPU :
FileVersion :
ProductVersion :
Description :
Product :
Id : 1284

Page 31

PriorityClass :
HandleCount : 99
WorkingSet : 9027584
PagedMemorySize : 11141120
PrivateMemorySize : 11141120
VirtualMemorySize : 47075328
...

See what I mean? Look at how much information you would have missed if you forgot to specify that you want

to see all properties via the asterisk.

Item 7: Understanding PowerShell Parsing Modes
The way PowerShell parses commands can be surprising especially to those that are used to shells with more

simplistic parsing like CMD.EXE. Parsing in PowerShell is a bit different because PowerShell needs to work well

as both an interactive command line shell and a scripting language. This need is driven by use cases such as:

1. Allow execution of commands and programs with arguments at the command line. Consequence:

arguments (filenames, paths) should not require quotes unless there is a space in the argument’s value.

2. Allow scripts to contain expressions as found in most other programming/script languages.

Consequence: PowerShell script should be able to evaluate expressions like 2 + 2 and $date.Second as

well as specify a string using quotes e.g. "del -r * is being executed".

3. Take code written interactively at the command line and paste it into a script for execution again at

some point in the future. Consequence: These two worlds - interactive and script - need to coexist

peacefully.

Part and parcel with providing a powerful scripting language is to support more types than just the string type.

In fact, PowerShell supports most .NET types including String, Int8, Int16, Int32, Decimal, Single, Double,

Boolean, Array, ArrayList, StringBuilder among many other .NET types. That's very nice you say but what's this

got to do with parsing modes? Think about this. How would you expect a language to represent a string literal?

Well most folks would probably expect this representation: "Hello World"

And in fact, that is recognized by PowerShell as a string e.g.:

PS> "Hello World".GetType().Name
String
PS> "Hello World"
Hello World

And if you type a string at the prompt and hit the Enter key, PowerShell, being a very nice REPL (Read-eval-print-

loop) environment, echoes the string back to the console as shown above. However what if I had to specify

command arguments using quotes as shown below?

PS> del "foo.txt", "bar.txt", "baz.txt"

http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!6058.entry

Page 32

That would immediately "feel" different than any other command line shell out there. Even worse, typing all

those quotes would get annoying really fast. My guess is that the PowerShell team, pretty early on, decided that

they were going to need two different parse modes. First they would need to parse like a traditional shell where

strings (filenames, directory names, process names, etc) do not need to be quoted. Second they would need to

be able to parse like a traditional language where strings are quoted and expressions feel like those you would

find in a programming language. In PowerShell, the former is called Command parsing mode and the latter is

called Expression parsing mode. It is important to understand which mode you are in and more importantly,

how to switch between them.

Let's look at an example. Obviously we would prefer to type the following to delete files:

PS> del foo.txt, bar.txt, baz.txt

That's better. No quotes required on the filenames. PowerShell treats these filenames as strings even without

the quotes in command parsing mode. But what happens if my path has a space in it? You would naturally try:

PS> del 'C:\Documents and Settings\Keith_lesshst'

And that works as you would expect. Now what if I want to execute a program with a space in its path:

PS> 'C:\Program Files\Windows NT\Accessories\wordpad.exe'
C:\Program Files\Windows NT\Accessories\wordpad.exe

That didn't work because as far as PowerShell is concerned we gave it a string, so it just echoes it back to the

screen. It did this because it parsed this line in expression mode. We need to tell PowerShell to parse the line in

command mode. To do that we use the call operator '&' like so:

PS> & 'C:\Program Files\Windows NT\Accessories\wordpad.exe'

Tip: Help prevent repetitive stress injuries to your wrists and use tab (and shift+tab) completion for auto-

completing the parts of a path. If the resulting path contains a space PowerShell will insert the call operator for

you as well as surround the path with quotes.

What's going on with this example is that PowerShell looks at the first non-whitespace character of a line to

determine which mode to start parsing in. If it sees one of the characters below then PowerShell parses in

Command mode:

[_aA-zZ]

&

.

 \

One exception to this rule happens when the line starts with a name that corresponds to a PowerShell language

keyword like if, do, while, foreach, etc. In this case, PowerShell uses expression parsing mode and expects you

to provide the rest of the syntax associated with that keyword. The benefits of Command mode are:

Page 33

 Strings do not need to be quoted unless there are spaces in the string.

 Numbers are parsed as numbers and all other arguments are treated as strings except those that start

with the characters: @, $, (, ' or ". Numbers are interpreted as either Int32, Int64, Double or Decimal

depending on how the number is decorated and the range required to hold the number e.g. 12, 30GB,

1E-3, 100.01d.

So why do we need expression parsing mode? Well as I mentioned before it sure would be nice to be able to

evaluate expressions like this:

PS> 64-2
62

It isn't a stretch to see how some shells might interpret this example as trying to invoke a command named '64-

2'. So how does PowerShell determine if the line should be parsed in expression mode? If the line starts with a

number [0-9] or one of these characters: @, $, (, ' or " the line is evaluated in expression mode. The benefits

of expression mode are:

 It is possible to disambiguate commands from strings e.g. del -recurse * is a command whereas "del

-recurse *" is just a string.

 Arithmetic and comparison expressions are straight forward to specify e.g. 64-2 (62) and $array.count

-gt 100. In command mode, -gt would be interpreted as a parameter if in fact the previous token

corresponded to a valid command.

One consequence of the rules for expression parsing mode is that if you want to execute an EXE or script whose

name starts with a number you have to quote the name and use the call operator e.g.:

PS> & '64E1'

If you were to attempt to execute 64E1 without using the call operator, PowerShell can't tell if you want to

interpret that as the number 64E1 (640) or execute an exe named 64E1.exe or a script named 64E1.ps1. It is up

to you to make sure you have placed PowerShell in the correct parsing mode to get the behavior you want

which in this case means putting PowerShell into command parsing mode by using the call operator. Note: I

have observed that if you specify the full command name e.g. 64E1.ps1 or 64E1.exe, it isn't necessary to quote

the command.

What if you want to mix and match parsing modes on the same line? Easy. Just use either a grouping

expression (), a subexpression $() or an array subexpression @(). This will cause the parser to re-evaluate

the parsing mode based on the first non-whitespace character inside the parenthesis.

What's the difference between grouping expressions (), subexpressions $() and array subexpressions @()? A

grouping expression can contain just a simple expression or single pipeline. A subexpression can

contain multiple semicolon separated statements. The output of each statement contributes to the output of

the subexpression which can be nothing, a scalar or a collection. An array subexpression behaves just like a

subexpression except that it guarantees that the output will be an array. The two cases where this makes a

Page 34

difference are 1) when there is no output at all an array subexpression will produce an empty array and 2) when

the result is a scalar value it will produce a single element array containing the scalar value. If the output is

already an array then the use of an array subexpession will have no effect on the output i.e. it will not wrap the

array inside of another array.

 In the following example I have embedded a command "Get-ChildItem C:\Windows" into a line that started out

parsing in expression mode. When it encounters the grouping expression (Get-ChildItem C:\Windows), it begins

parsing mode re-evaluation, finds the character 'g' and kicks into command mode parsing for the remainder of

the text inside the grouping expression. Note that ".Length" is parsed using expression mode because it

is outside the grouping expression, so PowerShell reverts back to the previous parsing mode. ".Length" instructs

PowerShell to get the Length property of the object output by the grouping expression. In this case, it is an

array of FileInfo and DirectoryInfo objects. The Length property tells us how many items are in that array.

PS> 10 + (Get-ChildItem C:\Windows).Length
115

We can do the opposite. That is, put expressions in lines that started out parsing in command mode. In the

example below we use an expression to calculate the number of objects to select from the sequence of objects.

PS> Get-Process | Select -first (1.5 * 2)

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 120 4 11860 9508 46 1320 audiodg
 778 6 1772 3516 88 560 csrss
 922 14 5288 13696 163 620 csrss

Using the ability to start new parsing modes, we can nest commands within commands. This is a

powerful feature and one I recommend mastering. In the example below PowerShell is happily parsing the

command line in command mode when it encounters '@(' i.e. the start of an array subexpression. This causes

PowerShell to re-evaluate the parsing mode but in this case it finds a nested command. The nested command

grabs the new filename from the first line of the file to be renamed. I used the array subexpression syntax in

this case because it guarantees that we will get an array of lines even if there is just one line. If you use a

grouping expression instead and the file happens to contain only a single line then PowerShell will interpret the

[0] to be "get me the first character in the string" which is "f" in the example below.

PS> Get-ChildItem [a-z].txt | Foreach{Rename-Item $_ -NewName @(Get-Content $_)[0] -WhatIf}
What if: Performing operation "Rename File" on Target "Item: C:\a.txt Destination:
C:\file_a.txt".
What if: Performing operation "Rename File" on Target "Item: C:\b.txt Destination:
C:\file_b.txt".

There is one final subtlety that I would like to point out and that is the difference between using the call

operator & to invoke commands and "dotting" commands. Consider invoking a simple script that sets the

variable $foo = 'PowerShell Rocks!'. Let's execute this script using the call operator and observe the

impact on the global session:

mailto:'@('

Page 35

PS> $foo
PS> & .\script.ps1
PS> $foo

Note that using the call operator invokes the command in a child scope that gets thrown away when the

command (script, function, etc) exits. That is, the script didn't impact the value of $foo in the global scope.

Now let's try this again by dotting the script:

PS> $foo
PS> . C:\Users\Keith\script.ps1
PS> $foo
PowerShell Rocks!

When dotting a script, the script executes in the current scope. As a result, the variable $foo in script.ps1

effectively becomes a reference to the global $foo when the script is dotted from the command line resulting in

changing the global $foo variable's value. This shouldn't be too surprising since "dot sourcing", as it's also

known, is common in other shells. Note that these rules also apply to function invocation. However for external

EXEs it doesn't matter whether you dot source or use the call operator since EXEs execute in a separate process

and can't impact the current scope.

Here's a handy reference to help you remember the rules for how PowerShell determines the parsing mode.

First non-whitepace character Parsing mode
[_aA-zZ], &, . or \ Command
[0-9], ', ", $, (, @ and any other character

that doesn't start command parsing mode
Expression

Once you learn the subtleties of these two parsing modes you will be able to quickly get past those initial

surprises like figuring out how to execute EXEs with paths that contain spaces.

Item 8: Understanding ByPropertyName Pipeline Bound Parameters
We all generally like to solve a problem in an efficient way. In PowerShell that usually culminates in a one-liner.

For pedagogical purposes I find it much better to expand these terse, almost Obfuscated C style, commands into

multiple lines. However there is no denying that when you want to bang out something quick at the console,

given PowerShell's current line editing features, a one-liner helps stave off repetitive stress injuries. It's not

PowerShell's fault. They're just using the antiquated console subsystem in Windows that hasn't changed much

since NT shipped in 1993.

One trick to less typing is to take advantage of pipeline bound parameters. Quite often I see folks write a

command like:

PS> Get-ChildItem . *.cs -r | Foreach { Get-Content $_.fullname } | ...

That works but the use of the Foreach-Object cmdlet is technically unnecessary. Many PowerShell cmdlets bind

their "primary" parameter to the pipeline. This is indicated in the help file for Get-Content as shown below:

http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!6130.entry

Page 36

-path <string[]>
 Specifies the path to an item. Get-Content retrieves the content of the item. Wildcards
 are permitted. The parameter name ("-Path" or "-FilePath") is optional.

 Required? true
 Position? 1
 Default value N/A - The path must be specified
 Accept pipeline input? true (ByPropertyName)
 Accept wildcard characters? true

<snip>

-literalPath <string[]>
 Specifies the path to an item. Unlike Path, the value of LiteralPath is used
 exactly as it is typed. No characters are interpreted as wildcards. If the path
 includes escape characters, enclose it in single quotation marks.
 Single quotation marks tell Windows PowerShell not to interpret any characters as
 escape sequences.

 Required? true
 Position? 1
 Default value
 Accept pipeline input? true (ByPropertyName)
 Accept wildcard characters? false

Note: you have to specify the –Full parameter to Get-Help to get this level of detail on a cmdlet paremeters.

There are actually four parameters on Get-Content that accept pipeline input ByPropertyName only two of

which are shown above. The other two are ReadCount and TotalCount. The qualifier ByProperyName simply

means that if the incoming object has a property of that name it is available to be "bound" as input to that

parameter. That is, if a type match can be found or coerced.

For instance, we could simplify the command above by eliminating the Foreach-Object cmdlet altogether:

PS> Get-ChildItem . *.cs -r | Get-Content | ...

While it is intuitive that Get-Content should be able to handle the System.IO.FileInfo objects that Get-ChildItem

outputs, it isn't obvious based on the ByPropertyName rule I just mentioned. The reason it isn’t obvious is the

FileInfo objects output by Get-ChildItem do not have either a Path property or a LiteralPath property even

accounting for the extended properties like PSPath. So how does Get-Content determine the path of a file in

this pipeline scenario? There are at least two ways to find this out. The first is the easier approach. It uses a

PowerShell cmdlet called Trace-Command that shows you how PowerShell binds parameters. The second

approach involves spelunking in the PowerShell assemblies using Red Gate’s .NET Reflector. Let's tackle this

problem initially using Trace-Command.

Trace-Command is a built-in tracing facility that shows a lot of the inner workings of PowerShell. I will warn you

that it tends to be prolific with its output. One particularly useful area you can trace is parameter binding.

Here's how we would do this for the command above:

Page 37

PS> Trace-Command -Name ParameterBinding -PSHost -Expression {
 Get-ChildItem log.txt | Get-Content }

This outputs a lot of text and unfortunately it is "Debug" stream text that isn't easily searchable or redirectable

to a file. Oh well. The interesting output from this command is:

 BIND PIPELINE object to parameters: [Get-Content]
 PIPELINE object TYPE = [System.IO.FileInfo]
 RESTORING pipeline parameter's original values
 Parameter [ReadCount] PIPELINE INPUT ValueFromPipelineByPropertyName NO COERCION
 Parameter [TotalCount] PIPELINE INPUT ValueFromPipelineByPropertyName NO COERCION
 Parameter [Path] PIPELINE INPUT ValueFromPipelineByPropertyName NO COERCION
 Parameter [Credential] PIPELINE INPUT ValueFromPipelineByPropertyName NO COERCION
 Parameter [ReadCount] PIPELINE INPUT ValueFromPipelineByPropertyName NO COERCION
 Parameter [TotalCount] PIPELINE INPUT ValueFromPipelineByPropertyName NO COERCION
 Parameter [LiteralPath] PIPELINE INPUT ValueFromPipelineByPropertyName NO COERCION
 BIND arg [Microsoft.PowerShell.Core\FileSystem::C:\Users\Keith\log.txt] to parameter
[LiteralPath]

This output has been simplified a bit by eliminating extraneous output. I also changed the initial command to

output just a single FileInfo object to further reduce the amount of output. The information we get from Trace-

Command shows us that PowerShell tries to bind the FileInfo object to the Get-Content parameters and fails (NO

COERCION) on all except for the LiteralPath parameter. That tells us definitively how Get-Content is getting the

path but it doesn't make sense. There is no LiteralPath property on a FileInfo object and there is no extended

property called LiteralPath either.

This is where the second technique of using .NET Reflector can be used to see a decompiled version of the

PowerShell source. After starting .NET Reflector and loading the

Microsoft.PowerShell.Commands.Management.dll assembly, we search for and find the GetContentCommand

and inspect the LiteralPath parameter shown below:

[Alias(new string[] { "PSPath" })]

[Parameter(Position = 0, ParameterSetName = "LiteralPath", Mandatory = true,

 ValueFromPipeline = false, ValueFromPipelineByPropertyName = true)]

public string[] LiteralPath { }

Note the Alias attribute on this parameter. It creates another valid name for the LiteralPath parameter, PSPath,

which corresponds to the extended property PSPath that PowerShell adds to all FileInfo objects. That is what

allows the ByPropertyName pipeline input binding to succeed. The FileInfo property PSPath matches the

LiteralPath parameter albeit via an alias.

Where does that leave us? There are a number of cases where we can pipe an object directly to a cmdlet in the

next stage of the pipeline because of pipeline input binding where PowerShell searches for the most appropriate

parameter to bind that object to.

Here is another example of piping directly to another cmdlet without resorting to the use of the Foreach-Object

cmdlet:

PS> Get-ChildItem *.txt | Rename-Item -NewName {$_.name + '.bak'}

Page 38

You also now have a way to determine how PowerShell binds pipeline input to a parameter of a cmdlet. And

thanks to Reflector we know that some parameters have aliases like PSPath to assist in this binding process.

That's it for ByPropertyName pipeline input binding. There is another type of pipeline input binding called

ByValue that we will cover next.

Item 9: Understanding ByValue Pipeline Bound Parameters
ByValue pipeline parameter binding takes the input object itself, not one of its properties, and attempts to bind

it by type using type coercion if necessary to parameters decorated as ByValue. For example, most of the *-

Object utility cmdlets parameter bind ByValue to whatever object is presented to them via the pipeline. The

help on Where-Object shows this:

-inputObject <psobject>
 Specifies the objects to be filtered. If you save the output of a command in a
 variable, you can use InputObject to pass the variable to Where-Object.
 However, typically, the InputObject parameter is not typed in the command.
 Instead, when you pass an object through the pipeline, Windows PowerShell
 associates the passed object with the InputObject parameter.

 Required? false
 Position? named
 Default value
 Accept pipeline input? true (ByValue)
 Accept wildcard characters? false

It turns out that ByValue isn't nearly as popular as ByPropertyValue. How can I make such a statement you ask?

Well this is one of the things that I love about PowerShell. It provides so much metadata about itself. It is very

self describing. You can easily walk every parameter on every cmdlet that is currently loaded into PowerShell.

First let's see what information is available for a parameter:

PS> Get-Command -CommandType cmdlet | Select -Expand ParameterSets |
>> Select -Expand Parameters -First 1 | Get-Member
>>

 TypeName: System.Management.Automation.CommandParameterInfo

Name MemberType Definition
---- ---------- ----------
...
Aliases Property System.Collections.ObjectModel.ReadOnlyCollection`1[[...
Attributes Property System.Collections.ObjectModel.ReadOnlyCollection`1[[...
HelpMessage Property System.String HelpMessage {get;}
IsDynamic Property System.Boolean IsDynamic {get;}
IsMandatory Property System.Boolean IsMandatory {get;}
Name Property System.String Name {get;}
ParameterType Property System.Type ParameterType {get;}
Position Property System.Int32 Position {get;}
ValueFromPipeline Property System.Boolean ValueFromPipeline {get;}
ValueFromPipelineByPropertyName Property System.Boolean ValueFromPipelineByPropertyName {get;}
ValueFromRemainingArguments Property System.Boolean ValueFromRemainingArguments {get;}

http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!6158.entry

Page 39

The interesting properties for us here are the Name and ValueFromPipeline* properties. Given this information

it is easy to figure out how many of each type there are:

PS> (Get-Command -CommandType cmdlet | Select -Expand ParameterSets |
>> Select -Expand Parameters |
>> Where {$_.ValueFromPipeline -and !$_.ValueFromPipelineByPropertyName} |
>> Measure-Object).Count
>>
55
PS> (Get-Command -CommandType cmdlet | Select -Expand ParameterSets |
>> Select -Expand Parameters |
>> Where {!$_.ValueFromPipeline -and $_.ValueFromPipelineByPropertyName} |
>> Measure-Object).Count
>>
196
PS> (Get-Command -CommandType cmdlet | Select -Expand ParameterSets |
>> Select -Expand Parameters |
>> Where {$_.ValueFromPipeline -and $_.ValueFromPipelineByPropertyName} |
>> Measure-Object).Count
>>
66

So from here we can see the following:

Type of Pipeline Binding Count

ValueFromPipeline (ie ByValue) 55

ValueFromPipelineByPropertyName 196

Both 66

So indeed binding by property name is much more common. Binding by value from the pipeline is primarily for

cmdlets that manipulate objects in a generic manner like filtering and sorting. In the query below we can see

that the InputObject parameter is by far the most common ByValue pipeline bound parameter:

PS> Get-Command -CommandType cmdlet | Select -Expand ParameterSets |
>> Select -Expand Parameters |
>> Where {$_.ValueFromPipeline -and !$_.ValueFromPipelineByPropertyName} |
>> Group Name -NoElement | Sort Count -Desc
>>

Count Name
----- ----
 40 InputObject
 4 Message
 3 String
 2 SecureString
 1 ExecutionPolicy
 1 Object
 1 AclObject
 1 DifferenceObject
 1 Id
 1 Command

Page 40

A little further digging reveals the cmdlets that use the ByValue bound InputObject parameters as shown below.

Note that a single parameter can appear in more than one parameter set on a cmdlet, which explains why there

are only 36 cmdlets that account for the 40 instances of InputObject.

PS> $CmdletName = @{Name='CmdletName';Expression={$_.Name}}
PS> Get-Command -CommandType cmdlet | Select $CmdletName -Expand ParameterSets |
>> Select CmdletName -Expand Parameters |
>> Where {$_.ValueFromPipeline -and !$_.ValueFromPipelineByPropertyName} |
>> Group Name | Sort Count -Desc | Select -First 1 | Foreach {$_.Group} |
>> Sort CmdletName -Unique | Format-Wide CmdletName -AutoSize
>>

Add-History Add-Member ConvertTo-Html Export-Clixml Export-Csv ForEach-Object
Format-Custom Format-List Format-Table Format-Wide Get-Member Get-Process
Get-Service Get-Unique Group-Object Measure-Command Measure-Object Out-Default
Out-File Out-Host Out-Null Out-Printer Out-String Restart-Service
Resume-Service Select-Object Select-String Sort-Object Start-Service Stop-Process
Stop-Service Suspend-Service Tee-Object Trace-Command Where-Object Write-Output

As you can see most of these cmdlets are designed to deal with objects in general. Note to cmdlet developers -

pipeline bound parameters is how your cmdlet receives pipeline objects. When writing a cmdlet in C# there isn’t

quite an equivalent of the $_ variable. If your cmdlet wants to "participate" in the pipeline it must set the

ParameterAttribute property ValueFromPipeline and/or ValueFromPipelineByPropertyName to true on at least

one of its parameters.

As mentioned above most ByValue parameters are of the InputObject (type psobject or psobject[]) variety so

they pretty much accept anything. However not all cmdlets work that way. The -Id parameter (type [long[]]) on

Get-History is pipeline bound ByValue. The follow Trace-Command output shows how PowerShell works hard

when necessary to convert the input object's type to the expected type. In this case a scalar string value of '1' to

an array of Int64:

PS> Trace-Command -Name ParameterBinding -PSHost -Expression {'1' | Get-History}

BIND NAMED cmd line args [Get-History]
BIND POSITIONAL cmd line args [Get-History]
MANDATORY PARAMETER CHECK on cmdlet [Get-History]
CALLING BeginProcessing
BIND PIPELINE object to parameters: [Get-History]
 PIPELINE object TYPE = [System.String]
 RESTORING pipeline parameter's original values
 Parameter [Id] PIPELINE INPUT ValueFromPipeline NO COERCION
 BIND arg [1] to parameter [Id]
 Binding collection parameter Id: argument type [String], parameter type
 [System.Int64[]], collection type Array, element type [System.Int64],
 no coerceElementType
 Creating array with element type [System.Int64] and 1 elements
 Argument type String is not IList, treating this as scalar
 BIND arg [1] to param [Id] SKIPPED
 Parameter [Id] PIPELINE INPUT ValueFromPipeline WITH COERCION
 BIND arg [1] to parameter [Id]

Page 41

 COERCE arg type [System.Management.Automation.PSObject] to [System.Int64[]]
 ENCODING arg into collection
 Binding collection parameter Id: argument type [PSObject], parameter type
 [System.Int64[]], collection type Array, element type [System.Int64],
 coerceElementType
 Creating array with element type [System.Int64] and 1 elements
 Argument type PSObject is not IList, treating this as scalar
 COERCE arg type [System.Management.Automation.PSObject] to [System.Int64]
 CONVERT arg type to param type using LanguagePrimitives.ConvertTo
 CONVERT SUCCESSFUL using LanguagePrimitives.ConvertTo: [1]
 Adding scalar element of type Int64 to array position 0
 Executing VALIDATION metadata:
[System.Management.Automation.ValidateRangeAttribute]
 BIND arg [System.Int64[]] to param [Id] SUCCESSFUL
MANDATORY PARAMETER CHECK on cmdlet [Get-History]
CALLING ProcessRecord
CALLING EndProcessing

Note that on the first attempt, PowerShell tries to convert the string to an array of Int64 and fails. Then it tries

again by treating the input as psobject. It hands that psobject to an internal helper class

LanguagePrimitives.ConvertTo() that successfully converts the string '1' to an Int64[] containing the value 1.

When a parameter is both ByValue and ByPropertyName bound, PowerShell attempts to bind in this order:

1. Bind ByValue with no type conversion

2. Bind ByPropertyName with no type conversion

3. Bind ByValue with type conversion

4. Bind ByPropertyName with type conversion

There is more to the parameter binding algorithm like finding the best match amongst different parameter sets.

One last tidbit related to parameters. The PowerShell help topics aren't completely automatically generated

and as a result they aren't always correct. For instance, look up the parameters on Get-Content and see if you

find a -Wait parameter. You won't. However the metadata is always complete and correct e.g.:

PS> Get-Command Get-Content -Syntax
Get-Content [-Path] <String[]> [-ReadCount <Int64>] [-TotalCount <Int64>] [-Filter <String>]
 [-Include <String[]>] [-Exclude <String[]>] [-Force] [-Credential <PSCredential>] [-Verbose]
 [-Debug] [-ErrorAction <ActionPreference>] [-ErrorVariable <String>] [-OutVariable <String>]
 [-OutBuffer <Int32>] [-Delimiter <String>] [-Wait] [-Encoding <FileSystemCmdletProviderEncoding>]
Get-Content [-LiteralPath] <String[]> [-ReadCount <Int64>] [-TotalCount <Int64>] [-Filter <String>]
 [-Include <String[]>] [-Exclude <String[]>] [-Force] [-Credential <PSCredential>] [-Verbose]
 [-Debug] [-ErrorAction <ActionPreference>] [-ErrorVariable <String>] [-OutVariable <String>]
 [-OutBuffer <Int32>] [-Delimiter <String>] [-Wait] [-Encoding <FileSystemCmdletProviderEncoding>]

Hopefully this item has given you more knowledge about ByValue parameters and how to explore and get more

information on cmdlet parameters in general. In summary, there actually isn't much you need to know about

ByValue pipeline bound parameters because in most cases they just work intuitively. Just be sure to keep your

eye out for those parameters that bind ByPropertyName. They are the ones whose pipeline bound usage isn't

always as obvious.

Page 42

Item 10: Error Handling
There are several facets to the subject of errors in PowerShell that you should understand to get the most out of

PowerShell. Some of these facets are error handling, error related global variables and error related preference

variables. But the most fundamental facet is the distinction between “terminating” and “non-terminating”

errors.

Terminating Errors
Terminating errors will be immediately familiar to software developers who deal with exceptions. Unhandled

exceptions will cause the program to crash. Similarly, if a terminating error is not handled it will cause the

current operation (cmdlet or script) to abort with an error. Terminating errors and are generated by:

 Cmdlet calling the ThrowTerminatingError API.

 Exceptions escaping unhandled from a cmdlet

 Script using the throw keyword to issue a terminating error

 Script syntax errors

The gist of a terminating error is that the code throwing the terminating error is indicating that it cannot

reasonably continue and is aborting the requested operation. As we will see later, you as the client of that code,

have the ability to declare that you can handle the error and continue executing subsequent commands.

Terminating errors that are not handled propagate up through the calling code, prematurely terminating each

calling function or script until either the error is handled or the original invoking operation is terminated.

Here is an example of how a terminating error alters control flow:

PS> "Before"; throw "Oops!"; "After"
Before
Oops!
At line:1 char:16
+ "Before"; throw <<<< "Oops!"; "After"
 + CategoryInfo : OperationStopped: (Oops!:String) [], RuntimeException
 + FullyQualifiedErrorId : Oops!

Note that “After” is not output to the console because “throw” issues a terminating error.

Non-terminating Errors
Have you ever experienced the following in older versions of Windows Explorer? You open a directory with a

large number of files, say your temp dir and you want to empty it. You select the entire contents of the

directory, press Delete and wait. Unfortunately some processes invariably have files open in the temp

directory. So after deleting a few files, you get an error from Windows Explorer indicating that it can’t delete

some file. You press OK and at this point Windows Explorer aborts the operation. It treats the error effectively

as a terminating error. This can be very frustrating. You select everything again, press Delete, Explorer deletes a

few more files then errors and aborts again. You rinse and repeat these steps until finally all the files that can be

deleted are deleted. This behavior is very annoying and wastes your time. In an automation scenario,

premature aborts like this are often unacceptable.

Page 43

Having a special category of error that does not terminate the current operation is very useful in scenarios like

the one outlined above. In PowerShell, that category is the non-terminating error. Even though a non-

terminating error does not terminate the current operation, the error is still logged to the $Error collection

(discussed later) as well as displayed on the host’s console as is the case with terminating errors. Non-

terminating errors are generated by:

 Cmdlet calling the WriteError API.

 Script using the Write-Error cmdlet to log a non-terminating error

 Exceptions thrown from calls to a member of a .NET object or type.

Here is an example of how a non-terminating error does not alter control flow:

PS> "Before"; Write-Error "Oops!"; "After"
Before
"Before"; Write-Error "Oops!"; "After" : Oops!
 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException
 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException

After

Note the Write-Error command issues a non-terminating error that gets displayed on the host’s console then the

script continues execution.

Error Variables

There are several global variables and global preference variables related to errors. Here is a brief primer on

them:

 $? - contains the execution status of the last operation. True indicates the operation succeeded without

any errors. False indicates either complete failure or partial success. Note: for Windows executables

the exit code is examined. An exit code of 0 will be interpreted as success and non-zero as failure.

Some Windows console apps don’t honor this convention so it is usually better to inspect

$LASTEXITCODE such that you can determine for yourself success or failure based your interpretation of

the exit code.

 $LASTEXITCODE – exit code of the last Windows executable invoked from this session.

 $Error – collection (ArrayList to be specific) of errors that have occurred in the current session. Errors

are always inserted at the beginning of the collection. As a result, the most recent error is always

located at index 0.

 $MaximumErrorCount – determines the size of the $Error collection. Defaults to 256 which is the

minimum value allowed. Max value is 32768.

 $ErrorActionPreference – influences the dispatching of non-terminating errors. The default is

‘Continue’ which adds an entry to the $Error collection and displays the error on the host’s console.

 $ErrorView – specifies one of two views for error records when they’re displayed on the host. The

default is ‘NormalView’ which displays several lines of information. For production environments, you

Page 44

can set this to ‘CategoryView’ to get a succinct one line error message. Remember that all the details

are still available in the $Error collection.

The $Error global variable can be used to inspect the details of up to the last $MaximumErrorCount number of

errors that have occurred during the session e.g.:

PS> $error[0] | fl * -force

PSMessageDetails :
Exception : System.IO.IOException: The process cannot access the file '\Temp\FX
 SAPIDebugLogFile.txt' because it is being used by another process.
 at System.IO.__Error.WinIOError(Int32 errorCode, String
maybeFullPath)
 at System.IO.FileInfo.Delete()
 at
Microsoft.PowerShell.Commands.FileSystemProvider.RemoveFileSystemItem(FileSystemInfo file
 SystemInfo, Boolean force)
TargetObject : \Temp\FXSAPIDebugLogFile.txt
CategoryInfo : WriteError: (\Temp\FXSAPIDebugLogFile.txt:FileInfo) [Remove-Item],
IOException
FullyQualifiedErrorId :
RemoveFileSystemItemIOError,Microsoft.PowerShell.Commands.RemoveItemCommand
ErrorDetails : Cannot remove item \Temp\FXSAPIDebugLogFile.txt: The process cannot
 access the file '\Temp\FXSAPIDebugLogFile.txt' because it is being
 used by another process.
InvocationInfo : System.Management.Automation.InvocationInfo
PipelineIterationInfo : {0, 1}

As the output above shows, errors in PowerShell are not just strings but rich objects. The object may be a .NET

exception with an embedded error record or just an error record. The error record contains a lot of useful

information about the error and the context in which it occurred.

The default output formatting of errors can be a bit hard to digest. The PowerShell Community Extensions come

with a handy Resolve-Error function that digs through the error information and surfaces the important stuff

e.g.:

PS> Resolve-Error # displays $error[0] by default
…
PS> Resolve-Error $error[1]
…

The $? global variable is handy for determining if the last operation encountered any errors e.g.:

PS> Remove-Item $env:temp*.txt -Recurse -Verbose
VERBOSE: Performing operation "Remove File" on Target "...\Temp\foo.txt".
VERBOSE: Performing operation "Remove File" on Target "...\Temp\FXSAPIDebugLogFile.txt".
WriteError: (...\Temp\DebugLogFile.txt:FileInfo) [Remove-Item], IOException
PS> $?
False

Page 45

In this case, the Remove-Item cmdlet only partially succeeded. It deleted two files but then encountered a non-

terminating error. This failure to achieve complete success i.e. no errors, is indicated by $? returning False.

Working with Non-Terminating Errors
Sometimes you want to completely ignore non-terminating errors. Who wants all that red text spilled all over

their console especially when you don’t care about the errors you know you're going to get. You can suppress

the display of non-terminating errors either locally or globally. To do this locally, just set the cmdlet’s

ErrorAction parameter to SilentlyContinue e.g.

Remove-Item $env:temp*.txt -Recurse -Verbose -ErrorAction SilentlyContinue

For interactive scenarios it is handy to use 0 instead of SilentlyContinue. This works because SilentlyContinue is

part of an enum and its integer value is 0. So to save your wrists you can rewrite the above as:

ri $env:temp*.txt -r -v –ea 0

Note that for a script I would use the first approach for readability.

To accomplish the above globally, set the $ErrorActionPreference global preference variable to

'SilentlyContinue' (or 0). This will cause all non-terminating errors in the session to be suppressed so they do not

show up on the host’s console. However, errors will still be logged to the $Error collection.

Setting the $ErrorActionPreference to Stop can be useful in the following scenario. If you misspell a command,

PowerShell will generate a non-terminating error as shown below:

PS> Copy-Itme ._lesshst ._lesshst.bak; $?; "After"
The term 'Copy-Itme' is not recognized as the name of a cmdlet, function, scrip
t file, or operable program. Check the spelling of the name, or if a path was i
ncluded, verify that the path is correct and try again.
At line:1 char:10
+ Copy-Itme <<<< ._lesshst ._lesshst.bak; $?; "After"
 + CategoryInfo : ObjectNotFound: (Copy-Itme:String) [], CommandNo
 tFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

False
After

In this case, the misspelled Copy-Item command failed ($? returned False) but since the error was non-

terminating, the script continues execution as shown by the output “After”.

If you are hard-core about correctness you can get PowerShell to convert non-terminating errors into

terminating errors by setting $ErrorActionPreference to Stop which has global impact. You can also do this one

a cmdlet by cmdlet basis by setting the cmdlet’s ErrorAction parameter to Stop.

The last issue to be aware of regarding non-terminating errors is that a Windows executable that returns a non-

zero exit code does not generate any sort of error. The only action PowerShell takes is to set the $? variable to

Page 46

False if the exit code is non-zero. There is no error record created and stuffed into $Error. In many cases, the

failure of an external executable means your script cannot continue. In this case, it is desirable to convert a

failure exit code into a terminating error. This can be done easily using the function below:

function CheckLastExitCode {
 param ([int[]]$SuccessCodes = @(0), [scriptblock]$CleanupScript=$null)

 if ($SuccessCodes -notcontains $LastExitCode) {
 if ($CleanupScript) {
 "Executing cleanup script: $CleanupScript"
 &$CleanupScript
 }
 $msg = @"
EXE RETURNED EXIT CODE $LastExitCode
CALLSTACK:$(Get-PSCallStack | Out-String)
"@
 throw $msg
 }
}

Note that Get-PSCallStack is specific to PowerShell v2.0. Invoke CheckLastExitCode right after invoking an

executable, well at least for those cases where you care if an executable returns an error. This function provides

a couple of handy features. First, you can specify an array of acceptable success codes which is useful for exes

that return 0 for failure and 1 for success and is also useful for exes that return multiple success codes. Second,

you specify a cleanup scriptblock that will get executed on failure.

Handling Terminating Errors
Handling terminating errors in PowerShell comes in two flavors. Using the trap keyword which is supported in

both version 1 and 2 of PowerShell. Using try { } catch { } finally { } which is new to version 2.

Trap Statement

Trap is a mechanism available in other shell languages like Korn shell. It effectively declares that either any error

type or a specific error type is handled by the scriptblock following the trap keyword. Trap has the interesting

property that where ever it is declared in a scope, it is valid for that entire scope e.g.:

Given the following script (trap.ps1):

"Before"
throw "Oops!"
"After"
trap { "Error trapped: $_" }

Invoking it results in the following output:

PS> .\trap.ps1
Before
Error trapped: Oops!
Oops!
At C:\Users\Keith\trap.ps1:2 char:6

Page 47

+ throw <<<< "Oops!"
 + CategoryInfo : OperationStopped: (Oops!:String) [], RuntimeException
 + FullyQualifiedErrorId : Oops!
After

Note that it doesn’t matter that the trap statement is after the line that throws the error. Also note that since

the default value for $ErrorActionPreference is 'Continue', the error is displayed, logged to $Error but execution

resumes at the next statement. Note: within the context of a trap statement, $_ represents the error that was

caught.

Another thing to consider is whether to use Write-Host or Write-Output to display text in the trap statement.

The example above implicitly invokes the Write-Output cmdlet. This has the benefit that the text can be

redirected to a log file. The downside is that if the exception is handled and execution continues that text will

become part of the output for that scope which, in the case of functions and scripts, may not be desirable.

If you want to execute cleanup code on failure but still terminate execution, we can change the trap statement

to use the break keyword. Consider the following script:

function Cleanup() {"cleaning up"}
trap { "Error trapped: $_"; continue }
"Outer Before"
& {
 trap { Cleanup; break }
 "Inner Before"
 throw "Oops!"
 "Inner After"
 Cleanup
}
"Outer After"

Note that the inner trap calls the Cleanup function but then propagates the error. As a result, the “Inner After”

statement never executes because control flow is transferred outside the scope of the trap statement. The

outer trap then catches the error, displays it and continues execution. As a result, the “Outer After” statement

is executed.

The interaction between the control flow altering keywords valid in a trap statement (break, continue and

return), the $ErrorActionPreference variable if no control flow altering keyword is used and the final behavior is

somewhat complex as is demonstrated by the table below:

Trap Termination Style Displays error Propagates error

Keyword Used No Keyword Used – depends on
value of $ErrorActionPreference

Break Stop True True
Continue SilentlyContinue False False
Return Continue True False
Return <object> 1 N/A True False
N/A Inquire Depends on response Depends on response
1. <object> is appended to the end of the trap scope’s output.

Page 48

All of the examples of trap shown above trap all errors. You may want to trap only specific errors. You can do

this by specifying the type name of an exception to trap as shown below:

trap [System.DivideByZeroException] { "Please don't divide by 0!"}
$divisor = 0
1/$divisor

Note: Parse errors do not cause the trap block to execute. This is why I do not execute 1/0 in the example

above. This is what would happen:

 trap [System.DivideByZeroException] { "Please don't divide by 0!"}
 1/0
Attempted to divide by zero.
At line:1 char:3
+ 1/ <<<< 0
 + CategoryInfo : NotSpecified: (:) [], ParentContainsErrorRecordException
 + FullyQualifiedErrorId : RuntimeException

The reason our trap is not executed is that the PowerShell parser performs an operation known as constant

folding when it parses the text "1/0". The divide by zero exception is generated at parse and as a result will not

invoke your trap handler.

If you want to execute different code for different errors, you can define multiple trap statements in your script:

trap [System.DivideByZeroException] { "Please don't divide by 0!"}
trap [System.Management.Automation.CommandNotFoundException] {
 "Did you fat finger the command name?"
}
trap { "Anything not caught by the first two traps gets here" }

If you define multiple trap statements for the same error type the first one wins and the others within the same

scope are ignored.

Try / Catch / Finally

Version 2 of Windows PowerShell introduces try/catch/finally statements - a new error handling mechanism

that most developers will be immediately familiar with. There are two main differences between trap and

try/catch/finally. First, a trap anywhere in a lexical scope covers the entire lexical scope. With a try statement,

only the script within the try statement is checked for errors. The second difference is that trap doesn’t support

finally behavior i.e., always execute the finally statement whether the code in the try statement throws a

terminating error or not. In fact, any associated catch statements could also throw a terminating error and the

finally statement would still execute.

You can fake finally behavior with trap by calling the same “finally” code from the end of the lexical scope *and*

from the trap statement. Consider the Cleanup function from the earlier example. We want to always execute

Cleanup whether the script errors or not. The example shown in the previous section using the Cleanup

function works OK unless the Cleanup function throws a terminating error. Then you run into the issue where

Page 49

Cleanup gets called again due to the trap statement. This sort of cleanup is much easier to represent in your

script using try/finally e.g.:

function Cleanup($err) {"cleaning up"}
trap { "Error trapped: $_"; continue }

"Outer Before"
try {
 "Inner Before"
 throw "Oops!"
 "Inner After"
}
finally {
 Cleanup
}
"Outer After"

This example results in Cleanup always getting called whether or not the script in the try statement generates a

terminating error. It also shows that you can mix and match trap statements with try/catch/finally.

One last example shows how you can use catch to handle different error types uniquely:

function Cleanup($err) {"cleaning up"}
trap { "Error trapped: $_"; continue }

"Outer Before"
try {
 "Inner Before"
 throw "Oops!"
 "Inner After"
}
catch [System.DivideByZeroException] {
 "Please don't divide by 0!"
}
catch [System.Management.Automation.CommandNotFoundException] {
 "Did you fat finger the command name?"
}
catch {
 "Anything not caught by the first two catch statements gets here"
}
finally {
 Cleanup
}
"Outer After"

The use of the finally statement is optional as is the catch statement. The valid combinations are try/catch,

try/finally and try/catch/finally.

In summary, PowerShell’s error handling capabilities are quite powerful especially the ability to distinguish

between non-terminating and terminating errors. With the addition of the new try/catch/finally support in

version 2.0 the important scenario of resource cleanup is easy to handle.

Page 50

Item 11: Regular Expressions - One of the Power Tools in PowerShell
Windows PowerShell is based on the .NET Framework. That is, it is built using the .NET Framework and it

exposes the .NET Framework to the user. One very nice feature of the .NET Framework is the Regex class in the

System.Text.RegularExpressions namespace. It is a very capable regular expression engine. PowerShell uses this

regular expression engine in a number of scenarios:

 -match operator

 -notmatch operator

 Select-String -Pattern parameter

Obviously to get the most out of these operators and the Select-String cmdlet it helps to have a good grasp of

regular expressions. PowerShell provides a help topic named "about_Regular_Expression" that you can view like

so:

PS> help about_reg*

This topic provides a nice quick reference on the various meta-characters in a regular expression but you are not

going to learn a great deal about creating powerful regular expressions. To learn how to get the most out of

regular expressions and hence PowerShell, I highly recommend Jeffrey Friedl's book Mastering Regular

Expressions.

There is a shortcoming in PowerShell's support for regular expressions that you need to know about. Most

other script languages support regular expression syntaxes where you can find all matches in a string. For

example in Perl I could do this:

$_ = "paul xjohny xgeorgey xringoy stu pete brian"; # PERL script
($first, $second, $third) = /x(.+?)y/g;

Unfortunately the Select-String cmdlet doesn't have this feature in version 1.0. For now you can work around

this limitation by using the System.Text.RegularExpressions.Regex class directly. Fortunately you don't have to

type that long class name because PowerShell has a type alias: [regex]. For example:

PS> $str = "paul xjohny xgeorgey xringoy stu pete brian"
PS> $first,$second,$third = ([regex]'x(.+?)y').Matches($str) | Foreach {$_.Groups[1].Value}
PS> $first
john
PS> $second
george
PS> $third
ringo

One thing to watch out for is when your regular expression is written to search across line boundaries. For

instance, if you use Get-Content to grab the contents of a file to apply the regular expression against, keep in

mind that Get-Content streams the file one line at a time. For regular expressions that operate across lines you

will need to apply the regex to the file contents represented as a single string. In that case, I would do this in

PowerShell 1.0:

http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!820.entry

Page 51

PS> $regex = [regex]'(?<CMultilineComment>/*[^*]**+(?:[^/*][^*]**+)*/)'
PS> Get-Content foo.c | Join-String -Newline | Foreach {$regex.Matches($_)} |
>> Foreach {$_.Groups["CMultilineComment"].Value}
>>

Note the use of the PowerShell Community Extensions cmdlet Join-String which takes the individual strings

output by Get-Content and creates a single string. Also note that this example shows the usage of a named

capture: CMultilineComment. This example demonstrates that when PowerShell is missing a feature, the access

that it provides to the .NET Framework is a great escape hatch.

PowerShell 2.0 Update
Fortunately PowerShell 2.0 introduces a number of new features that help with the search above. First, there is

a new join operator that joins multiple strings into a single string. Second, Select-String has been updated with a

number of new parameters such as -Context, -NotMatch and -AllMatches. The AllMatches parameter is what

we needed above and is why we resorted to using the regex directly. This is how you would perform the same

comment search in PowerShell 2.0:

$pattern = '(?<CMultilineComment>/*[^*]**+(?:[^/*][^*]**+)*/)'
PS> (get-content .\foo.c) -join "`n" | Select-String $pattern -all | Foreach {$_.Matches} |
Foreach {$_.Value}

Regular expressions are an extremely powerful aspect of PowerShell. Learn them and they will open up many

opportunities to find and manipulate text.

Item 12: Comparing Arrays
PowerShell has a lot of useful operators such as -contains which tests if an array contains a particular element.

But as far as I can tell PowerShell doesn't seem to provide an easy way to test if two array's contents are equal.

This is often quite handy and I was a bit surprised by this apparent omission.

I came upon this need to compare arrays while answering a question on the

microsoft.public.windows.powershell newsgroup. The poster wanted to find utf-8 encoded files by inspecting

their BOM or byte order mark. One relatively straight forward approach to this is:

PS> $preamble = [System.Text.Encoding]::UTF8.GetPreamble()
PS> $preamble | foreach {"0x{0:X2}" -f $_}
0xEF
0xBB
0xBF
PS> $fileHeader = Get-Content Utf8File.txt -Enc byte -Total 3
PS> $fileheader | foreach {"0x{0:X2}" -f $_}
0xEF
0xBB
0xBF

While it is easy enough to visually inspect this and see we have a match, visual inspection doesn't work in a

http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!6159.entry
http://en.wikipedia.org/wiki/Byte_Order_Mark

Page 52

script. You could also test each individual element which isn't bad for a three element array but when you hit

say 10 elements that approach starts to look tedious.

You might think that we could just compare these two arrays directly like so:

PS> $preamble -eq $fileHeader | Get-TypeName
WARNING: Get-TypeName did not receive any input. The input may be an empty collection. You can either
prepend the collection expression with the comma operator e.g. ",$collection | gtn" or you can pass
the variable or expression to Get-TypeName as an argument e.g. "gtn $collection".

PS> $preamble -eq 0xbb
187

Note: Get-TypeName is a filter function provided by the PowerShell Community Extensions.

Comparing arrays via the -eq operator doesn't actually compare the contents of two arrays. As you can see

above, this results in no output. When the left hand side of the -eq operator is an array, PowerShell return the

elements of the array that match the value specified on the right hand side (shown above where I test for -eq to

0xbb).

It looks like we need to roll our own mechanism to compare arrays. Here is one way:

function AreArraysEqual($a1, $a2) {

 if ($a1 -isnot [array] -or $a2 -isnot [array]) {

 throw "Both inputs must be an array"

 }

 if ($a1.Rank -ne $a2.Rank) {

 return $false

 }

 if ([System.Object]::ReferenceEquals($a1, $a2)) {

 return $true

 }

 for ($r = 0; $r -lt $a1.Rank; $r++) {

 if ($a1.GetLength($r) -ne $a2.GetLength($r)) {

 return $false

 }

 }

 $enum1 = $a1.GetEnumerator()

 $enum2 = $a2.GetEnumerator()
 while ($enum1.MoveNext() -and $enum2.MoveNext()) {

 if ($enum1.Current -ne $enum2.Current) {

 return $false

 }

 }

 return $true

}

And it works as expected:

PS> AreArraysEqual $preamble $fileHeader
True

Page 53

However there turns out to be a way to do this within PowerShell but it isn't exactly obvious. At least it wasn't

to me.

PS> @(Compare-Object $preamble $fileHeader -sync 0).Length -eq 0
True

Compare-Object will compare the arrays and if there are no differences it won't output anything. If we wrap the

output of Compare-Object in an array subexpression @() then we will get an array with either 0 or more

elements. A simple compare of the length to 0 will confirm that there was no output, hence the arrays are

equal.

Compare-Object compares two objects to see if they have the same set of elements. Normally it does not care if

the elements are in the same sequence in each object (each array in this case). For example:

PS> $a1 = 1,1,2

PS> $a2 = 1,2,1

PS> @(Compare-Object $a1 $a2).length -eq 0

True

Obviously that isn't what we want when comparing arrays for equality. Fortunately, we can use the

SyncWindow parameter with a value 0 to get Compare-Object to force sequence equality.

Let’s compare the performance of these two approaches:

PS> $a1 = 1..10000
PS> $a2 = 1..10000
PS> (Measure-Command { AreArraysEqual $a1 $a2 }).TotalSeconds
1.236252
PS> (Measure-Command { @(Compare-Object $a1 $a2 -sync 0).Length -eq 0 }).TotalSeconds
0.3259954

Compare-Object beats out my PowerShell function by a good margin which isn't too surprising1. After all, one is

compiled code and the other is interpreted script. So there you have it. If you need a quick way to compare to

arrays, just remember that arrays are objects too and that is what Compare-Object does best - compare two

objects.

Item 13: Use Set-PSDebug -Strict In Your Scripts - Religiously
Windows PowerShell is like most dynamic languages in that it allows you to use a variable without declaring its type and

without having assigned to it. This is handy for interactive use, you can do stuff like this:

PS> Get-ChildItem | Foreach -Process {$sum += $_.Name.Length} -End {$sum}

1 Except for comparing against the same array where my function is two orders of magnitude faster. It seems that the Compare-Object cmdlet could benefit from a

quick System.Object.ReferenceEquals check. Admittedly this is a corner case scenario.

http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!796.entry

Page 54

Here $sum isn't a defined variable and yet we are adding a value to it and assigning to it. PowerShell just

assumes a value of $null and coerces that 0 in the case above. Try this at the prompt:

PS> $xyzzy -eq $null
True

It is not likely that this variable is already defined somewhere. Of course we could verify that as shown below to

see that indeed it isn't defined.

PS> Test-Path Variable:\xyzzy
False

What has this got to do with using Set-PSDebug -Strict in scripts - religiously? Well, once you get burned by an

unfortunate typo that takes time to notice and time to track down, you will want a way to avoid repeating that

mistake. Take this script for example:

$suceeded = test-path C:\ProjectX\Src\BuiltComponents\Release\app.exe

if ($succeeded) {
 ... <archive bits, label build, etc>
}
else {
 ... <email team that build failed, etc>
}

This script has a problem with it that PowerShell won't tell you about. It will happily indicate that every build

fails even though that may not be true. This is all because of a minor typo where I misspelled $succeeded when

testing the path. In this snippet, the typo may be obvious to you but when you have several hundred lines of

script, typos aren't always so obvious.

You can prevent this particular problem by placing Set-PSDebug -Strict at the top of your script file just after the

param() statement (if any). For example, given this script as Foo.ps1:

Set-PSDebug -Strict

$suceeded = test-path C:\ProjectX\Src\BuiltComponents\Release\app.exe

if ($succeeded) {
 "yeah"
}
else {
 "doh"
}

PS C:\Temp> .\foo.ps1
The variable $succeeded cannot be retrieved because it has not been set yet.
At C:\Temp\foo.ps1:6 char:14
+ if ($Succeded) <<<< {

Page 55

What would have happened if we had omitted the Set-PSDebug -Strict invocation? This script would have

output "doh". Note: In some cases we may need to initialize a variable in order to avoid the error above. This is

a small price to pay to avoid this sort of problem. The title of this item was perhaps a bit "over the

top". There may very well be times not to use Set-PSDebug -Strict in your scripts. As always, use your

judgment.

PowerShell 2.0 Update
In PowerShell 2.0, you should use the new cmdlet Set-StrictMode like so:

param(...)
Set-StrictMode –version Latest
<rest of your script>

Set-StrictMode checks for more than just the use of uninitialized variables. It will also check for references to

non-existent properties, calling functions using .NET method calling syntax and unnamed variables e.g. ${}.

Item 14: Commenting Out Lines in a Script File
Windows PowerShell 1.0 doesn't provide multiline comments although that oversight has been rectified in 2.0

as I’ll show you at the end of this section. If you are using PowerShell 2.0 exclusively you still might want to read

this section as it covers some gotchas when using here strings. Multiline comments come in handy when you

need to comment out multiple lines in a script file. However there is a reasonable workaround. Use a here

string. A here string allows you to enter multiple lines of text and prevent PowerShell from interpreting

commands. However the extent of PowerShell's interpretation depends on which type of here string you use.

For instance, in double quoted here strings, PowerShell expands variables and also executes subexpressions.

This is an example of a double quoted here string that results in script being evaluated e.g.:

PS> @"
>> $(get-process)
>> "@
>>
System.Diagnostics.Process (audiodg) System.Diagnostics.Process (csrss) ...

However a single quoted here string doesn't do this:

PS> @'
>> $(get-process)
>> '@
>>
$(get-process)

Use the single quoted here string to comment out lines of script since it will not evaluate anything in the here

string. Just note, the here string is an expression so if you do nothing more, the whole string will be emitted to

the console. You don't usually want that when you are commenting out code. To prevent this, all you need to

do is cast the string to [void] (or redirect the string to $null) as shown below:

http://keithhill.spaces.live.com/blog/cns!5A8D2641E0963A97!794.entry

Page 56

[void]@'
"Getting process info"
get-process | select Name, Id
"Killing all vd processes"
stop-process -name vd*
'@

This will effectively comment out those lines of script. Note: There are a couple of gotchas to be aware of with

here strings. There can be no whitespace after the initial @' character sequence. If there is one single space

after this sequence you will get the following cryptic error:

Unrecognized token in source text.
At C:\Temp\foo.ps1:1 char:1
+ @ <<<< '

The other gotcha is that the closing '@ character sequence has to start in column zero otherwise you get this

equally cryptic error message:

Encountered end of line while processing a string token.
At C:\Temp\foo.ps1:1 char:3
+ @' <<<<

The final gotcha to watch out for is that you can't nest here strings in PowerShell 1.0 within another here string

of the same ilk (single quoted or double quoted). What this means for our commenting out script scenario is

that you won't be able to surround a chunk of script that uses a single quoted here strings with another single

quoted here string to comment out that code.

PowerShell 2.0 Update
PowerShell 2.0 introduces a proper support for multiline comments as shown below.

<#
This is a
multiline comment
in PowerShell 2.0
#>

Finally, here strings in PowerShell 2.0 can be nested as shown in the example below:

@"
<Processes>
 $(Get-Process | Foreach {
@"
 <Process name="$($_.name)" id="$($_.id)" workingSet="$($_.ws)">`r`n
"@
 })
</Processes>
"@

Page 57

Item 15: Using the Output Field Separator Variable $OFS
$OFS is the “output field separator” variable. Whatever value it contains will be used as the string separator

between elements of an array that is rendered to a string. For example, consider the following array definition

and subsequent rendering to string:

PS> $array = 1,2,3
PS> "$array"

What would you expect the resulting string to be? Here’s the output:

1 2 3

How does PowerShell go about rendering elements of an array into a single string? It is pretty simple as you

would expect. Each element is converted to its string representation. The only other detail left is to determine

what characters to use to separate each element in the final string. The $OFS variable is not initially created by

PowerShell and if it doesn’t exist, PowerShell uses a single space character to separate elements as you can see

in the example above. What is neat is that PowerShell gives you the ability change the separator string by

setting the $OFS variable like this:

PS> $OFS = ', '
PS> "$array"
1, 2, 3

Note that the separator doesn’t have to be single character. It doesn’t even have to be a string, but in the end

whatever value that is assigned to $OFS is converted to a string e.g.:

PS> $OFS = $true
PS> "$array"
1True2True3

This is an admittedly weird example. In the common case, you will just assign a string to $OFS like ", " or "`t" or

"`n", etc.

$OFS also works for multi-dimensional arrays e.g.:

PS> $array = new-object 'int[,]' 2, 3
PS> $array[0,0] = 1
PS> $array[0,1] = 2
PS> $array[0,2] = 3
PS> $array[1,0] = 4
PS> $array[1,1] = 5
PS> $array[1,2] = 6
PS> $OFS = ', '
PS> "$array"
1, 2, 3, 4, 5, 6

Unfortunately, $OFS doesn’t work so well for jagged arrays:

Page 58

PS> $array = @(@(1,2),@(3,4))
PS> $OFS = ', '
PS> "$array"
System.Object[], System.Object[]

Let’s try a different approach – not so satisfying
PS> "$($array[0]), $($array[1])"
1, 2, 3, 4

When I see folks use [string]::Join() or –join in version 2 of PowerShell, I wonder if it would be better to use $OFS

and string rendering. Here is an example I came across recently:

$typeDecls = @($_.GetGenericArguments() | %{"[string]`$Of" + $_.Name}) –join ', '
$paramDecls = @($_.GetParameters() | % { "[$($_.ParameterType)]`$$($_.Name)" }) –join ', '

$decls = $typeDecls
$decls += $(if ($decls –and $paramDecls) { ', ' })
$decls += $(if ($paramDecls) { $paramDecls })

function New-$fname($decls) { … }

Using $OFS the script changes to:

$OFS = ', '
$typeDecls = @($_.GetGenericArguments() | %{"[string]`$Of" + $_.Name})
$paramDecls = @($_.GetParameters() | % { "[$($_.ParameterType)]`$$($_.Name)" })

$decls = $typeDecls + $paramDecls

function New-$fname("$decls") { … }

In this example, the use of $OFS shines because you benefit by delaying the string rendering of the arrays until

the last moment. In this case, I wanted to keep both $typeDecls and $paramDecls as arrays so that they could

be concatenated together and then rendered as a string containing a comma separated list. If these two

variables had been converted to strings earlier, as in the “before” script above, then you need special case logic

in the event $typeDecls and/or $paramDecls are empty.

