

POWERSHELL 2.0 –
ONE CMDLET AT A
TIME

 Jonathan Medd

1

Introduction

Back in November 2009 I decided it was time to really crack on getting to grips with PowerShell

version 2.0. The full release had been out for a couple of weeks, since it had shipped as part of

Windows 7 / Windows Server 2008 R2 after three previews of what might be via Community

Technology Previews.

Whilst there are a number of big new features in PowerShell 2.0 I decided to start by taking a look at

some of the new cmdlets and making a blog post for each one as I went, which would force me to

learn properly and hopefully make a decent community contribution at the same time.

After starting the series with the initial intention of covering maybe at most 20 cmdlets I was

blackmailed encouraged to keep going and ended up covering over 100+ cmdlets. I did most of this

during my lunchtimes at work, found it a great way to get to grips with the new functionality and

managed to keep it going through to June 2010.

Whilst about halfway through the series I started to think about compiling all of the blog posts into

one handy reference document and make it available for download from my blog. Since this makes it

slightly more formal, rather than the happy-go-lucky nature of a blog post I decided to get some real

experts to review the content to make sure it was decent and accurate so three PowerShell MVPs

kindly spent their own time reviewing it for me.

A big thank you goes out to these gentlemen; Thomas Lee (http://twitter.com/doctordns), Richard

Siddaway (http://msmvps.com/blogs/RichardSiddaway/Default.aspx) and Aleksandar Nikolic

(http://twitter.com/alexandair). Thank you for all your feedback and comments which have been

incorporated into this document.

Also thanks to those who have followed the blog series since I started it, left comments, re-tweeted

each one and generally encouraged me to keep going.

I hope you find this consolidated series useful. If you do then I ask that you consider making a small

donation to a UK based charity that help the parents of children born with Tracheo-Oesophageal

Fistula (TOF) and Oesophageal Atresia (OA). You can find out more about this charity through their

website http://www.tofs.org.uk/index.php and can make a donation here

http://www.justgiving.com/tofs/donate . I know from personal experience what a great job they do.

Thanks!

Jonathan

http://jonathanmedd.net

http://twitter.com/jonathanmedd

September 2010

http://twitter.com/doctordns
http://msmvps.com/blogs/RichardSiddaway/Default.aspx
http://twitter.com/alexandair
http://www.tofs.org.uk/index.php
http://www.justgiving.com/tofs/donate
http://jonathanmedd.net/
http://twitter.com/jonathanmedd

2

Contents
Introduction .. 1

#1 Get-Random ... 6

#2 Send-MailMessage ... 7

#3 Get-Counter ... 8

#4 Out-GridView ... 9

#5 Get-HotFix .. 11

#6 Test-Connection ... 12

#7 Reset-ComputerMachinePassword ... 13

#8 Get-Module .. 14

#9 Checkpoint-Computer .. 15

#10 Restart-Computer .. 16

#11 Add-Computer ... 17

#12 Write-EventLog .. 19

#13 Clear-EventLog ... 20

#14 Start-Process .. 21

#15 Start-Job ... 22

#16 Get-Job ... 24

#17 Receive-Job .. 26

#18 Remove-Job .. 27

#19 Stop-Job ... 29

#20 Wait-Job ... 31

#21 Select-XML ... 33

#22 Enable-ComputerRestore... 35

#23 Disable-ComputerRestore .. 36

#24 Get-ComputerRestorePoint ... 37

#25 Restore-Computer ... 38

#26 New-WebServiceProxy ... 39

#27 Test-ComputerSecureChannel ... 41

#28 Export-Counter ... 43

#29 Import-Counter .. 44

#30 Enable-PSRemoting .. 45

#31 Enter-PSSession .. 47

#32 Exit-PSSession .. 48

3

#33 New-PSSession ... 49

#34 Invoke-Commmand .. 50

#35 New-PSSessionOption .. 52

#36 Get-PSSession... 54

#37 Remove-PSSession ... 56

#38 Get-PSSessionConfiguration .. 58

#39 Register-PSSessionConfiguration ... 59

#40 Set-PSSessionConfiguration ... 61

#41 Disable-PSSessionConfiguration .. 63

#42 Enable-PSSessionConfiguration ... 65

#43 Unregister-PSSessionConfiguration ... 67

#44 Set-WSManQuickConfig ... 69

#45 Connect-WSMan .. 71

#46 Test-WSMan ... 74

#47 Invoke-WSManAction .. 76

#48 Get-WSManInstance .. 78

#49 New-WSManInstance .. 80

#50 Set-WSManInstance ... 85

#51 Remove-WSManInstance ... 87

#52 New-WSManSessionOption ... 89

#53 Enable-WSManCredSSP ... 91

#54 Get-WSManCredSSP .. 93

#55 Disable-WSManCredSSP .. 95

#56 Disconnect-WSMan .. 97

#57 Import-PSSession ... 98

#58 Export-PSSession .. 100

#59 Set-PSBreakpoint ... 102

#60 Get-PSBreakpoint ... 104

#61 Disable-PSBreakpoint ... 105

#62 Enable-PSBreakpoint .. 106

#63 Remove-PSBreakpoint ... 107

#64 Clear-History .. 109

#65 New-EventLog .. 111

#66 Limit-EventLog ... 113

4

#67 Remove-EventLog .. 115

#68 Show-EventLog ... 117

#69 Get-WinEvent ... 119

#70 Import-Module ... 121

#71 New-Module .. 123

#72 Export-ModuleMember ... 125

#73 New-ModuleManifest .. 127

#74 Test-ModuleManifest .. 130

#75 Remove-Module .. 132

#76 Stop-Computer ... 133

#77 Remove-Computer ... 134

#78 Start-Transaction .. 135

#79 Complete-Transaction .. 137

#80 Get-Transaction.. 139

#81 Undo-Transaction... 141

#82 Use-Transaction ... 143

#83 ConvertTo-CSV ... 145

#84 ConvertFrom-CSV ... 146

#85 ConvertFrom-StringData .. 147

#86 ConvertTo-XML .. 148

#87 Get-FormatData ... 150

#88 Export-FormatData .. 152

#89 Invoke-WmiMethod ... 154

#90 Remove-WmiObject ... 156

#91 Set-WmiInstance .. 157

#92 Register-WmiEvent .. 159

#93 Register-ObjectEvent ... 161

#94 Get-EventSubscriber .. 163

#95 Register-EngineEvent ... 165

#96 New-Event .. 167

#97 Get-Event ... 169

#98 Wait-Event ... 171

#99 Unregister-Event .. 173

#100 Remove-Event .. 174

5

#101 Wait-Process .. 176

#102 Disable-PSRemoting ... 178

#103 Update-List ... 180

#104 Trace-Command ... 181

#105 Set-StrictMode ... 183

#106 Import-LocalizedData ... 185

#107 Add-Type .. 187

6

#1 Get-Random

Get-Random

What can I do with it?

With Get-Random you can either generate a random number, or randomly select objects from

a collection.

Examples:

Generate a random number between 1 and 100.

Get-Random -Minimum 1 -Maximum 101

Select a random object from a collection

$users = 'Rod','Jane','Freddy'

Get-Random $users

Select a random Windows Service

Get-Service | Get-Random

How could I have done this in PowerShell 1.0?

Generate a random number between 1 and 100 using .NET.

$randomnumber = New-Object System.Random

$randomnumber.next(1,101)

Select a random object from a collection

$users = 'Rod','Jane','Freddy'

$randomnumber = New-Object System.Random

$i = $randomnumber.next(0,$users.length)

$users[$i]

How did I decide to begin this series with Get-Random?

Get-Command | Get-Random

;-)

http://go.microsoft.com/fwlink/?LinkID=113446

7

#2 Send-MailMessage

Send-MailMessage

What can I do with it?

Send an email message using a specific SMTP server, from within a script or at the command

line.

Example:

Send-MailMessage -To "Joe Bloggs <joe.bloggs@test.local>" -From "Jane Smith

<jane.smith@test.local>"

-Subject "Reporting Document" -Body "Here's the document you wanted" -

Attachments "C:\Report.doc"

-SmtpServer smtp.test.local

How could I have done this in PowerShell 1.0?

You could have used the .NET System.Net.Mail class

Function Send-MailMessage ()

{param ($Sender,$Recipient,$Attachment)

$smtpServer = ―smtp.test.local―

$msg = New-Object System.Net.Mail.MailMessage

$att = New-Object System.Net.Mail.Attachment($Attachment)

$smtp = New-Object System.Net.Mail.SmtpClient($smtpServer)

$msg.From = ―$Sender―

$msg.To.Add(―$Recipient―)

$msg.Subject = ―Reporting Document―

$msg.Body = ―Here's the document you wanted.―

$msg.Attachments.Add($att)

$smtp.Send($msg)

$att.Dispose();

}

Send-MailMessage 'jane.smith@test.local' 'joe.bloggs@test.local' 'C:\Report.doc'

http://go.microsoft.com/fwlink/?LinkID=135256

8

#3 Get-Counter

Get-Counter.

What can I do with it?

Collect real-time performance counter data directly from local or remote computers.

Examples:

Create a list of performance counters available to query in the Memory counter

(Get-Counter -ListSet memory).paths

Tip: To find a list of available top-level counters for which you could substitute in for

memory in the above example you could type this set of commands:

Get-Counter -ListSet * | Sort-Object countersetname | Format-Table

countersetname

To retrieve the current Memory Pool Paged Bytes on the remote computer Server1

Get-Counter -Counter '\Memory\Pool Paged Bytes' -ComputerName Server1

Tip: You can run multiple samples using the -MaxSamples parameter

Get-Counter -Counter '\Memory\Pool Paged Bytes' -ComputerName Server1 -

MaxSamples 5

How could I have done this in PowerShell 1.0?

You could use the Get-WmiObject cmdlet and the Win32_PerfFormattedData class to

look at performance data for a remote computer. For example:

(Get-WmiObject Win32_PerfFormattedData_PerfOS_Memory -ComputerName

Server1).PoolPagedBytes

You could also use .NET and the System.Diagnostics.PerformanceCounter class to view

performance data

$data = New-Object System.Diagnostics.PerformanceCounter

$data.CategoryName = "Memory"

$data.CounterName = "Pool Paged Bytes"

$data.nextvalue()

Thanks to /\/\o\/\/ for the .NET info.

Related Cmdlets

Export-Counter

Import-Counter

http://technet.microsoft.com/en-us/library/dd367892.aspx
http://mow001.blogspot.com/2005/12/getting-performancemonitor-info-from.html

9

#4 Out-GridView

Out-GridView.

What can I do with it?

View the output from a command in an interactive grid window.

Any special requirements?

Whilst PowerShell 2.0 itself requires .NET Framework 2.0 with Service Pack 1, this

particular cmdlet requires .NET Framework 3.5 Service Pack 1.

Examples:

Create an interactive grid view of the list of services running on the machine.

Get-Service | Out-GridView

The resulting output with a filter of Windows and sorted by Status gives you an idea for

what you can use this for:

Create an interactive grid view of the System log with the latest 5 entries, selecting only the

Source and Message properties and displaying the Output with a custom title.

Get-Eventlog -LogName System -Newest 5 | Select-Object Source,Message |

Out-GridView -Title 'System Log'

http://go.microsoft.com/fwlink/?LinkID=113364
http://www.jonathanmedd.net/2009/11/powershell-2-0-one-cmdlet-at-a-time-4-out-gridview.html/get-service

10

Tip:

I don't recommend using aliases within a script, but this is the kind of cmdlet you are most

likely to use when working at the command line so the alias for Out-Gridview, ogv , could

come in very handy.

How could I have done this in PowerShell 1.0?

The closest you could probably get would be Export-CSV to give you the data in a CSV file,

which could then be manipulated in a similar fashion to Out-GridView using Excel.

Get-Service | Export-Csv C:\Scripts\Services.csv –NoTypeInformation

The CSV file can be opened in Excel using PowerShell:

Invoke-Item C:\Scripts\Services.csv

http://www.jonathanmedd.net/2009/11/powershell-2-0-one-cmdlet-at-a-time-4-out-gridview.html/system

11

#5 Get-HotFix

Get-HotFix.

What can I do with it?

Retrieve hotfixes installed on a local or remote computer

Example:

Retrieve a list of hotfixes installed on Server1 which contain Security in their description.

Display the Description, HotfixID and Caption properties.

Get-HotFix -Description Security* -ComputerName Server01

 | Select-Object Description,HotfixID,Caption

How could I have done this in PowerShell 1.0?

You could have used Get-WmiObject with the Win32_QuickFixEngineering class.

Get-WmiObject -Class Win32_QuickFixEngineering -Filter "Description LIKE

'Security%'"

-ComputerName Server01 | Select-Object Description,HotfixID,Caption

Funnily enough Get-HotFix and Get-WmiObject -Class Win32_QuickFixEngineering

look pretty similar when you pipe them through to Get-Member ;-)

http://go.microsoft.com/fwlink/?LinkID=135217

12

#6 Test-Connection

Test-Connection.

What can I do with it?

Send a ping to one or more computers

Examples:

Send a ping to Server01

Test-Connection -ComputerName Server01

If the result of a ping to Server01 is successful then copy a text file to a file share on that

server

If (Test-Connection -ComputerName Server01 -Quiet)

{Copy-Item C:\Document.txt "\\Server01\Fileshare"}

How could I have done this in PowerShell 1.0?

You could have used Get-WmiObject with the Win32_PingStatus class.

Get-WmiObject Win32_PingStatus -Filter "Address='Server01'"

Funnily enough Test-Connection and Get-WmiObject -Class Win32_PingStatus look

pretty similar when you pipe them through to Get-Member

You could also have used the .NET System.Net.NetworkInformation.Ping class

$ping = New-Object System.Net.NetworkInformation.Ping

$ping.send('Server01')

Related Cmdlets

Restart-Computer

Stop-Computer

http://go.microsoft.com/fwlink/?LinkID=135266

13

#7 Reset-ComputerMachinePassword

Reset-ComputerMachinePassword

What can I do with it?

Reset the computer account password for a machine.

Examples:

Reset the computer account password for the current local machine. It's as simple as that!

Reset-ComputerMachinePassword

To do the same for a remote machine you will need to use Invoke-Command to run the

command on the remote machine.

Invoke-Command -ComputerName Server01

 -ScriptBlock {Reset-ComputerMachinePassword}

How could I have done this in PowerShell 1.0?

You could have done the following.

[ADSI]$computer = "WinNT://WINDOWS2000/computername$"

$computer.SetPassword("computername$")

More commonly you might have used the netdom command line tool to do this.

netdom reset 'machinename' /domain:'domainname

Or you might have used Active Directory Users and Computers GUI tool, right-clicked the

computer account in question and chosen Reset Account.

http://go.microsoft.com/fwlink/?LinkID=135252

14

#8 Get-Module

Get-Module

What can I do with it?

PowerShell 2.0 introduces the concept of modules; essentially they are the evolution of snap-

ins from PowerShell 1.0. There are some great videos below by Bruce Payette and Osama

Sajid from the PowerShell team both introducing and demonstrating how to use modules:

(Thanks Shay)

Episode one introduces Modules and discusses comparisons with Cmdlets.

Episode two demonstrates how to use Modules.

Episode three illustrates how to develop script and binary Modules

Example:

Retrieve all the modules on the current system which could be imported into the current

session

Get-Module -ListAvailable

How could I have done this in PowerShell 1.0?

You could have used the Get-PSSnapin cmdlet to see which snap-ins were available to use.

To see snap-ins available in the current session:

Get-PSSnapin

To see snap-ins available to add to the current session use the Registered parameter:

Get-PSSnapin -Registered

Related Cmdlets

Import-Module

New-Module

Remove-Module

http://go.microsoft.com/fwlink/?LinkID=141552
http://blogs.microsoft.co.il/blogs/scriptfanatic/archive/2009/09/03/powershell-2-0-modules-an-introduction-with-bruce-payette.aspx
http://edge.technet.com/tags/BP1
http://edge.technet.com/tags/BP2
http://edge.technet.com/tags/BP3

15

#9 Checkpoint-Computer

Checkpoint-Computer.

What can I do with it?

Create a system restore point on XP, Vista or Windows 7 systems.

Example:

Create a system restore point called Pre-RegistryChange

Checkpoint-Computer -Description "Pre-RegistryChange"

How could I have done this in PowerShell 1.0?

You could have used the SystemRestore WMI class and the CreateRestorePoint method

$SystemRestore = [wmiclass]"\\.\root\default:systemrestore"

$SystemRestore.CreateRestorePoint("Pre-RegistryChange", 0, 100)

Related Cmdlets

Add-Computer

Get-ComputerRestorePoint

Remove-Computer

Restart-Computer

Restore-Computer

Stop-Computer

http://go.microsoft.com/fwlink/?LinkID=135197
http://msdn.microsoft.com/en-us/library/aa378951%28VS.85%29.aspx

16

#10 Restart-Computer

Restart-Computer.

What can I do with it?

Restart a local or remote computer

Example:

Immediately restart the computer Server01.

Restart-Computer -ComputerName Server01 -Force

How could I have done this in PowerShell 1.0?

You could have used the Win32_OperatingSystem WMI Class and the Win32Shutdown

method.

(Get-WmiObject -Class Win32_OperatingSystem

 -ComputerName Server01).Win32Shutdown(2)

Alternatively the Systinternals tool PSShutdown could be used to restart a local or remote

computer.

Related Cmdlets

Add-Computer

Checkpoint-Computer

Remove-Computer

Restore-Computer

Stop-Computer

http://go.microsoft.com/fwlink/?LinkID=135253
http://msdn.microsoft.com/en-us/library/aa394239%28VS.85%29.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897541.aspx

17

#11 Add-Computer

Add-Computer.

What can I do with it?

Join a local computer to a domain or workgroup

Example:

Join the current computer to the Test domain, place the computer account in the Servers OU

and use the Restart-Computer cmdlet to reboot the computer to complete the process.

Add-Computer -DomainName Test

-OUPath 'OU=Servers,DC=test,DC=local'; Restart-Computer

How could I have done this in PowerShell 1.0?

You could have used the Win32_ComputerSystem WMI Class and the

JoinDomainOrWorkGroup method.

This script from the Poshcode script repository illustrates how you might use this method to

join a computer to a domain.

function Set-Domain {

 param([switch]$help,

 [string]$domain=$(read-host "Please specify the domain to

join"),

 [System.Management.Automation.PSCredential]$credential = $(Get-

Credential)

)

 $usage = "`$cred = get-credential `n"

 $usage += "Set-AvaDomain -domain corp.avanade.org -credential `$cred`n"

 if ($help) {Write-Host $usage;exit}

 $username = $credential.GetNetworkCredential().UserName

 $password = $credential.GetNetworkCredential().Password

 $computer = Get-WmiObject Win32_ComputerSystem

 $computer.JoinDomainOrWorkGroup($domain ,$password, $username, $null,

3)

 }

Alternatively you could use the command line tool netdom to join a computer to a domain:

NETDOM /Domain:Test /user:adminuser /password:apassword MEMBER

 Server01 /JOINDOMAIN

Related Cmdlets

Checkpoint-Computer

Remove-Computer

http://go.microsoft.com/fwlink/?LinkID=135194
http://msdn.microsoft.com/en-us/library/aa394102%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa392154%28VS.85%29.aspx
http://poshcode.org/534

18

Restart-Computer

Restore-Computer

Stop-Computer

19

#12 Write-EventLog

Write-EventLog.

What can I do with it?

Write an event in a Windows Event Log on a local or remote machine.

Example:

Write an Error event into the Application log on Server01 with source CustomApp1, EventID

8750 and Error Message.

Write-EventLog -ComputerName Server01 -LogName Application

-Source CustomApp1 -EventID 8750 -EntryType Error

-Message "CustomApp1 has experienced Error 9875"

How could I have done this in PowerShell 1.0?

You could have used the .NET System.Diagnostics.EventLog class. Richard Siddaway has

put together a great function which uses this class to make it easy to write to the Event Log

using PowerShell 1.0.

function Write-EventLog

{

param([string]$msg = "Default Message", [string]$type="Information")

$log = New-Object System.Diagnostics.EventLog

$log.set_log("Application")

$log.set_source("CustomApp1")

$log.WriteEntry($msg,$type)

}

You can then use the function like this

Write-EventLog "CustomApp1 has started" "Information"

Related Cmdlets

Clear-EventLog

Limit-EventLog

New-EventLog

Remove-EventLog

Show-EventLog

Get-WinEvent

http://go.microsoft.com/fwlink/?LinkID=135281
http://msdn.microsoft.com/en-us/library/system.diagnostics.eventlog.aspx
http://richardsiddaway.spaces.live.com/blog/cns%2143CFA46A74CF3E96%21275.entry

20

#13 Clear-EventLog

Clear-EventLog.

What can I do with it?

Clear the Event Log on a local or remote computer.

Example:

Clear the Application Event Log on the remote computer Server01

Clear-EventLog -LogName Application -ComputerName Server01

How could I have done this in PowerShell 1.0?

You could have used the Get-EventLog cmdlet and the Clear method of the

System.Diagnostics.EventLog object it generates. (Note: this would only work on a local

computer)

$ApplicationLog = Get-EventLog -list | Where-Object {$_.log -eq

"Application"}

$ApplicationLog.Clear()

Related Cmdlets

Limit-EventLog

New-EventLog

Remove-EventLog

Show-EventLog

Write-EventLog

Get-WinEvent

http://go.microsoft.com/fwlink/?LinkID=135198

21

#14 Start-Process

Start-Process

What can I do with it?

Start a process on the local computer.

Examples:

Start an instance of Notepad

Start-Process Notepad

Open the file Test.txt using its associated application Notepad

Start-Process C:\Scripts\Test.txt

How could I have done this in PowerShell 1.0?

You could have used the .NET System.Diagnostics.Process class and the Start method.

[System.Diagnostics.Process]::Start("Notepad")

and to open a specific file with Notepad

[System.Diagnostics.Process]::Start("Notepad","C:\Scripts\Test.txt")

Alternatively you could have used WMI and this option would also give you the ability to

start a process on a remote computer.

([WMICLASS]"\\Server01\ROOT\CIMV2:win32_process").Create("Notepad")

Related Cmdlets

Start-Service

Get-Process

Stop-Process

Wait-Process

Debug-Process

http://go.microsoft.com/fwlink/?LinkID=135261
http://msdn.microsoft.com/en-us/library/system.diagnostics.process.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.process.start.aspx
http://go.microsoft.com/fwlink/?LinkID=113406
http://go.microsoft.com/fwlink/?LinkID=113324
http://go.microsoft.com/fwlink/?LinkID=113412
http://go.microsoft.com/fwlink/?LinkID=135206

22

#15 Start-Job

Start-Job

What can I do with it?

Start a background job on the local computer. This allows you to take back your console

session whilst you wait for the job to complete.

Examples:

Start a background job to run Get-Service on the local computer.

Start-Job -ScriptBlock {Get-Service}

This will display the status of this job in your current session and allow you to continue

working in the session - then retrieve the results at a later time.

You could also start a background job with a script, not just a scriptblock or a command.

Start-Job -FilePath .\Test.ps1

To start a background job on a remote computer use the -AsJob parameter available on a

number of cmdlets.

(Tip: to find out which cmdlets have the -AsJob parameter use Get-Help to give you a list

Get-Help * -Parameter AsJob

)

So to start a job to find services on the remote computer Server1

Get-WmiObject Win32_Service -ComputerName Server1 -AsJob

http://go.microsoft.com/fwlink/?LinkID=113405
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-15-start-job.html/start-job-2
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-15-start-job.html/start-jobscript
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-15-start-job.html/start-job-2
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-15-start-job.html/start-jobscript

23

How could I have done this in PowerShell 1.0?

The concept of jobs did not exist in PowerShell 1.0. You would have needed to open an extra

PowerShell session whilst you waited for a command to complete in your current session.

Related Cmdlets

Get-Job

Receive-Job

Wait-Job

Stop-Job

Remove-Job

Invoke-Command

http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-15-start-job.html/get-wmiobjectasjob

24

#16 Get-Job

Get-Job

What can I do with it?

Get background jobs from the current session as objects.

Examples:

Get background jobs from the current session.

Get-Job

Get background jobs from the current session, which contain the Get-WmiObject cmdlet.

Get-Job -Command "Get-WmiObject"

Store a job in a variable and examine its methods and properties.

$job = Get-Job -Command "Get-WmiObject"

$job | Get-Member

http://go.microsoft.com/fwlink/?LinkID=113328
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-16-get-job.html/get-job-2
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-16-get-job.html/get-jobget-wmiobject
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-16-get-job.html/get-job-2
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-16-get-job.html/get-jobget-wmiobject

25

How could I have done this in PowerShell 1.0?

The concept of jobs did not exist in PowerShell 1.0. You would have needed to open an extra

PowerShell session whilst you waited for a command to complete in your current session.

Related Cmdlets

Receive-Job

Wait-Job

Start-Job

Stop-Job

Remove-Job

Invoke-Command

http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-16-get-job.html/get-jobobject-3

26

#17 Receive-Job

Receive-Job

What can I do with it?

Retrieve the results of a background job which has already been run.

Example:

Retrieve the results for the job with ID 1 and keep them available for retrieval again. (The

default is to remove them)

Receive-Job -Id 1 -Keep

How could I have done this in PowerShell 1.0?

The concept of jobs did not exist in PowerShell 1.0. You would have needed to open an extra

PowerShell session whilst you waited for a command to complete in your current session.

Related Cmdlets

Get-Job

Wait-Job

Start-Job

Stop-Job

Remove-Job

Invoke-Command

http://go.microsoft.com/fwlink/?LinkID=113372
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-17-receive-job.html/receive-jobkeep

27

#18 Remove-Job

Remove-Job

What can I do with it?

Remove existing background jobs from the current session.

Examples:

Remove the job with ID 1.

Remove-Job -Id 1

Use the Get-Job cmdlet to retrieve all jobs and pipe it through to Remove-Job to remove them

all.

Get-Job | Remove-Job

How could I have done this in PowerShell 1.0?

The concept of jobs did not exist in PowerShell 1.0. You would have needed to open an extra

PowerShell session whilst you waited for a command to complete in your current session.

Related Cmdlets

Get-Job

Receive-Job

Wait-Job

Start-Job

Stop-Job

http://go.microsoft.com/fwlink/?LinkID=113377
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-18-remove-job.html/remove-job
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-18-remove-job.html/remove-jobget-job
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-18-remove-job.html/remove-job
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-18-remove-job.html/remove-jobget-job

28

Invoke-Command

29

#19 Stop-Job

Stop-Job

What can I do with it?

Stop background jobs which are running in the current session.

Examples:

Stop job with id 13.

Stop-Job -Id 13

Retrieve all current jobs and stop them all.

Get-Job | Stop-Job

How could I have done this in PowerShell 1.0?

The concept of jobs did not exist in PowerShell 1.0. You would have needed to open an extra

PowerShell session whilst you waited for a command to complete in your current session.

Related Cmdlets

http://go.microsoft.com/fwlink/?LinkID=113413
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-19-stop-job.html/stop-job
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-19-stop-job.html/stop-joball
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-19-stop-job.html/stop-job
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-19-stop-job.html/stop-joball

30

Get-Job

Receive-Job

Wait-Job

Start-Job

Remove-Job

Invoke-Command

31

#20 Wait-Job

Wait-Job

What can I do with it?

Wait for a background job to complete in the current session before returning the prompt to

the user.

Example:

Wait for jobs 37, 39 and 41 to finish, but use the Any parameter to only wait for the first one.

You can see when first initiated the cursor does not return to the prompt.

As soon as one of those jobs completes the cursor returns the prompt. We then use the Get-

Job cmdlet to confirm that even though Job 41 is still running we have been given the prompt

back.

http://go.microsoft.com/fwlink/?LinkID=113422
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-20-wait-job.html/wait-job

32

How could I have done this in PowerShell 1.0?

The concept of jobs did not exist in PowerShell 1.0. Waiting for a command to complete

before having the prompt returned to the user was standard behaviour.

Related Cmdlets

Get-Job

Receive-Job

Start-Job

Stop-Job

Remove-Job

Invoke-Command

http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-20-wait-job.html/wait-jobget-job

33

#21 Select-XML

Select-XML

What can I do with it?

Search for text in an XML document using an XPath query.

Example:

Example.xml

From the file Example.xml search with the XPath query /shop/food

Select-XML -Path example.xml -Xpath "/shop/food"

You'll notice this hasn't returned any actual data from the XML file rather details of the

search carried out and two matches. This is because Select-XML returns a SelectXMLInfo

Object, illustrated below by piping the same command to Get-Member.

http://go.microsoft.com/fwlink/?LinkID=135255
http://www.developer.com/xml/article.php/3383961/NET-and-XML-XPath-Queries.htm
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-21-select-xml.html/examplexml
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-21-select-xml.html/select-xml
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-21-select-xml.html/examplexml
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-21-select-xml.html/select-xml

34

To retrieve the results, pipe the SelectXMLInfo object through to Select-Object and use the

ExpandProperty parameter.

Select-XML -Path example.xml -Xpath "/shop/food"

 | Select-Object -ExpandProperty Node

How could I have done this in PowerShell 1.0?

You could have used the Get-Content cmdlet to read the Example.xml file in as text,

converted it to an XML type using [XML] and then used the SelectNodes method to retrieve

the data.

[xml]$xml = (Get-Content example.xml)

$xml.SelectNodes("/shop/food")

Related Cmdlets

Convert-ToXML

http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-21-select-xml.html/select-xmlget-member
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-21-select-xml.html/select-xmlselect-object
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-21-select-xml.html/select-xmlv1
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-21-select-xml.html/select-xmlget-member
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-21-select-xml.html/select-xmlselect-object
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-21-select-xml.html/select-xmlv1
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-21-select-xml.html/select-xmlget-member
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-21-select-xml.html/select-xmlselect-object
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-21-select-xml.html/select-xmlv1

35

#22 Enable-ComputerRestore

Enable-ComputerRestore

What can I do with it?

Enable the System Restore feature on the specified drive.

Example:

Enable System Restore on the local C drive.

Enable-ComputerRestore -Drive "C:\"

How could I have done this in PowerShell 1.0?

You could have used the SystemRestore WMI class and the Enable method

$SystemRestore = [wmiclass]"\\.\root\default:systemrestore"

$SystemRestore.Enable("c:\")

Related Cmdlets

Disable-ComputerRestore

Get-ComputerRestorePoint

Restore-Computer

Restart-Computer

http://go.microsoft.com/fwlink/?LinkID=135209
http://msdn.microsoft.com/en-us/library/aa378951%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa378858%28VS.85%29.aspx

36

#23 Disable-ComputerRestore

Disable-ComputerRestore

What can I do with it?

Disable the System Restore feature on the specified drive.

Example:

Disable System Restore on the local C drive.

Disable-ComputerRestore -Drive "C:\"

How could I have done this in PowerShell 1.0?

You could have used the SystemRestore WMI class and the Disable method

$SystemRestore = [wmiclass]"\\.\root\default:systemrestore"

$SystemRestore.Disable("c:\")

Related Cmdlets

Enable-ComputerRestore

Get-ComputerRestorePoint

Restore-Computer

Restart-Computer

http://go.microsoft.com/fwlink/?LinkID=135207
http://msdn.microsoft.com/en-us/library/aa378951%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa378852%28VS.85%29.aspx

37

#24 Get-ComputerRestorePoint

Get-ComputerRestorePoint

What can I do with it?

List available System Restore points on the local machine.

Example:

List the available System Restore points on the current machine.

Get-ComputerRestorePoint

How could I have done this in PowerShell 1.0?

You could have used the Get-WmiObject cmdlet with the Root\Default namespace and the

SystemRestore Class

Get-WmiObject -Namespace root\default -Class SystemRestore

Funnily enough Get-ComputerRestorePoint and Get-WmiObject -Namespace root\default -

Class SystemRestore look pretty similar when you pipe them through to Get-Member

Related Cmdlets

Enable-ComputerRestore

Disable-ComputerRestore

Restore-Computer

Restart-Computer

http://go.microsoft.com/fwlink/?LinkID=135215
http://msdn.microsoft.com/en-us/library/aa378951%28VS.85%29.aspx
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-24-get-computerrestorepoint.html/get-computerrestorepoint-2
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-24-get-computerrestorepoint.html/get-computerrestorepoint-2

38

#25 Restore-Computer

Restore-Computer

What can I do with it?

Run a system restore on the local machine.

Example:

Restore the local computer to restore point 101 and then use the Restart-Computer cmdlet to

reboot it

Restore-Computer -RestorePoint 101

Restart-Computer

How could I have done this in PowerShell 1.0?

You could have used the SystemRestore WMI class and the Restore method. You could

then use the Get-WmiObject cmdlet, the Win32_OperatingSystem class and the Reboot

method to restart the machine.

$SystemRestore = [wmiclass]"\\.\root\default:systemrestore"

$SystemRestore.Restore("101")

(Get-WmiObject Win32_OperatingSystem).reboot()

Related Cmdlets

Enable-ComputerRestore

Disable-ComputerRestore

Get-ComputerRestorePoint

Restart-Computer

http://go.microsoft.com/fwlink/?LinkID=135254
http://msdn.microsoft.com/en-us/library/aa378951%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa378925%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa394239%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa393010%28VS.85%29.aspx

39

#26 New-WebServiceProxy

New-WebServiceProxy

What can I do with it?

Make use of an available web service.

Examples:

The website http://www.webservicex.net has a number of available web services which you

can use with the New-WebServiceProxy cmdlet.

Find the current weather for Southampton, UK.

$weather = New-WebServiceProxy

-URI "http://www.webservicex.net/globalweather.asmx?wsdl"

$weather.GetWeather('Southampton', 'United Kingdom')

Note: to find what cities were available within the UK to query I used the

GetCitiesByCountry method.

$weather.GetCitiesByCountry('United Kingdom')

Find the location for the UK postcode SW1A.

$postcode = New-WebserviceProxy

-URI "http://www.webservicex.net/uklocation.asmx?wsdl"

$postcode.GetUKLocationByPostcode('SW1A')

Return the words from Bible verse John, Chapter 3, 16.

$bibleverse = New-WebServiceProxy

-URI "http://www.webservicex.net/BibleWebservice.asmx?wsdl"

$bibleverse.GetBibleWordsByChapterAndVerse('John','3','16')

http://go.microsoft.com/fwlink/?LinkID=135238
http://www.webservicex.net/
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-26-new-webserviceproxy.html/new-webserviceproxyget-weather
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-26-new-webserviceproxy.html/new-webserviceproxygetuklocationbypostcode
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-26-new-webserviceproxy.html/new-webserviceproxyget-weather
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-26-new-webserviceproxy.html/new-webserviceproxygetuklocationbypostcode

40

There are many more web services available from http://www.webservicex.net which are fun

to try out. You also may find other available web services on the Internet or within your own

organisation.

How could I have done this in PowerShell 1.0?

Lee Holmes from the PowerShell team has put together a Connect-WebService script you can

use when working with PowerShell 1.0 to make use a web service. By using this script you

can follow a similar process to the earlier examples.

$weather = .\Connect-WebService.ps1

"http://www.webservicex.net/globalweather.asmx?wsdl"

$weather.GetWeather('Southampton', 'United Kingdom')

I reckon that's about 100 lines of code in a script down to one nice easy cmdlet when using

the New-WebServiceProxy cmdlet. Nice!

http://www.webservicex.net/
http://www.leeholmes.com/blog/CallingAWebserviceFromPowerShell.aspx
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-26-new-webserviceproxy.html/new-webserviceproxygetbiblewords-3

41

#27 Test-ComputerSecureChannel

Test-ComputerSecureChannel

What can I do with it?

Test the secure channel between the local computer and the domain and optionally fix if

necessary.

Example:

Test the secure channel on the current computer

Test-ComputerSecureChannel

Note: this will return a boolean value of True or False as seen below; if you wish for more

detailed information use the -Verbose parameter.

If the result is False then you can attempt to fix the problem by using the -Repair parameter.

Test-ComputerSecureChannel -Repair

How could I have done this in PowerShell 1.0?

The best way to do it would have been using the NetDom command line tool.

Test:

netdom verify Server01 /domain:test.local

Repair:

netdom reset Server01 /domain:test.local

Related Cmdlets

Checkpoint-Computer

Restart-Computer

http://go.microsoft.com/fwlink/?LinkID=137749
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-27-test-computersecurechannel.html/test-computersecurechannel-2

42

Stop-Computer

Reset-ComputerMachinePassword

43

#28 Export-Counter

Export-Counter

What can I do with it?

Take performance objects generated from the Get-Counter or Import-Counter cmdlets and

export them as log files. Note: this cmdlet requires Windows 7 or Windows Server 2008 R2

or later.

Examples:

Retrieve some memory performance data from the local machine and export it to the standard

Performance Monitor output file BLG.

Get-Counter '\Memory\Pool Paged Bytes' -MaxSamples 10 |

 Export-Counter -Path C:\Memory.blg

You can also output directly to two other format types, CSV and TSV.

Get-Counter '\Memory\Pool Paged Bytes' -MaxSamples 10 |

 Export-Counter -Path C:\Memory.csv -FileFormat CSV

How could I have done this in PowerShell 1.0?

In the Get-Counter post I showed an example using .NET to retrieve performance data, but it

would only return one result at a time, so not a lot of point to extract to a log file.

$data = New-Object System.Diagnostics.PerformanceCounter

$data.CategoryName = "Memory"

$data.CounterName = "Pool Paged Bytes"

$data.nextvalue()

You could run the final command multiple times and output to a text file, but still not a

particularly nice solution.

for ($i=1; $i -le 10; $i++){$data.nextvalue() | Out-File test.txt -Append}

Alternatively from the Performance Monitor GUI you could create a Data Collector Set to

save performance data into a BLG file. You could then use the Relog.exe tool to convert the

BLG file into CSV or TSV.

Related Cmdlets

Get-Counter

Import-Counter

http://go.microsoft.com/fwlink/?LinkID=138337
http://technet.microsoft.com/en-us/library/bb490958.aspx

44

#29 Import-Counter

Import-Counter

What can I do with it?

Create objects by importing performance data in BLG, CSV or TSV files.

Example:

Import as objects data in a BLG file previously exported from Export-Counter or the

Performance Monitor GUI.

$performancedata = Import-Counter -Path Memory.blg

How could I have done this in PowerShell 1.0?

To manage performance data contained in a BLG file you could have used the Performance

Monitor GUI to import it and view the contents.

Related Cmdlets

Get-Counter

Export-Counter

http://go.microsoft.com/fwlink/?LinkID=138338

45

#30 Enable-PSRemoting

Enable-PSRemoting

What can I do with it?

Configure a computer to be enabled for PowerShell remoting. Tip: Make sure you run this

cmdlet from an elevated process.

Example:

Configure the computer Test01 to be enabled for PowerShell remoting.

Enable-PSRemoting

This will produce output similar to the below; note the command was run on a Windows

Server 2008 64-bit system

You will notice from the output that it runs two other PowerShell 2.0 cmdlets, Set-

WSManQuickConfig and Register-PSSessionConfiguration. The below (taken from

PowerShell help) gives a great summary of what each will do in this instance.

-- Runs the Set-WSManQuickConfig cmdlet, which performs the following tasks:

----- Starts the WinRM service.

----- Sets the startup type on the WinRM service to Automatic.

----- Creates a listener to accept requests on any IP address.

----- Enables a firewall exception for WS-Management communications.

-- Enables all registered Windows PowerShell session configurations to receive instructions

from a remote computer.

----- Registers the "Microsoft.PowerShell" session configuration, if it is not already

registered.

----- Registers the "Microsoft.PowerShell32" session configuration on 64-bit computers, if it

http://go.microsoft.com/fwlink/?LinkID=144300
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-30-enable-psremoting.html/enable-psremoting

46

is not already registered.

----- Removes the "Deny Everyone" setting from the security descriptor for all the registered

session configurations.

----- Restarts the WinRM service to make the preceding changes effective.

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

Disable-PSRemoting

Get-PSSessionConfiguration

Enable-PSSessionConfiguration

Disable-PSSessionConfiguration

Register-PSSessionConfiguration

Set-PSSessionConfiguration

47

#31 Enter-PSSession

Enter-PSSession

What can I do with it?

Open an interactive PowerShell session with a computer which has been enabled for

PowerShell remoting.

Example:

Open a session with the server Test01 and see which services begin with the letter T.

Enter-PSSession -ComputerName Test01

Get-Service | Where-Object {$_.name -like 'T*'}

You will notice that the prompt has changed to

[test01]: PS C:\>

which helpfully shows you which server you are running the remote session on.

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

New-PSSession

Get-PSSession

Exit-PSSession

Remove-PSSession

Invoke-Command

http://go.microsoft.com/fwlink/?LinkID=135210
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-31-enter-pssession.html/enter-pssession

48

#32 Exit-PSSession

Exit-PSSession

What can I do with it?

Exit an interactive PowerShell session that has been opened on a computer which has been

enabled for PowerShell remoting.

Example:

Leave an interactive PowerShell session with a computer which has been enabled for

PowerShell remoting.

Exit-PSSession

You will notice that the prompt has changed back from

[test01]: PS C:\>

to simply

PS C:\>

Tip: When in an interactive remote session you can also just type Exit to finish the session.

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

New-PSSession

Get-PSSession

Enter-PSSession

Remove-PSSession

Invoke-Command

http://go.microsoft.com/fwlink/?LinkID=135212
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-32-exit-pssession.html/exit-pssession

49

#33 New-PSSession

New-PSSession

What can I do with it?

Establish a persistent connection to a computer that has been enabled for PowerShell

remoting.

Examples:

Establish a persistent remote PowerShell connection to Test01 and store it in the variable

$session. Then use the Enter-PSSession cmdlet with the Session parameter to use that

session.

$session = New-PSSession -ComputerName Test01

Enter-PSSession -Session $session

You can also open multiple sessions via different methods:

Open sessions to Test01, Test02 and Test 03.

$session1, $session2, $session3 =

 New-PSSession -ComputerName Test01,Test02,Test03

Or if you have the servers stored in a csv file.

$sessions = New-PSSession -ComputerName (Get-Content servers.csv)

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

Get-PSSession

Enter-PSSession

Exit-PSSession

Remove-PSSession

Invoke-Command

http://go.microsoft.com/fwlink/?LinkID=135237

50

#34 Invoke-Commmand

Invoke-Command

What can I do with it?

Run commands on local or remote computers and return the results.

Examples:

Establish a persistent remote PowerShell connection to Test01 using New-PSSession and

store it in the variable $session. Then return the results for which services begin with T.

$session = New-PSSession -ComputerName Test01

Invoke-Command -Session $session -ScriptBlock

 {Get-Service | Where-Object {$_.name -like 'T*'}}

You can see that the results contain a property PSComputerName that shows which server

the results came from.

You don't need to stretch your imagination too far to see how this could quickly become

extremely powerful. Imagine instead that you used New-PSSession to make sessions to 100

servers stored in a csv file and run the same command to all of those servers. The change in

the code would be very small.

$sessions = New-PSSession -ComputerName (Get-Content servers.csv)

Invoke-Command -Session $sessions -ScriptBlock

 {Get-Service | Where-Object {$_.name -like 'T*'}}

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

New-PSSession

Get-PSSession

http://go.microsoft.com/fwlink/?LinkID=135225
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-34-invoke-commmand.html/invoke-command1

51

Enter-PSSession

Exit-PSSession

Remove-PSSession

52

#35 New-PSSessionOption

New-PSSessionOption

What can I do with it?

Create a new object with advanced session settings to be used when opening PowerShell

remote sessions.

Examples:

Show the possible options which can be set with New-PSSessionOption

New-PSSessionOption

Set some advanced session options via the $sessionoptions variable and use them to make a

remote PowerShell connection.

$sessionoptions = New-PSSessionOption

-IdleTimeout 600000 -NoCompression -NoMachineProfile

New-PSSession -ComputerName Test01 -SessionOption $sessionoptions

Notice the difference from the default in the options which have been set.

http://go.microsoft.com/fwlink/?LinkID=144305
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-35-new-pssessionoption.html/new-pssessionoption1

53

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

New-PSSession

Enter-PSSession

Invoke-Command

http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-35-new-pssessionoption.html/new-pssessionoption2-3

54

#36 Get-PSSession

Get-PSSession

What can I do with it?

Retrieve remote PowerShell sessions created in the current session.

Examples:

Get all current sessions

Get-PSSession

Get session 3.

Get-PSSession -Id 3

Get all sessions open with Test01. (Not well illustrated in this screenshot since there is only

one server with sessions open, but you get the idea)

Get-PSSession -ComputerName Test01

http://go.microsoft.com/fwlink/?LinkID=135219
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-36-get-pssession.html/get-pssession
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-36-get-pssession.html/get-pssession2
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-36-get-pssession.html/get-pssession3
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-36-get-pssession.html/get-pssession
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-36-get-pssession.html/get-pssession2
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-36-get-pssession.html/get-pssession3
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-36-get-pssession.html/get-pssession
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-36-get-pssession.html/get-pssession2
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-36-get-pssession.html/get-pssession3

55

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

New-PSSession

Enter-PSSession

Exit-PSSession

Remove-PSSession

Invoke-Command

56

#37 Remove-PSSession

Remove-PSSession

What can I do with it?

Close a remote PowerShell session which is open in the current session.

Examples:

Establish a persistent remote PowerShell connection to Test01 using New-PSSession , return

the results for which services begin with T, then remove that session. Finally confirm the

session has been removed by running Get-PSSession and seeing no results.

New-PSSession -ComputerName Test01

Invoke-Command -Session (Get-PSSession -Id 1)

-ScriptBlock {Get-Service | Where-Object {$_.name -like 'T*'}}

Remove-PSSession -Id 1

An interesting thing to note is that if you store the session in a variable and then remove the

session you will see that the State changes to Closed.

Establish a persistent remote PowerShell connection to Test01 using New-PSSession and

store that in the variable $session1, confirm the session is running via Get-PSSession, then

remove that session. Now examine $session1 and note the State as Closed.

$session1 = New-PSSession -ComputerName Test01

Get-PSSession

Remove-PSSession -Id 1

$session1

http://go.microsoft.com/fwlink/?LinkID=135250
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-33-new-pssession.html
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-36-get-pssession.html
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-37-remove-pssession.html/remove-pssession1-3

57

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

New-PSSession

Get-PSSession

Enter-PSSession

Exit-PSSession

Invoke-Command

http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-37-remove-pssession.html/remove-pssession2-2

58

#38 Get-PSSessionConfiguration

Get-PSSessionConfiguration

What can I do with it?

Session configurations determine the settings used by remote PowerShell sessions to that

computer. This cmdlet displays the settings for the current configuration(s) used on the local

computer.

Example:

Retrieve the settings used by remote PowerShell sessions on the local computer and display

the properties available.

Get-PSSessionConfiguration | Format-List *

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

Disable-PSSessionConfiguration

Enable-PSSessionConfiguration

Register-PSSessionConfiguration

Set-PSSessionConfiguration

Unregister-PSSessionConfiguration

http://go.microsoft.com/fwlink/?LinkID=144304
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-38-get-pssessionconfiguration.html/get-pssessionconfiguration

59

#39 Register-PSSessionConfiguration

Register-PSSessionConfiguration

What can I do with it?

Session configurations determine the settings used by remote PowerShell sessions to that

computer. This cmdlet enables the creation of customised settings for particular session

requirements.

Example:

Create a new PSSession Configuration called BITSTransfer using the startup script

C:\Scripts\StartupScript.ps1. Use StartupScript.ps1 to import the PowerShell 2.0 BITS

Transfer module so that those cmdlets are available to the user of the remote session. Use

Get-PSSessionConfiguration to confirm the creation.

StartupScript.ps1 contains the command to import the BITSTransfer module - you could

easily add other code in here to further customise the session.

Register-PSSessionConfiguration -Name BITSTransfer

-StartupScript C:\Scripts\StartupScript.ps1

You will see that you are prompted for both confirmation and whether to restart the WinRM

service.

To use this particular PSSession Configuration use the New-PSSession cmdlet with the

ConfigurationName parameter and specify the name of the configuration BITSTransfer.

http://go.microsoft.com/fwlink/?LinkID=144306
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-38-get-pssessionconfiguration.html
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-39-register-pssessionconfiguration.html/startupscript
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-39-register-pssessionconfiguration.html/register-pssessionconfiguration-2
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-39-register-pssessionconfiguration.html/startupscript
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-39-register-pssessionconfiguration.html/register-pssessionconfiguration-2

60

Then connect to the session with the Enter-PSSession cmdlet and confirm you have the BITS

Transfer module by running Get-Module.

New-PSSession -ConfigurationName BITSTransfer

-ComputerName Test01

Enter-PSSession -Id 1

Get-Module

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

Disable-PSSessionConfiguration

Enable-PSSessionConfiguration

Get-PSSessionConfiguration

Set-PSSessionConfiguration

Unregister-PSSessionConfiguration

http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-39-register-pssessionconfiguration.html/register-pssessionconfiguration2

61

#40 Set-PSSessionConfiguration

Set-PSSessionConfiguration

What can I do with it?

Change the properties of a session configuration which has been registered with Register-

PSSessionConfiguration.

Example:

Create a new PSSession Configuration called BITSTransfer using the startup script

C:\Scripts\StartupScript.ps1. Use StartupScript.ps1 to import the PowerShell 2.0 BITS

Transfer module so that those cmdlets are available to the user of the remote session. Use

Get-PSSessionConfiguration to confirm the creation.

StartupScript.ps1 contains the command to import the BITSTransfer module – you could

easily add other code in here to further customise the session.

Now change the properties of that session with Set-PSSessionConfiguration. Clear the startup

script settings and set the MaximumReceivedObjectSizeMB to 50 MB. Confirm the

changes with Get-PSSessionConfiguration .

Register-PSSessionConfiguration -Name BITSTransfer

-StartupScript C:\Scripts\StartupScript.ps1

Get-PSSessionConfiguration

Set-PSSessionConfiguration -Name BITSTransfer

-StartupScript $null -MaximumReceivedObjectSizeMB 50

Get-PSSessionConfiguration

You will notice that you are prompted to both confirm the change and to restart the WinRM

service.

http://go.microsoft.com/fwlink/?LinkID=144307
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-38-get-pssessionconfiguration.html
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-39-register-pssessionconfiguration.html/startupscript

62

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

Disable-PSSessionConfiguration

Enable-PSSessionConfiguration

Register-PSSessionConfiguration

Get-PSSessionConfiguration

Unregister-PSSessionConfiguration

http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-40-set-pssessionconfiguration.html/set-pssessionconfiguration

63

#41 Disable-PSSessionConfiguration

Disable-PSSessionConfiguration

What can I do with it?

Deny access to a session configuration.

Example:

Examine the permissions of the previously created PSSessionConfiguration named

BITSTransfer. Deny access to this session using Disable-PSSessionConfiguration. Use the

Force parameter to supress prompts. Check what the permissions on the configuration have

been changed to.

Get-PSSessionConfiguration -Name BITSTransfer

| Format-Table -Property Name,Permission -Auto

Disable-PSSessionConfiguration -Name BITSTransfer -Force

Get-PSSessionConfiguration -Name BITSTransfer

| Format-Table -Property Name,Permission -Auto

You will see that you are warned that disabling the PSSessionConfiguration will not undo

every change made by Enable-PSRemoting. The effect of running Disable-

PSSessionConfiguration is to set the permission Everyone AccessDenied, except for

BUILTIN\Administrators Access Allowed.

Subsequently attempting to access that configuration from a remote session results in the

following Access Denied error.

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

http://go.microsoft.com/fwlink/?LinkID=144299
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-41-disable-pssessionconfiguration.html/disable-pssessionconfiguration-2
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-41-disable-pssessionconfiguration.html/disable-pssessionconfiguration2-2
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-41-disable-pssessionconfiguration.html/disable-pssessionconfiguration-2
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-41-disable-pssessionconfiguration.html/disable-pssessionconfiguration2-2

64

Related Cmdlets

Enable-PSSessionConfiguration

Register-PSSessionConfiguration

Set-PSSessionConfiguration

Unregister-PSSessionConfiguration

65

#42 Enable-PSSessionConfiguration

Enable-PSSessionConfiguration

What can I do with it?

Re-enable access to a session configuration which has previously been disabled with Disable-

PSSessionConfiguration.

Example:

View the permissions of the currently disabled BITSTransfer PSSessionConfiguration, re-

enable it, and then view the permissions again.

Get-PSSessionConfiguration -Name BITSTransfer

| Format-Table -Property Name,Permission -Auto

Enable-PSSessionConfiguration -Name BITSTransfer

Get-PSSessionConfiguration -Name BITSTransfer

| Format-Table -Property Name,Permission -Auto

You will notice that the Everyone AccessDenied permission is removed as part of the

process, which also includes two confirmation prompts.

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

Disable-PSSessionConfiguration

http://go.microsoft.com/fwlink/?LinkID=144301
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-42-enable-pssessionconfiguration.html/enable-pssessionconfiguration

66

Register-PSSessionConfiguration

Set-PSSessionConfiguration

Unregister-PSSessionConfiguration

67

#43 Unregister-PSSessionConfiguration

Unregister-PSSessionConfiguration

What can I do with it?

Delete PSSessionConfigurations on the local computer.

Example:

View the existing available PSSessionConfigurations with Get-PSSessionConfiguration,

remove the BITSTransfer configuration and then confirm it has been removed.

Get-PSSessionConfiguration

Unregister-PSSessionConfiguration -Name BITSTransfer

Get-PSSessionConfiguration

You will see that you are prompted to both confirm and the action and the restart of the

WinRM service.

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

Disable-PSSessionConfiguration

Enable-PSSessionConfiguration

Register-PSSessionConfiguration

http://go.microsoft.com/fwlink/?LinkID=144308
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-43-unregister-pssessionconfiguration.html/unregister-pssessionconfiguration

68

Set-PSSessionConfiguration

69

#44 Set-WSManQuickConfig

Set-WSManQuickConfig

What can I do with it?

Configure the local computer for use with WS-Management .

Example:

Configure the local computer to be enabled for remote management with WS-Management .

Set-WSManQuickConfig

This will produce output similar to the below; note the command was run on a Windows

Server 2008 64-bit system.

Set-WSManQuickConfig runs the following tasks:

—– Starts the WinRM service if necessary.

—– Sets the startup type on the WinRM service to Automatic.

—– Creates a listener to accept requests on any IP address.

—– Enables a firewall exception for WS-Management communications.

You are prompted to confirm the action.

How could I have done this in PowerShell 1.0?

Support for the use of WS-Management in PowerShell is provided as part of the 2.0 release.

Related Cmdlets

Connect-WSMan

Disable-WSManCredSSP

Disconnect-WSMan

Enable-PSRemoting

Enable-WSManCredSSP

http://go.microsoft.com/fwlink/?LinkID=141463
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-44-set-wsmanquickconfig.html/set-wsmanquickconfig

70

Get-WSManCredSSP

Get-WSManInstance

Invoke-WSManAction

New-PSSession

New-WSManInstance

New-WSManSessionOption

Test-WSMan

71

#45 Connect-WSMan

Connect-WSMan

What can I do with it?

Create a connection to a remote computer using WS-Management .

Example:

Connect to the remote server Test01 using WS-Management . Use the WSMan provider to

examine the WSMan Shell properties and change the value for MaxShellsPerUser to 10.

Connect-WSMan -ComputerName Test01

cd wsman:

dir

cd .\localhost

dir | Format-Table -AutoSize

cd Shell

dir | Format-Table -AutoSize

http://go.microsoft.com/fwlink/?LinkId=141437
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-45-connect-wsman.html/connect-wsman1
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-45-connect-wsman.html/connect-wsman2
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-45-connect-wsman.html/connect-wsman1
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-45-connect-wsman.html/connect-wsman2

72

Set-Item -Path MaxShellsPerUser -Value 10

dir | Format-Table -AutoSize

How could I have done this in PowerShell 1.0?

Support for the use of WS-Management in PowerShell is provided as part of the 2.0 release.

Related Cmdlets

Disable-WSManCredSSP

Disconnect-WSMan

Enable-PSRemoting

Enable-WSManCredSSP

Get-WSManCredSSP

Get-WSManInstance

http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-45-connect-wsman.html/connect-wsman3
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-45-connect-wsman.html/connect-wsman4
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-45-connect-wsman.html/connect-wsman3
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-45-connect-wsman.html/connect-wsman4

73

Invoke-WSManAction

New-PSSession

New-WSManInstance

New-WSManSessionOption

Remove-WSManInstance

Set-WSManInstance

Set-WSManQuickConfig

Test-WSMan

74

#46 Test-WSMan

Test-WSMan

What can I do with it?

Test whether WS-Management is available on a computer.

Example:

Test whether WS-Management is available on Test01.

Test-WSMan -ComputerName Test01

You will notice you receive a response detailing wsmid, ProtocolVersion, ProductVendor

and ProductVersion if the query is successful.

How could I have done this in PowerShell 1.0?

Support for the use of WS-Management in PowerShell is provided as part of the 2.0 release.

Related Cmdlets

Connect-WSMan

Disable-WSManCredSSP

Disconnect-WSMan

Enable-PSRemoting

Enable-WSManCredSSP

Get-WSManCredSSP

Get-WSManInstance

Invoke-WSManAction

http://go.microsoft.com/fwlink/?LinkId=141464
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-46-test-wsman.html/test-wsman

75

New-PSSession

New-WSManInstance

New-WSManSessionOption

Remove-WSManInstance

Set-WSManInstance

Set-WSManQuickConfig

76

#47 Invoke-WSManAction

Invoke-WSManAction

What can I do with it?

Invoke an action using WS-Management .

Examples:

Check the status of the BITS service on Test01, use WS-Management to stop the service, and

then check its status again.

Get-Service BITS -ComputerName Test01

Invoke-WSManAction -Action StopService -ResourceURI wmicimv2/Win32_Service

-SelectorSet @{Name="BITS"} -ComputerName Test01 -Authentication Default

Get-Service BITS -ComputerName Test01

How could I have done this in PowerShell 1.0?

Support for the use of WS-Management in PowerShell is provided as part of the 2.0 release.

Related Cmdlets

Connect-WSMan

Disable-WSManCredSSP

Disconnect-WSMan

Enable-PSRemoting

Enable-WSManCredSSP

Get-WSManCredSSP

Get-WSManInstance

http://go.microsoft.com/fwlink/?LinkId=141446
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-47-invoke-wsmanaction.html/invoke-wsmanaction1

77

New-PSSession

New-WSManInstance

New-WSManSessionOption

Remove-WSManInstance

Set-WSManInstance

Set-WSManQuickConfig

Test-WSMan

78

#48 Get-WSManInstance

Get-WSManInstance

What can I do with it?

Retrieve an instance of a management resource specified by a URI by using WS-

Management.

Examples:

Display management information for the BITS service on the remote computer Test01.

Get-WSManInstance wmicimv2/win32_service

-SelectorSet @{name="BITS"} -ComputerName Test01

Notice that you receive many properties for the BITS service.

Display management information for the WS-Management listener configuration on the

remote computer Test01.

Get-WSManInstance winrm/config/listener

-SelectorSet @{Address="*";Transport="http"} -ComputerName Test01

Notice that you receive a number of properties of the listener.

http://go.microsoft.com/fwlink/?LinkId=141444
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-48-get-wsmaninstance.html/get-wsmaninstance1-2

79

How could I have done this in PowerShell 1.0?

Support for the use of WS-Management in PowerShell is provided as part of the 2.0 release.

Related Cmdlets

Connect-WSMan

Disable-WSManCredSSP

Disconnect-WSMan

Enable-PSRemoting

Enable-WSManCredSSP

Get-WSManCredSSP

Invoke-WSManAction

New-PSSession

New-WSManInstance

New-WSManSessionOption

Remove-WSManInstance

Set-WSManInstance

Set-WSManQuickConfig

Test-WSMan

http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-48-get-wsmaninstance.html/get-wsmaninstance2

80

#49 New-WSManInstance

New-WSManInstance

What can I do with it?

Create an instance of a management resource for use with WS-Management.

Example:

Create an instance of a management resource for use with WS-Management using HTTPS.

You need to specify a certificate for use with this listener since it is HTTPS. For testing

purposes it is possible to create a self-signed certificate within IIS. Open the Create Self-

Signed Certificate Wizard and enter a name.

Export it to C:\Temp

http://go.microsoft.com/fwlink/?LinkId=141448
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/selfsignedcert

81

Import the pfx file into the Personal Certificate Store

http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/exportcert
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/importcertificate
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/exportcert
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/importcertificate

82

For the New-WSManInstance cmdlet you will require the thumbprint of this certificate, you

can find this using PowerShell and the Certificate Provider.

Get-Childitem -Path cert:\CurrentUser\My | Format-List

FriendlyName,Thumbprint

http://technet.microsoft.com/en-us/library/dd347615.aspx
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/importcertificate2
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/importcertificate3
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/get-childitemcert-2
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/importcertificate2
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/importcertificate3
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/get-childitemcert-2
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/importcertificate2
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/importcertificate3
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/get-childitemcert-2

83

Creation of the new WSManInstance using HTTPS is as follows:

New-WSManInstance winrm/config/Listener

-SelectorSet @{Address="*";Transport="HTTPS"}

-ValueSet

@{Hostname="Test01";CertificateThumbprint="01F7EB07A4531750D920CE6A588BF5"}

You can verify this remotely using the Get-WSManInstance cmdlet.

Get-WSManInstance winrm/config/listener

-SelectorSet @{Address="*";Transport="https"} -ComputerName Test01

How could I have done this in PowerShell 1.0?

Support for the use of WS-Management in PowerShell is provided as part of the 2.0 release.

Related Cmdlets

Connect-WSMan

Disable-WSManCredSSP

Disconnect-WSMan

Enable-PSRemoting

Enable-WSManCredSSP

Get-WSManCredSSP

Get-WSManInstance

Invoke-WSManAction

New-PSSession

New-WSManSessionOption

http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/new-wsmaninstance
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/new-wsmaninstance2-2
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/new-wsmaninstance
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html/new-wsmaninstance2-2

84

Remove-WSManInstance

Set-WSManInstance

Set-WSManQuickConfig

Test-WSMan

85

#50 Set-WSManInstance

Set-WSManInstance

What can I do with it?

Change the properties of a management resource for use with WS-Management.

Example:

Set the Enabled property of the HTTPS listener created with New-WSManInstance to false,

effectively disabling it. Tip: watch out for case sensitivity in ValueSet

Set-WSManInstance winrm/config/listener

-SelectorSet @{address="*";transport="https"}

-ValueSet @{Enabled="false"}

How could I have done this in PowerShell 1.0?

Support for the use of WS-Management in PowerShell is provided as part of the 2.0 release.

Related Cmdlets

Connect-WSMan

Disable-WSManCredSSP

Disconnect-WSMan

Enable-PSRemoting

Enable-WSManCredSSP

Get-WSManCredSSP

Get-WSManInstance

Invoke-WSManAction

New-PSSession

http://go.microsoft.com/fwlink/?LinkId=141458
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-50-set-wsmaninstance.html/set-wsmaninstance

86

New-WSManInstance

New-WSManSessionOption

Remove-WSManInstance

Set-WSManQuickConfig

Test-WSMan

87

#51 Remove-WSManInstance

Remove-WSManInstance

What can I do with it?

Remove a management resource that has been previously created for use with WS-

Management.

Example:

Check for existing HTTPS Listeners. Remove the existing HTTPS listener created with New-

WSManInstance . Check again to confirm its removal.

Get-WSManInstance winrm/config/listener

-SelectorSet @{Address="*";Transport="https"}

Remove-WSManInstance winrm/config/listener

-SelectorSet @{address="*";transport="https"}

Get-WSManInstance winrm/config/listener

-SelectorSet @{Address="*";Transport="https"}

You will notice that you receive a nasty red error when trying to retrieve it after it has been

removed.

How could I have done this in PowerShell 1.0?

Support for the use of WS-Management in PowerShell is provided as part of the 2.0 release.

Related Cmdlets

Connect-WSMan

Disable-WSManCredSSP

Disconnect-WSMan

http://go.microsoft.com/fwlink/?LinkId=141453
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-51-remove-wsmaninstance.html/remove-wsmaninstance

88

Enable-PSRemoting

Enable-WSManCredSSP

Get-WSManCredSSP

Get-WSManInstance

Invoke-WSManAction

New-PSSession

New-WSManInstance

New-WSManSessionOption

Set-WSManInstance

Set-WSManQuickConfig

Test-WSMan

89

#52 New-WSManSessionOption

New-WSManSessionOption

What can I do with it?

Create a session option hash table for use with the WS-Management cmdlets Get-

WSManInstance, Set-WSManInstance, Invoke-WSManAction and Connect-WSMan.

Example:

Create a session option hash table for use with the Set-WSManInstance cmdlet to update the

HTTPS listener created with New-WSManInstance .

$options = New-WSManSessionOption -OperationTimeout 1000

-SkipRevocationCheck

Set-WSManInstance winrm/config/listener

-SelectorSet @{address="*";transport="https"}

-SessionOption $options

How could I have done this in PowerShell 1.0?

Support for the use of WS-Management in PowerShell is provided as part of the 2.0 release.

Related Cmdlets

Connect-WSMan

Disable-WSManCredSSP

Disconnect-WSMan

Enable-PSRemoting

Enable-WSManCredSSP

Get-WSManCredSSP

Get-WSManInstance

Invoke-WSManAction

http://go.microsoft.com/fwlink/?LinkId=141449
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-52-new-wsmansessionoption.html/new-wsmansessionoption

90

New-PSSession

New-WSManInstance

Remove-WSManInstance

Set-WSManInstance

Set-WSManQuickConfig

Test-WSMan

91

#53 Enable-WSManCredSSP

Enable-WSManCredSSP

What can I do with it?

Enable CredSSP authentication on a computer allowing a user's credentials to be passed to a

remote computer for authentication. (Think authentication for background jobs on remote

computers.) Note: this cmdlet requires running from an elevated PowerShell session.

Example:

Enable user’s credentials on the local computer to be sent to the remote computer Test02.

Enable-WSManCredSSP -Role client -DelegateComputer Test02.test.local

You will notice that you are prompted to confirm and given a warning that making this

change will allow the remote computer to have access to your username and password.

How could I have done this in PowerShell 1.0?

Support for the use of WS-Management in PowerShell is provided as part of the 2.0 release.

Related Cmdlets

Connect-WSMan

Disable-WSManCredSSP

Disconnect-WSMan

Enable-PSRemoting

Get-WSManCredSSP

Get-WSManInstance

Invoke-WSManAction

http://go.microsoft.com/fwlink/?LinkId=141442
http://en.wikipedia.org/wiki/Security_Support_Provider_Interface
http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-53-enable-wsmancredssp.html/enable-wsmancredssp

92

New-PSSession

New-WSManInstance

New-WSManSessionOption

Remove-WSManInstance

Set-WSManInstance

Set-WSManQuickConfig

Test-WSMan

93

#54 Get-WSManCredSSP

Get-WSManCredSSP

What can I do with it?

View the CredSSP configuration on the local computer. Note: this cmdlet requires running

from an elevated PowerShell session.

Example:

View the CredSSP configuration on the local computer which has previously been enabled

for client CredSSP via Enable-WSManCredSSP.

Get-WSManCredSSP

You will notice the client part has been enabled, but not the server.

How could I have done this in PowerShell 1.0?

Support for the use of WS-Management in PowerShell is provided as part of the 2.0 release.

Related Cmdlets

Connect-WSMan

Disable-WSManCredSSP

Disconnect-WSMan

Enable-PSRemoting

Enable-WSManCredSSP

Get-WSManInstance

Invoke-WSManAction

New-PSSession

New-WSManInstance

New-WSManSessionOption

Remove-WSManInstance

http://go.microsoft.com/fwlink/?LinkId=141443
http://en.wikipedia.org/wiki/Security_Support_Provider_Interface
http://en.wikipedia.org/wiki/Security_Support_Provider_Interface
http://en.wikipedia.org/wiki/Security_Support_Provider_Interface
http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-54-get-wsmancredssp.html/get-wsmancredssp

94

Set-WSManInstance

Set-WSManQuickConfig

Test-WSMan

95

#55 Disable-WSManCredSSP

Disable-WSManCredSSP

What can I do with it?

Disable CredSSP configuration on a computer. Note: this cmdlet requires running from an

elevated PowerShell session.

Example:

Disable the CredSSP configuration on the local computer which has previously been enabled

for client CredSSP via Enable-WSManCredSSP. Confirm this has been successful with Get-

WSManCredSSP.

Disable-WSManCredSSP -Role client

Get-WSManCredSSP

You will notice that the computer is no longer configured for CredSSP authentication.

How could I have done this in PowerShell 1.0?

Support for the use of WS-Management in PowerShell is provided as part of the 2.0 release.

Related Cmdlets

Connect-WSMan

Disconnect-WSMan

Enable-PSRemoting

Enable-WSManCredSSP

Get-WSManCredSSP

Get-WSManInstance

Invoke-WSManAction

New-PSSession

New-WSManInstance

New-WSManSessionOption

http://go.microsoft.com/fwlink/?LinkId=141438
http://en.wikipedia.org/wiki/Security_Support_Provider_Interface
http://en.wikipedia.org/wiki/Security_Support_Provider_Interface
http://en.wikipedia.org/wiki/Security_Support_Provider_Interface
http://en.wikipedia.org/wiki/Security_Support_Provider_Interface
http://en.wikipedia.org/wiki/WS-Management
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-55-disable-wsmancredssp.html/disable-wsmancredssp

96

Remove-WSManInstance

Set-WSManInstance

Set-WSManQuickConfig

Test-WSMan

97

#56 Disconnect-WSMan

Disconnect-WSMan

What can I do with it?

Disconnect a connection previously made to a remote computer using WS-Management with

the Connect-WSMan cmdlet.

Example:

Disconnect from the remote server Test01 using WS-Management .

Disconnect-WSMan -ComputerName Test01

How could I have done this in PowerShell 1.0?

Support for the use of WS-Management in PowerShell is provided as part of the 2.0 release.

Related Cmdlets

Connect-WSMan

Disable-WSManCredSSP

Enable-PSRemoting

Enable-WSManCredSSP

Get-WSManCredSSP

Get-WSManInstance

Invoke-WSManAction

New-PSSession

New-WSManInstance

New-WSManSessionOption

Remove-WSManInstance

Set-WSManInstance

Set-WSManQuickConfig

Test-WSMan

http://go.microsoft.com/fwlink/?LinkId=141439
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/wiki/WS-Management

98

#57 Import-PSSession

Import-PSSession

What can I do with it?

Import commands from a Remote PowerShell session into the current session, for instance

from a remote session on another computer.

Example:

Establish a remote session with Test01 using New-PSSession. Use Invoke-Command to

initiate the use of the BITSTransfer module. Use Import-PSSession to make the contents of

the BITSTransfer module available in the local session even though the BITSTransfer

module has not been imported on the local computer.

Note: Technically I could just have imported the BITSTransfer module on the local machine;

however, this example is to demonstrate that potentially any module could be brought across

to the local session.

$session1 = New-PSSession -ComputerName Test01

Invoke-Command -Session $session1 -ScriptBlock {Import-Module BITSTransfer}

Import-PSSession -Session $session1 -Module BITSTransfer

Confirm the contents of the BITSTransfer module is now available in the local session.

Get-Command *Bits* -CommandType Function

Extras:

Ravikanth Chaganti has an excellent post covering this cmdlet in more detail here.

How could I have done this in PowerShell 1.0?

http://go.microsoft.com/fwlink/?LinkID=135221
http://www.ravichaganti.com/blog/?p=1151
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-57-import-pssession.html/import-pssession1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-57-import-pssession.html/import-pssession2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-57-import-pssession.html/import-pssession1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-57-import-pssession.html/import-pssession2

99

Remoting did not exist in PowerShell 1.0, you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

New-PSSession

Export-PSSession

100

#58 Export-PSSession

Export-PSSession

What can I do with it?

Export commands from a remote PowerShell session into a module saved on the local

system.

Example:

Establish a remote session with Test01 using New-PSSession. Use Invoke-Command to

initiate the use of the BITSTransfer module. Export the commands from the BITSTransfer

module into a module saved on the local system and called BITSCommands.

$session1 = New-PSSession -ComputerName Test01

Invoke-Command -Session $session1 -ScriptBlock {Import-Module BITSTransfer}

Export-PSSession -Session $session1 -Module BITSTransfer

-OutputModule BITSCommands -AllowClobber

The exported files are stored within your PowerShell profile folder.

The contents of the BITSCommands.psd1 file are below:

You could make use of this module at a later date with:

Import-Module BITSCommands

Extras:

Ravikanth Chaganti has an excellent post covering this cmdlet in more detail here.

http://go.microsoft.com/fwlink/?LinkID=135213
http://www.ravichaganti.com/blog/?p=1168
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-58-export-pssession.html/export-pssession1-3
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-58-export-pssession.html/export-pssession2-2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-58-export-pssession.html/export-pssession1-3
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-58-export-pssession.html/export-pssession2-2

101

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0, you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

New-PSSession

Import-PSSession

102

#59 Set-PSBreakpoint

Set-PSBreakpoint

What can I do with it?

Carry out debugging by setting a breakpoint based on a condition such as line number,

command or variable.

Examples:

Set a breakpoint at line 3 in the script C:\Bowling.ps1 (This is an example script taken from

the 2008 Scripting Games. During the execution of the script the variable $iPoints is

frequently incremented to a new value) Then run the script to utilise the breakpoint.

Set-PSBreakpoint -Script Bowling.ps1 -Line 3

You receive confirmation of the breakpoint set:

Now when you run the script, you are informed at what point we have stopped at and the

current value of $iPoints. Typing Exit will leave the debugging mode.

For the next example set a breakpoint based on the variable $iPoints and carry out an action

to save the value of $iPoints at that point in time into the file C:\log.txt.

Set-PSBreakpoint -Script .\Bowling.ps1 -Variable iPoints

-Action {Out-File log.txt -Append -Inputobject $iPoints}

This time the confirmation shows both a Variable and an Action have been set as part of the

Breakpoint.

http://go.microsoft.com/fwlink/?LinkID=113449
http://www.microsoft.com/technet/scriptcenter/funzone/games/solutions08/bpssol10.mspx
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-59-set-psbreakpoint.html/set-psbreakpoint1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-59-set-psbreakpoint.html/set-psbreakpoint2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-59-set-psbreakpoint.html/set-psbreakpoint3
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-59-set-psbreakpoint.html/set-psbreakpoint1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-59-set-psbreakpoint.html/set-psbreakpoint2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-59-set-psbreakpoint.html/set-psbreakpoint3
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-59-set-psbreakpoint.html/set-psbreakpoint1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-59-set-psbreakpoint.html/set-psbreakpoint2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-59-set-psbreakpoint.html/set-psbreakpoint3

103

Running the script does not bring up the interactive debugger this time.

However, the log.txt file is created and its contents show the value of $iPoints each time it is

referenced in the script.

How could I have done this in PowerShell 1.0?

Setting breakpoints did not exist in PowerShell 1.0, however most scripting IDEs ship with

debugging features.

Related Cmdlets

Get-PSBreakpoint

Enable-PSBreakpoint

Disable-PSBreakpoint

Remove-PSBreakpoint

http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-59-set-psbreakpoint.html/set-psbreakpoint4
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-59-set-psbreakpoint.html/set-psbreakpoint5
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-59-set-psbreakpoint.html/set-psbreakpoint4
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-59-set-psbreakpoint.html/set-psbreakpoint5

104

#60 Get-PSBreakpoint

Get-PSBreakpoint

What can I do with it?

Retrieve debugging breakpoints that have been set with Set-PSBreakpoint.

Examples:

Retrieve all current breakpoints.

Get-PSBreakpoint

Notice the different options which have been set on the breakpoints.

Retrieve only breakpoints which have been set using the Variable parameter.

Get-PSBreakpoint -Type Variable

Notice only one breakpoint is returned this time.

How could I have done this in PowerShell 1.0?

Setting breakpoints did not exist in PowerShell 1.0, however most scripting IDEs ship with

debugging features.

Related Cmdlets

Enable-PSBreakpoint

Disable-PSBreakpoint

Remove-PSBreakpoint

Set-PSBreakpoint

http://go.microsoft.com/fwlink/?LinkID=113325
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-60-get-psbreakpoint.html/get-psbreakpoint1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-60-get-psbreakpoint.html/get-psbreakpoint2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-60-get-psbreakpoint.html/get-psbreakpoint1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-60-get-psbreakpoint.html/get-psbreakpoint2

105

#61 Disable-PSBreakpoint

Disable-PSBreakpoint

What can I do with it?

Disable debugging breakpoints that have been set with Set-PSBreakpoint.

Example:

Disable the breakpoint with ID 0 and then check its properties to confirm it has been

disabled.

Disable-PSBreakpoint -Id 0

Get-PSBreakpoint -Id 0 | Format-List *

You will notice that the Enabled property is set to False.

How could I have done this in PowerShell 1.0?

Setting breakpoints did not exist in PowerShell 1.0, however most scripting IDEs ship with

debugging features.

Related Cmdlets

Get-PSBreakpoint

Enable-PSBreakpoint

Remove-PSBreakpoint

Set-PSBreakpoint

http://go.microsoft.com/fwlink/?LinkID=113294
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-61-disable-psbreakpoint.html/disable-psbreakpoint1

106

#62 Enable-PSBreakpoint

Enable-PSBreakpoint

What can I do with it?

Re-enable debugging breakpoints that have been disabled with Disable-PSBreakpoint.

Example:

Re-enable breakpoint with ID 0 and then check its properties to confirm it has been enabled.

Enable-PSBreakpoint -Id 0

Get-PSBreakpoint -Id 0 | Format-List *

You will notice that the Enabled property is set to True.

How could I have done this in PowerShell 1.0?

Setting breakpoints did not exist in PowerShell 1.0, however most scripting IDEs ship with

debugging features.

Related Cmdlets

Get-PSBreakpoint

Disable-PSBreakpoint

Remove-PSBreakpoint

Set-PSBreakpoint

http://go.microsoft.com/fwlink/?LinkID=113295
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-62-enable-psbreakpoint.html/enable-psbreakpoint

107

#63 Remove-PSBreakpoint

Remove-PSBreakpoint

What can I do with it?

Remove debugging breakpoints that have been set with Set-PSBreakpoint.

Examples:

Check existing breakpoints and remove the breakpoint with ID 0.

Get-PSBreakpoint

Remove-PSBreakpoint -Id 0

Confirmation that breakpoint with ID 0 has been removed.

Check existing breakpoints and remove all of them.

Get-PSBreakpoint

Get-PSBreakpoint | Remove-PSBreakpoint

How could I have done this in PowerShell 1.0?

Setting breakpoints did not exist in PowerShell 1.0, however most scripting IDEs ship with

debugging features.

Related Cmdlets

Get-PSBreakpoint

Enable-PSBreakpoint

Disable-PSBreakpoint

http://go.microsoft.com/fwlink/?LinkID=113375
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-63-remove-psbreakpoint.html/remove-psbreakpoint1-2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-63-remove-psbreakpoint.html/remove-psbreakpoint2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-63-remove-psbreakpoint.html/remove-psbreakpoint1-2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-63-remove-psbreakpoint.html/remove-psbreakpoint2

108

Set-PSBreakpoint

109

#64 Clear-History

Clear-History

What can I do with it?

Remove commands from the history of those entered in the current session. PowerShell has

two places where a history of the commands you have entered are kept. Within the console

you can use F7 to view them and Alt-F7 to clear that list. There are also some cmdlets for

managing PowerShell history, such as Get-History and the new Clear-History.

Example:

Check current history. Then remove any commands from the history which contain the string

set.

Get-History

Clear-History -CommandLine *set*

The initial history is as below:

Now we remove any commands from the history which contain the string set. You can see

they have been removed and the others remain.

How could I have done this in PowerShell 1.0?

Andrew Watt explains how you can clear history in PowerShell 1.0 on this forum post.

http://go.microsoft.com/fwlink/?LinkID=135199
http://technet.microsoft.com/en-us/library/ee176849.aspx
http://go.microsoft.com/fwlink/?LinkID=135199
http://www.servernewsgroups.net/group/microsoft.public.windows.server.scripting/topic13342.aspx
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-64-clear-history.html/clear-history1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-64-clear-history.html/clear-history2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-64-clear-history.html/clear-history1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-64-clear-history.html/clear-history2

110

From a new session, set the preference $MaximumHistoryCount variable to 1, then get the

current history and export it to XML.

$MaximumHistoryCount = 1

Get-History | Export-Clixml "History.xml"

Edit the XML document, remove the text between <S> and replace it with "No commands

have been entered"

Create a script called Empty-History.ps1 containing the below:

function global:Empty-History{

$MaximumHistoryCount = 1

Import-Clixml "History.xml" | Add-History

}

Now dot source the script and use the Empty-History function to clear your history.

Related Cmdlets

Get-History

Add-History

Invoke-History

http://technet.microsoft.com/en-us/library/dd315385.aspx
http://technet.microsoft.com/en-us/library/dd315238.aspx
http://technet.microsoft.com/en-us/library/dd347661.aspx
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-64-clear-history.html/clear-history3

111

#65 New-EventLog

New-EventLog

What can I do with it?

Create a custom Event Log.

Example:

Create a custom Event Log named App1 with an event source of AppEvent. Use the Get-

EventLog cmdlet to confirm it has been created. Tip: New-EventLog requires a PowerShell

session with elevated privileges.

New-EventLog -LogName App1 -Source AppEvent

Get-EventLog -List

You can see that the App1 Event Log has been created.

You can create entries in this log using the Write-EventLog cmdlet, e.g.

Write-EventLog -LogName App1 -Source AppEvent -ID 1020

-Message "Error 1020 has occurred"

Here's confirmation in Event Viewer that the App1 Event Log exists and we have created the

above entry in it.

How could I have done this in PowerShell 1.0?

http://go.microsoft.com/fwlink/?LinkID=135235
http://www.jonathanmedd.net/2009/12/powershell-2-0-one-cmdlet-at-a-time-12-write-eventlog.html
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-65-new-eventlog.html/new-eventlog1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-65-new-eventlog.html/new-eventlog2-2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-65-new-eventlog.html/new-eventlog1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-65-new-eventlog.html/new-eventlog2-2

112

You could have used the .NET System.Diagnostics.EventLog class and the

CreateEventSource method to create a custom event log.

$LogDetails =

New-Object System.Diagnostics.EventSourceCreationData "AppEvent", "App1"

[System.Diagnostics.EventLog]::CreateEventSource($LogDetails)

Related Cmdlets

Clear-EventLog

Get-EventLog

Limit-EventLog

Remove-EventLog

Show-EventLog

Write-EventLog

Get-WinEvent

http://msdn.microsoft.com/en-us/library/system.diagnostics.eventlog.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.eventlog.createeventsource.aspx

113

#66 Limit-EventLog

Limit-EventLog

What can I do with it?

Set the size and age properties of an Event Log.

Example:

Set the following properties on the Application Log on the remote computer Test01:

Maximum Size = 5MB

OverflowAction = DoNotOverWrite

Limit-EventLog -ComputerName Test01 -LogName Application

-MaximumSize 5MB -OverflowAction DoNotOverWrite

Before:

After:

How could I have done this in PowerShell 1.0?

You could use WMI to set properties on an event log. For example to set the MaxFileSize of

the Application Log to 5MB use the below. (Thanks to Richard Siddaway for the tip that

you need to use psbase to save the changes, just Put() doesn't work.)

$EventLog = Get-WmiObject -Class Win32_NTEventLogFile

-Filter "LogFileName = 'Application'"

http://go.microsoft.com/fwlink/?LinkID=135227
http://richardsiddaway.spaces.live.com/blog/cns%2143CFA46A74CF3E96%211816.entry
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-66-limit-eventlog.html/limit-eventlog1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-66-limit-eventlog.html/limit-eventlog2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-66-limit-eventlog.html/limit-eventlog3
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-66-limit-eventlog.html/limit-eventlog1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-66-limit-eventlog.html/limit-eventlog2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-66-limit-eventlog.html/limit-eventlog3
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-66-limit-eventlog.html/limit-eventlog1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-66-limit-eventlog.html/limit-eventlog2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-66-limit-eventlog.html/limit-eventlog3

114

$EventLog.MaxFileSize = 5242880

$EventLog.psbase.Put()

Related Cmdlets

Clear-EventLog

Get-EventLog

New-EventLog

Remove-EventLog

Show-EventLog

Write-EventLog

Get-WinEvent

115

#67 Remove-EventLog

Remove-EventLog

What can I do with it?

Remove an Event Log.

Example:

Remove the Event Log named App1 on the remote computer Test01. Confirm it has been

removed with Get-EventLog.

Remove-EventLog -LogName App1 -ComputerName Test01

Get-EventLog -List -ComputerName Test01

Confirmation that the App1 Event Log has been removed.

Note: To perform this task remotely you will need to ensure that Remote Event Log

Management has been added as an Exception in Windows Firewall.

How could I have done this in PowerShell 1.0?

You could have used the .NET System.Diagnostics.Eventlog class and the Delete method to

delete an event log.

http://go.microsoft.com/fwlink/?LinkID=135248
http://msdn.microsoft.com/en-us/library/system.diagnostics.eventlog.aspx
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-67-remove-eventlog.html/remove-eventlog1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-67-remove-eventlog.html/remove-eventlog2
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-67-remove-eventlog.html/remove-eventlog1
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-67-remove-eventlog.html/remove-eventlog2

116

[system.diagnostics.eventlog]::Delete("App1")

Related Cmdlets

Clear-EventLog

Get-EventLog

Limit-EventLog

New-EventLog

Show-EventLog

Write-EventLog

Get-WinEvent

117

#68 Show-EventLog

Show-EventLog

What can I do with it?

Open Event Viewer on a local or remote computer.

Example:

Open Event Viewer on the remote computer Test01.

Show-EventLog -ComputerName Test01

You will see that Event Viewer on the remote computer Test01 opens on the local machine.

How could I have done this in PowerShell 1.0?

You could have typed the executable Eventvwr to open Event Viewer on a local computer.

To view it on the remote computer Test01 use:

eventvwr \\Test01

Related Cmdlets

Clear-EventLog

Get-EventLog

Limit-EventLog

New-EventLog

Remove-EventLog

Write-EventLog

http://go.microsoft.com/fwlink/?LinkID=135257
http://www.jonathanmedd.net/2010/02/powershell-2-0-one-cmdlet-at-a-time-68-show-eventlog.html/show-eventlog

118

Get-WinEvent

119

#69 Get-WinEvent

Get-WinEvent

What can I do with it?

Retrieve items from Event Logs including event logs generated by the Windows Event Log

technology, new since Windows Vista / 2008 Server, in addition to the classic System,

Security and Application Logs. Note: it requires .NET Framework 3.5 or later installed.

Examples:

Retrieve events from the Setup Event Log.

Get-WinEvent -LogName Setup

You'll see the typical information you would normally view in Event Viewer.

Get-WinEvent includes the -FilterHashTable parameter which allows you to filter results at

source rather than pulling back all the events and then piping them through to Where-Object

to perform filtering, so much more efficient.

Retrieve events from the System Event Log only where the Event ID is 10148.

Get-WinEvent -FilterHashtable @{Logname='System';ID=10148}

You will see that only the events with ID 10148 are returned.

How could I have done this in PowerShell 1.0?

You could have used the Get-EventLog cmdlet, however, it is not able to retrieve information

from event logs generated by the Windows Event Log technology such as the Setup log

mentioned in the above examples.

Get-EventLog -LogName System | Where-Object {$_.EventID -eq 10148}

Related Cmdlets

http://go.microsoft.com/fwlink/?LinkID=138336
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-69-get-winevent.html/get-winevent1
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-69-get-winevent.html/get-winevent2
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-69-get-winevent.html/get-winevent1
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-69-get-winevent.html/get-winevent2

120

Clear-EventLog

Get-EventLog

Limit-EventLog

New-EventLog

Remove-EventLog

Show-EventLog

Write-EventLog

121

#70 Import-Module

Import-Module

What can I do with it?

PowerShell 2.0 introduces the concept of modules; essentially they are the evolution of snap-

ins from PowerShell 1.0. Import-Module enables you to add one or more modules to your

current session.

Examples:

Import the PSDiagnostics module and examine the newly available commands in the session

from that module by using Get-Module.

Import-Module PSDiagnostics

Get-Command -Module PSDiagnostics

You will see there are ten new functions available from that module.

Import only two functions, Start-Trace and Stop-Trace from the PSDiagnostics module and

examine the newly available commands in the session from that module by using Get-

Module.

Import-Module PSDiagnostics -Function Start-Trace,Stop-Trace

Get-Command -Module PSDiagnostics

You will see that this time only those two functions are available.

How could I have done this in PowerShell 1.0?

http://go.microsoft.com/fwlink/?LinkID=141553
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-70-import-module.html/import-module1
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-70-import-module.html/import-module2
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-70-import-module.html/import-module1
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-70-import-module.html/import-module2

122

You could have used the Add-PSSnapin cmdlet to import custom snap-ins typically produced

by third-parties. For example to import the popular Quest AD cmdlets snap-in you would use

the below:

Add-PSSnapin Quest.ActiveRoles.ADManagement

Related Cmdlets

Get-Module

New-Module

Remove-Module

Export-ModuleMember

123

#71 New-Module

New-Module

What can I do with it?

PowerShell 2.0 introduces the concept of modules; essentially they are the evolution of snap-

ins from PowerShell 1.0. New-Module enables you to create a dynamic module from a script

block that is available in the current session.

Note: New-Module does not create a module on disk available for use at a later date!

However, Jeffrey Snover has created a module which will create a template for a new module

on disk for you.

Examples:

Create a new dynamic module with the Function Write-Logfile as the scriptblock to create

the module. Test to see whether the function is available from Get-Module or Get-Command.

New-Module -ScriptBlock

{Function Write-Logfile ($log) {$Logfile = "C:\Log.txt"; $log

| Out-File -FilePath $Logfile -Append}}

Get-Module

Get-Command Write-Logfile

You will see that Get-Module is not aware of the new module, but Get-Command is aware of

the Write-Logfile function.

Create a new dynamic module with the Function Write-Logfile as the scriptblock to create

the module. Give it a name and use Import-Module to make it available to Get-Module. Test

to see whether the function is available from Get-Module or Get-Command.

New-Module -ScriptBlock

{Function Write-Logfile ($log) {$Logfile = "C:\Log.txt"; $log

| Out-File -FilePath $Logfile -Append}} -Name LogfileModule

| Import-Module

Get-Module

Get-Command Write-Logfile

You will see that this time both Get-Module and Get-Command are aware of the

LogfileModule and Write-Logfile function.

http://go.microsoft.com/fwlink/?LinkID=141554
http://twitter.com/jsnover
http://blogs.msdn.com/powershell/archive/2009/01/02/a-module-to-create-modules-and-advanced-functions.aspx
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-71-new-module.html/new-module1

124

How could I have done this in PowerShell 1.0?

You could have created a custom snap-in and imported with the Add-PSSnapin cmdlet.

Related Cmdlets

Get-Module

Import-Module

Remove-Module

Export-ModuleMember

http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-71-new-module.html/new-module2

125

#72 Export-ModuleMember

Export-ModuleMember

What can I do with it?

PowerShell 2.0 introduces the concept of modules; essentially they are the evolution of snap-

ins from PowerShell 1.0. Export-ModuleMember specifies elements from a module, like

functions or variables, which can be exported. Note: This cmdlet can only be used within a

*.psm1 script module file or a dynamic module created with New-Module.

Examples:

Create a new dynamic module using New-Module containing two variables inside the

scriptblock. Export only the variable $s2, so that it is available for use. Note: Export-

ModuleMember needs to be included inside the scriptblock.

New-Module -ScriptBlock {$s1 = 'Server1'; $s2 = 'Server2';

 Export-ModuleMember -Variable s2}

You will notice that $s1 is not available in the current session, but $s2 is.

The other area to use this cmdlet is within a *.psm1 script module file. In the below example

by default all functions would be exported if the Export-ModuleMember cmdlet was not

used. However, by using the Export-ModuleMember cmdlet we can control which functions

are exported and also export aliases.

So, in the example below the Write-Logfile and Greet-User functions would be exported,

but the Yesterdays-Date function would not. In addition the gu alias would be exported.

http://go.microsoft.com/fwlink/?LinkID=141551
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-72-export-modulemember.html/export-modulemember1
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-72-export-modulemember.html/export-modulemember2
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-72-export-modulemember.html/export-modulemember1
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-72-export-modulemember.html/export-modulemember2

126

How could I have done this in PowerShell 1.0?

This functionality was not available with snap-ins in PowerShell 1.0

Related Cmdlets

Import-Module

Get-Module

Remove-Module

127

#73 New-ModuleManifest

New-ModuleManifest

What can I do with it?

PowerShell 2.0 introduces the concept of modules; essentially they are the evolution of snap-

ins from PowerShell 1.0. Creators of modules can use the New-ModuleManifest cmdlet to

create a module manifest *.psd1 file.A module manifest file can be used to specify module

configuration when the module is loaded. Note: More info about writing a module manifest

can be found here.

Example:

Create a new module manifest file using a mixture of default and specified values.

New-ModuleManifest

You will see that you are prompted to enter values to put in the manifest file and those which

have defaults.

The *.psd1 file is created in the standard module location

C:\Users\Username\Documents\WindowsPowerShell\Modules\ alongside the *.psm1

containing the module.

The contents of the *.psd1 file will look like the below:

http://go.microsoft.com/fwlink/?LinkID=141555
http://msdn.microsoft.com/en-us/library/dd878297%28VS.85%29.aspx
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-73-new-modulemanifest.html/new-modulemanifest1
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-73-new-modulemanifest.html/new-modulemanifest2
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-73-new-modulemanifest.html/new-modulemanifest1
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-73-new-modulemanifest.html/new-modulemanifest2

128

Module manifest for module 'Logfile-Module'

Generated by: Jonathan Medd

Generated on: 10/03/2010

@{

Script module or binary module file associated with this manifest

ModuleToProcess = 'Logfile-Module.psm1'

Version number of this module.

ModuleVersion = '1.0'

ID used to uniquely identify this module

GUID = '876e3d17-66ac-40f6-9e10-09913679011a'

Author of this module

Author = 'Jonathan Medd'

Company or vendor of this module

CompanyName = 'Medd Enterprises'

Copyright statement for this module

Copyright = 'Copyright © 2010 Jonathan Medd. All rights reserved.'

Description of the functionality provided by this module

Description = 'Logfile Functions'

Minimum version of the Windows PowerShell engine required by this module

PowerShellVersion = ''

Name of the Windows PowerShell host required by this module

PowerShellHostName = ''

Minimum version of the Windows PowerShell host required by this module

PowerShellHostVersion = ''

Minimum version of the .NET Framework required by this module

DotNetFrameworkVersion = ''

Minimum version of the common language runtime (CLR) required by this

module

CLRVersion = ''

Processor architecture (None, X86, Amd64, IA64) required by this module

ProcessorArchitecture = ''

Modules that must be imported into the global environment prior to

importing this module

RequiredModules = @()

Assemblies that must be loaded prior to importing this module

RequiredAssemblies = @()

Script files (.ps1) that are run in the caller's environment prior to

importing this module

ScriptsToProcess = @()

129

Type files (.ps1xml) to be loaded when importing this module

TypesToProcess = @()

Format files (.ps1xml) to be loaded when importing this module

FormatsToProcess = @()

Modules to import as nested modules of the module specified in

ModuleToProcess

NestedModules = @()

Functions to export from this module

FunctionsToExport = '*'

Cmdlets to export from this module

CmdletsToExport = '*'

Variables to export from this module

VariablesToExport = '*'

Aliases to export from this module

AliasesToExport = '*'

List of all modules packaged with this module

ModuleList = @()

List of all files packaged with this module

FileList = 'Logfile-Module.psd1', 'Logfile-Module.psm1'

Private data to pass to the module specified in ModuleToProcess

PrivateData = ''

}

How could I have done this in PowerShell 1.0?

This functionality was not available with snap-ins in PowerShell 1.0

Related Cmdlets

Import-Module

Get-Module

New-Module

Remove-Module

Export-ModuleMember

Test-ModuleManifest

130

#74 Test-ModuleManifest

Test-ModuleManifest

What can I do with it?

PowerShell 2.0 introduces the concept of modules; essentially they are the evolution of snap-

ins from PowerShell 1.0. A module creator could use Test-Module to ensure that files listed

in a *.psd1 file, possibly created by New-ModuleManifest , are valid.

Example:

Test that the C:\Users\User1\Documents\WindowsPowerShell\Modules\Logfile-

Module\Logfile-Module.psd1 (created in the New-ModuleManifest example) is valid.

Test-ModuleManifest -Path

'C:\Users\User1\Documents\WindowsPowerShell\Modules\Logfile-Module\Logfile-

Module.psd1'

You will see that this returns an object for the module. If any files were not valid then an

error message would be produced.

To obtain a tidy True or False answer the ErrorAction parameter can be used with the

SilentlyContinue value to suppress any errors. Then examine the current value of $?

automatic variable which contains the execution status of the last operation. It contains True

if the last operation succeeded.

Test-ModuleManifest -Path

'C:\Users\User1\Documents\WindowsPowerShell\Modules\Logfile-Module\Logfile-

Module.psd1'

-ErrorAction SilentlyContinue

$?

You will see the result in this case is True.

How could I have done this in PowerShell 1.0?

This functionality was not available with snap-ins in PowerShell 1.0

http://go.microsoft.com/fwlink/?LinkID=141557
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-74-test-modulemanifest.html/test-modulemanifest1
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-74-test-modulemanifest.html/test-modulemanifest2
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-74-test-modulemanifest.html/test-modulemanifest1
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-74-test-modulemanifest.html/test-modulemanifest2

131

Related Cmdlets

Import-Module

Get-Module

New-Module

Remove-Module

Export-ModuleMember

New-ModuleManifest

132

#75 Remove-Module

Remove-Module

What can I do with it?

PowerShell 2.0 introduces the concept of modules; essentially they are the evolution of snap-

ins from PowerShell 1.0. Remove-Module enables you to remove a module, and all of its

functions, variables etc, previously imported with Import-Module.

Example:

Check currently available modules with Get-Module and remove the PSDiagnostics module.

Get-Module

Remove-Module PSDiagnostics

How could I have done this in PowerShell 1.0?

If you had imported a PSSnapin with Add-PSSnapin you could remove it with Remove-

PSSnapin.

Related Cmdlets

Get-Module

Import-Module

http://go.microsoft.com/fwlink/?LinkID=141556
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-75-remove-module.html/remove-module

133

#76 Stop-Computer

Stop-Computer

What can I do with it?

Shutdown a local or remote computer

Example:

Immediately shut down the computer Server01.

Stop-Computer -ComputerName Server01 -Force

How could I have done this in PowerShell 1.0?

You could have used the Win32_OperatingSystem WMI Class and the Win32Shutdown

method.

(Get-WmiObject -Class Win32_OperatingSystem

 -ComputerName Server01).Win32Shutdown(5)

Alternatively the Sysinternals tool PSShutdown could be used to shut down a local or remote

computer.

Related Cmdlets

Add-Computer

Checkpoint-Computer

Remove-Computer

Restart-Computer

Restore-Computer

Test-Connection

http://go.microsoft.com/fwlink/?LinkID=135263
http://msdn.microsoft.com/en-us/library/aa394239%28VS.85%29.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897541.aspx

134

#77 Remove-Computer

Remove-Computer

What can I do with it?

Remove the local computer from a workgroup or domain.

Example:

Remove the local computer from the current domain, and then reboot to make the change

take effect using the Restart-Computer cmdlet.

Remove-Computer; Restart-Computer

How could I have done this in PowerShell 1.0?

You could have used the Win32_ComputerSystem WMI Class and the

UnjoinDomainOrWorkgroup method. Note: Make sure you run PowerShell with elevated

privileges otherwise it will be unsuccessful and you will receive a return value of 5 rather

than 0 for a success.

(Get-WmiObject -Class

Win32_ComputerSystem).UnjoinDomainOrWorkgroup($null,$null,0)

Alternatively you could use the command line tool netdom to remove a

computer from a domain:

NETDOM remove /userd:adminuser /passwordd:apassword

Related Cmdlets

Add-Computer

Checkpoint-Computer

Restart-Computer

Restore-Computer

Stop-Computer

Test-Connection

http://go.microsoft.com/fwlink/?LinkID=135246
http://msdn.microsoft.com/en-us/library/aa394102%28VS.85%29.aspx

135

#78 Start-Transaction

Start-Transaction

What can I do with it?

PowerShell 2.0 introduces new functionality in the form of transactions. By grouping

together a set of commands to form a transaction they can either all be committed or all rolled

back depending on success. Both cmdlets and providers can support transactions; cmdlets

will have the UseTransaction parameter. To identify which cmdlets support transactions run

the following:

Get-Command | Where-Object {$_.Definition -match 'UseTransaction'}

And for providers:

Get-PSProvider | Where-Object {$_.Capabilities -like '*transactions*'}

Start-Transaction begins a transaction.

Example:

A good example of a possible use for transactions is within the registry (In fact it is the only

provider as of the release of Windows Server 2008 R2 which has transactions enabled).

Change directory into the registry provider. Begin a new transaction and use the New-Item

and New-ItemProperty cmdlets to potentially create entries within the registry.

cd HKLM:\Software

Start-Transaction

New-Item Test -UseTransaction

New-ItemProperty Test -Name TestKey -Value 1000 -UseTransaction

You will notice that since we have not yet completed the transaction no changes have yet

been made in the registry.

http://go.microsoft.com/fwlink/?LinkID=135262
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-78-start-transaction.html/start-transaction1-2

136

How could I have done this in PowerShell 1.0?

Transactional functionality was not available in PowerShell 1.0.

Related Cmdlets

Get-Transaction

Complete-Transaction

Undo-Transaction

Use-Transaction

http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-78-start-transaction.html/start-transaction2

137

#79 Complete-Transaction

Complete-Transaction

What can I do with it?

PowerShell 2.0 introduces new functionality in the form of transactions. By grouping

together a set of commands to form a transaction they can either all be committed or all rolled

back depending on success.

Complete-Transaction commits a transaction which has been kicked off with Start-

Transaction.

Example:

A good example of a possible use for transactions is within the registry. Change directory

into the registry provider. Begin a new transaction and use the New-Item and New-

ItemProperty cmdlets to potentially create entries within the registry. Use Complete-

Transaction to commit these changes.

cd HKLM:\Software

Start-Transaction

New-Item Test -UseTransaction

New-ItemProperty Test -Name TestKey -Value 1000 -UseTransaction

Complete-Transaction

You will notice that after completing the transaction the changes have been made in the

registry.

http://go.microsoft.com/fwlink/?LinkID=135200
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-79-complete-transaction.html/complete-transaction

138

How could I have done this in PowerShell 1.0?

Transactional functionality was not available in PowerShell 1.0.

Related Cmdlets

Get-Transaction

Start-Transaction

Undo-Transaction

Use-Transaction

http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-79-complete-transaction.html/complete-transaction2

139

#80 Get-Transaction

Get-Transaction

What can I do with it?

PowerShell 2.0 introduces new functionality in the form of transactions. By grouping

together a set of commands to form a transaction they can either all be committed or all rolled

back depending on success.

Get-Transaction returns an object of a current transaction which has been kicked off with

Start-Transaction.

Examples:

Start a transaction then use Get-Transaction to examine its details.

Start-Transaction

Get-Transaction

Another example of a possible use for transactions is within the registry. Change directory

into the registry provider. Begin a new transaction and use the New-Item and New-

ItemProperty cmdlets to potentially create entries within the registry. Use Complete-

Transaction to commit these changes. Use Get-Transaction to retrieve the details, notice that

the status is Committed.

cd HKLM:\Software

Start-Transaction

New-Item Test -UseTransaction

New-ItemProperty Test -Name TestKey -Value 1000 -UseTransaction

Complete-Transaction

Get-Transaction

http://go.microsoft.com/fwlink/?LinkID=135220
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-80-get-transaction.html/get-transaction1

140

How could I have done this in PowerShell 1.0?

Transactional functionality was not available in PowerShell 1.0.

Related Cmdlets

Complete-Transaction

Start-Transaction

Undo-Transaction

Use-Transaction

http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-80-get-transaction.html/get-transaction2

141

#81 Undo-Transaction

Undo-Transaction

What can I do with it?

PowerShell 2.0 introduces new functionality in the form of transactions. By grouping

together a set of commands to form a transaction they can either all be committed or all rolled

back depending on success.

Undo-Transaction rolls back the active transaction.

Example:

A good example of a possible use for transactions is within the registry. Change directory

into the registry provider. Begin a new transaction and use the New-Item and New-

ItemProperty cmdlets to potentially create entries within the registry. Use Get-Transaction to

view details of the current transaction.

cd HKLM:\Software

Start-Transaction

New-Item Test -UseTransaction

New-ItemProperty Test -Name TestKey -Value 1000 -UseTransaction

Get-Transaction

You will notice that there is currently 1 subscriber and the status is Active.

Start a new transaction, use the New-ItemProperty cmdlets to potentially create another new

entry within the registry and use Get-Transaction to view details of the current transaction.

Start-Transaction

New-ItemProperty Test -Name TestKey2 -Value 2000 -UseTransaction

Get-Transaction

You will notice that there are now 2 subscribers and the status is still Active.

http://go.microsoft.com/fwlink/?LinkID=135268
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-81-undo-transaction.html/undo-transaction1

142

Now use Undo-Transaction to roll back the changes and Get-Transaction to view details of

the current transaction

Undo-Transaction

Get-Transaction

Notice that it has rolled back the changes for both transactions and the status is now

RolledBack.

How could I have done this in PowerShell 1.0?

Transactional functionality was not available in PowerShell 1.0.

Related Cmdlets

Get-Transaction

Complete-Transaction

Start-Transaction

Use-Transaction

http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-81-undo-transaction.html/undo-transaction2
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-81-undo-transaction.html/undo-transaction3
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-81-undo-transaction.html/undo-transaction2
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-81-undo-transaction.html/undo-transaction3

143

#82 Use-Transaction

Use-Transaction

What can I do with it?

PowerShell 2.0 introduces new functionality in the form of transactions. By grouping

together a set of commands to form a transaction they can either all be committed or all rolled

back depending on success.

Use-Transaction enables you to add a scriptblock to a transaction. Note: This only works

with transaction-enabled .NET Framework objects such as

Microsoft.PowerShell.Commands.Management.TransactedString.

You will see below the difference between a transacted string object and a normal string

object, i.e. there a fewer options to manipulate it with.

Example:

Start a transaction and create a new transacted string. Add the text 'PowerShell' to the string,

and then add the text ' Version 2' with the Use-Transaction cmdlet.

Start-Transaction

$ts = New-Object Microsoft.PowerShell.Commands.Management.TransactedString

$ts.Append("PowerShell")

Use-Transaction -TransactedScript {$ts.Append(" Version 2")} -

UseTransaction

$ts.ToString()

http://go.microsoft.com/fwlink/?LinkID=135271
http://msdn.microsoft.com/en-us/library/microsoft.powershell.commands.management.transactedstring%28VS.85%29.aspx
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-82-use-transaction.html/use-transaction

144

Note that the current value of the string only contains the text 'PowerShell'.

Now complete the transaction and again view the current value of the string.

Complete-Transaction

$ts.ToString()

You will notice that the value of the string now contains all the text 'PowerShell Version 2'.

How could I have done this in PowerShell 1.0?

Transactional functionality was not available in PowerShell 1.0.

Related Cmdlets

Get-Transaction

Complete-Transaction

Start-Transaction

Undo-Transaction

http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-82-use-transaction.html/use-transaction2-2
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-82-use-transaction.html/use-transaction3
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-82-use-transaction.html/use-transaction2-2
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-82-use-transaction.html/use-transaction3

145

#83 ConvertTo-CSV

ConvertTo-CSV

What can I do with it?

Convert a .NET object into a series of CSV style strings, stored in memory.

Example:

Retrieve a list of services beginning with the letter b and convert the object into CSV style

strings

Get-Service | Where-Object {$_.Name -like 'b*'}

| ConvertTo-CSV -NoTypeInformation

You will notice that the data returned from the services has been converted into strings

separated by a comma. (The names of the services are highlighted in yellow.)

How could I have done this in PowerShell 1.0?

You could have used Export-CSV, but that would have put the information into a file.

Related Cmdlets

Import-CSV

Export-CSV

ConvertFrom-CSV

http://go.microsoft.com/fwlink/?LinkID=135203
http://technet.microsoft.com/en-us/library/dd347665.aspx
http://technet.microsoft.com/en-us/library/dd347724.aspx
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-83-convertto-csv.html/convertto-csv-2

146

#84 ConvertFrom-CSV

ConvertFrom-CSV

What can I do with it?

Convert a series of CSV style strings which have been generated by ConvertTo-CSV back

into objects.

Example:

Retrieve a list of services beginning with the letter b and convert the object into CSV style

strings, storing them into the variable $CSVStrings . Convert these back into objects.

$CSVStrings = Get-Service | Where-Object {$_.Name -like 'b*'}

| ConvertTo-CSV -NoTypeInformation

$CSVStrings | Select-Object -First 1

$CSVStrings | ConvertFrom-CSV

You will notice that $CSVStrings contains the same data as for the example in ConvertTo-

CSV , cut short for clarity. That variable is piped into ConvertFrom-CSV to change it back.

How could I have done this in PowerShell 1.0?

You could have used Import-CSV, but that would have read the information from a file.

Related Cmdlets

Import-CSV

Export-CSV

ConvertTo-CSV

http://go.microsoft.com/fwlink/?LinkID=135201
http://technet.microsoft.com/en-us/library/dd347665.aspx
http://technet.microsoft.com/en-us/library/dd347724.aspx
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-84-convertfrom-csv.html/convertfrom-csv1

147

#85 ConvertFrom-StringData

ConvertFrom-StringData

What can I do with it?

Converts a string which contains one or multiple key and value pairs into a hash table. Input

is typically from a here-string since each key and value must be on a separate line.

Example:

Create a here-string and store it in the variable $herestring. Convert it into a hash table.

$herestring = @'

Fruit1 = Orange

Fruit2 = Apple

'@

$herestring | ConvertFrom-StringData

You will notice that the data is now in the form of a hash table

How could I have done this in PowerShell 1.0?

To create a new hash table you could use a new .Net object of type

System.Collections.Hashtable, something like the below

$strings = ('Fruit1 = Orange','Fruit2 = Apple')

$table = New-Object System.Collections.Hashtable

foreach ($string in $strings){

$split = $string.split("=")

$part1 = $split[0]

$part2 = $split[1]

$table.add("$part1","$part2")

}

http://go.microsoft.com/fwlink/?LinkID=113288
http://technet.microsoft.com/en-us/library/ee692792.aspx
http://msdn.microsoft.com/en-us/library/system.collections.hashtable.aspx
http://www.jonathanmedd.net/2010/03/powershell-2-0-one-cmdlet-at-a-time-85-convertfrom-stringdata.html/convertfrom-herestring

148

#86 ConvertTo-XML

ConvertTo-XML

What can I do with it?

Convert a .NET object into an XML-based representation of it.

Example:

Retrieve a list of services beginning with the letter b and convert the object into an XML-

based representation. Use the available Save method of the XML object to save the data into

an XML file.

$xml = Get-Service | Where-Object {$_.Name -like 'b*'} | ConvertTo-Xml

$xml.Save("C:\temp\service.xml")

You can see that when opened the file is a typical style XML document

How could I have done this in PowerShell 1.0?

You could have used Export-Clixml, but that would have exported the information directly to

a file which typically did not have the correct formatting when the document was viewed. It

was more intended to be used in conjunction with Import-Clixml to recreate the original

object from a file.

http://go.microsoft.com/fwlink/?LinkID=135204
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-86-convertto-xml.html/convertto-xml

149

Related Cmdlets

Export-Clixml

Import-Clixml

ConvertTo-Html

ConvertTo-Csv

http://technet.microsoft.com/en-us/library/dd347657.aspx
http://technet.microsoft.com/en-us/library/dd315355.aspx
http://technet.microsoft.com/en-us/library/dd347572.aspx

150

#87 Get-FormatData

Get-FormatData

What can I do with it?

Retrieve format data from the current session. Within a session formatting data could include

formatting from *.ps1xml format files stored in the PowerShell installation directory,

formatting from imported modules or snap-ins, or formatting from commands imported with

Import-PSSession.

Example:

Retrieve the formatting for the TypeName Microsoft.Win32.RegistryKey and view some of

its properties.

$registryformatting = Get-FormatData -TypeName Microsoft.Win32.RegistryKey

$registryformatting.FormatViewDefinition[0].control.headers

| Format-Table -Autosize

You will notice that some properties are obtained by drilling down into its XML style format.

This same data can be viewed in the file Registry.format.ps1xml which is located in the

PowerShell installation folder. You can determine this location by examining the $pshome

variable, typically it is C:\Windows\System32\WindowsPowerShell\v1.0 .

Notice below the same data in the file Registry.format.ps1xml.

http://go.microsoft.com/fwlink/?LinkID=144303
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-87-get-formatdata.html/get-formatdata1-2

151

How could I have done this in PowerShell 1.0?

In the example above you could have viewed the Registry.format.ps1xml in an XML viewer

or used

Get-Content

C:\Windows\System32\WindowsPowerShell\v1.0\Registry.format.ps1xml

to read in the XML file.

Related Cmdlets

Export-FormatData

Update-FormatData

http://technet.microsoft.com/en-us/library/dd347564.aspx
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-87-get-formatdata.html/get-formatdata2

152

#88 Export-FormatData

Export-FormatData

What can I do with it?

Take formatting data generated by Get-FormatData and export it to a *.ps1xml file.

Example:

Retrieve the formatting for the TypeName Microsoft.Win32.RegistryKey and export it to a

*.ps1xml file.

Get-FormatData -TypeName Microsoft.Win32.RegistryKey

| Export-FormatData -Path registryformat.ps1xml -IncludeScriptBlock

The contents of registryformat.ps1xml are shown below.

How could I have done this in PowerShell 1.0?

You would have needed to manually create your own *.ps1xml files.

Related Cmdlets

Get-FormatData

http://go.microsoft.com/fwlink/?LinkID=144302
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-88-export-formatdata.html/export-formatdata1

153

Update-FormatData

http://technet.microsoft.com/en-us/library/dd347564.aspx

154

#89 Invoke-WmiMethod

Invoke-WmiMethod

What can I do with it?

Call WMI methods.

Example:

Retrieve the WMI instances of the Print Spooler service. Pipe it through to Invoke-

WmiMethod and call the StopService method.

Get-WmiObject Win32_Service -Filter "name='spooler'"

| Invoke-WmiMethod -Name StopService

Notice the service State changes.

How could I have done this in PowerShell 1.0?

In the above example you could have called the StopService method on the object returned

in the WMI query. One of the advantages though of Invoke-WmiMethod is the possibility to

use the pipeline.

(Get-WmiObject Win32_Service -filter "name='spooler'").StopService()

Related Cmdlets

http://go.microsoft.com/fwlink/?LinkID=113346
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-89-invoke-wmimethod.html/invoke-wmimethod

155

Get-WmiObject

Remove-WmiObject

Set-WmiInstance

Get-WSManInstance

Invoke-WSManAction

New-WSManInstance

Remove-WSManInstance

http://technet.microsoft.com/en-us/library/dd315295.aspx

156

#90 Remove-WmiObject

Remove-WmiObject

What can I do with it?

Remove an instance of a WMI class.

Example:

Start Windows Calculator. Retrieve the running process and terminate it.

calc

Get-WmiObject Win32_Process -Filter "name='calc.exe'" | Remove-WmiObject

How could I have done this in PowerShell 1.0?

In the above example you could have called the Terminate method on the object returned in

the WMI query. One of the advantages though of Remove-WmiObject is the possibility to

use the pipeline.

(Get-WmiObject Win32_Process -Filter "name='calc.exe'").Terminate()

Related Cmdlets

Get-WmiObject

Invoke-WmiMethod

Set-WmiInstance

Get-WSManInstance

Invoke-WSManAction

New-WSManInstance

Remove-WSManInstance

http://go.microsoft.com/fwlink/?LinkID=113381
http://technet.microsoft.com/en-us/library/dd315295.aspx

157

#91 Set-WmiInstance

Set-WmiInstance

What can I do with it?

Set an instance of a WMI class.

Example:

Change the value of MaxLogFileSize within the Win32_WMISetting class from the default

of 6556 to 13112.

Set-WmiInstance -Class Win32_WMISetting

-Argument @{MaxLogFileSize=13112}

You will notice that the MaxLogFileSize value is updated:

How could I have done this in PowerShell 1.0?

In the above example you could have called the Put method on the object returned in the

WMI query.

$wmisetting = Get-WmiObject Win32_WMISetting

$wmisetting.MaxLogFileSize = 13112

$wmisetting.Put()

Related Cmdlets

Get-WmiObject

http://go.microsoft.com/fwlink/?LinkID=113402
http://technet.microsoft.com/en-us/library/dd315295.aspx
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-91-set-wmiinstance.html/set-wmiinstance

158

Invoke-WmiMethod

Remove-WmiObject

Get-WSManInstance

Invoke-WSManAction

New-WSManInstance

Remove-WSManInstance

159

#92 Register-WmiEvent

Register-WmiEvent

What can I do with it?

Subscribe to a WMI event on a local or remote computer and carry out actions based on the

event.

Example:

Register for a WMI which checks every 10 seconds for any new processes which have

started, call it Check for New Processes and save information including the date and time

out to a log file.

Register-WmiEvent -Query "select * from __instancecreationevent within 10

where targetinstance isa 'win32_process'"

-SourceIdentifier "Check for New Processes"

-Action {"A new process started at " + (Get-Date) | Out-File c:\log.txt -

Append}

After running the above command and then starting a process the below is automatically

written to c:\log.txt after a few seconds.

How could I have done this in PowerShell 1.0?

The Scripting Guys detail how to do this in PowerShell 1.0 in this article by using .NET. The

code to achieve it is reproduced below:

$a = 0

$timespan = New-Object System.TimeSpan(0, 0, 1)

$scope = New-Object System.Management.ManagementScope("\\.\root\cimV2")

$query = New-Object System.Management.WQLEventQuery `

 ("__InstanceDeletionEvent",$timespan, "TargetInstance ISA

'Win32_Process'")

$watcher = New-Object

http://go.microsoft.com/fwlink/?LinkID=135245
http://www.microsoft.com/technet/scriptcenter/topics/winpsh/events.mspx
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-92-register-wmievent.html/register-wmievent
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-92-register-wmievent.html/register-wmievent2
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-92-register-wmievent.html/register-wmievent
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-92-register-wmievent.html/register-wmievent2

160

System.Management.ManagementEventWatcher($scope,$query)

do

 {

 $b = $watcher.WaitForNextEvent()

 $b.TargetInstance.Name

 }

while ($a -ne 1)

Related Cmdlets

Register-ObjectEvent

Register-EngineEvent

Unregister-Event

Get-Event

New-Event

Remove-Event

Wait-Event

161

#93 Register-ObjectEvent

Register-ObjectEvent

What can I do with it?

Subscribe to an event on a local or remote computer generated by a .NET Framework object

and carry out actions based on the event.

Example:

Register for an event to check for new processes, use the ManagementEventWatcher .NET

object to form the basis of the object to monitor and save information including the date and

time out to a log file.

$query = New-Object System.Management.WqlEventQuery

"__InstanceCreationEvent", (New-Object TimeSpan 0,0,1), "TargetInstance isa

'Win32_Process'"

$processWatcher = New-Object System.Management.ManagementEventWatcher

$query

Register-ObjectEvent -InputObject $processWatcher -EventName "EventArrived"

-Action {"A new process started at " + (Get-Date) | Out-File c:\log.txt -

Append}

After running the above commands and then starting a process the below is automatically

written to c:\log.txt after a few seconds.

How could I have done this in PowerShell 1.0?

The Scripting Guys detail how to do this in PowerShell 1.0 in this article by using .NET. The

code to achieve it is reproduced below:

$a = 0

http://go.microsoft.com/fwlink/?LinkID=135244
http://msdn.microsoft.com/en-us/library/system.management.managementeventwatcher.aspx
http://www.microsoft.com/technet/scriptcenter/topics/winpsh/events.mspx
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-93-register-objectevent.html/register-objectevent
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-93-register-objectevent.html/register-objectevent2
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-93-register-objectevent.html/register-objectevent
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-93-register-objectevent.html/register-objectevent2

162

$timespan = New-Object System.TimeSpan(0, 0, 1)

$scope = New-Object System.Management.ManagementScope("\\.\root\cimV2")

$query = New-Object System.Management.WQLEventQuery `

 ("__InstanceDeletionEvent",$timespan, "TargetInstance ISA

'Win32_Process'")

$watcher = New-Object

System.Management.ManagementEventWatcher($scope,$query)

do

 {

 $b = $watcher.WaitForNextEvent()

 $b.TargetInstance.Name

 }

while ($a -ne 1)

Related Cmdlets

Register-WmiEvent

Register-EngineEvent

Unregister-Event

Get-Event

New-Event

Remove-Event

Wait-Event

163

#94 Get-EventSubscriber

Get-EventSubscriber

What can I do with it?

Retrieve event subscribers from the current session.

Example:

Use the Register-ObjectEvent cmdlet to register for an event to check for new processes, use

the ManagementEventWatcher .NET object to form the basis of the object to monitor and

save information including the date and time out to a log file.

Execution of Get-EventSubscriber will then show details of the event subscribed to.

$query = New-Object System.Management.WqlEventQuery

"__InstanceCreationEvent", (New-Object TimeSpan 0,0,1), "TargetInstance isa

'Win32_Process'"

$processWatcher = New-Object System.Management.ManagementEventWatcher

$query

Register-ObjectEvent -InputObject $processWatcher -EventName "EventArrived"

-Action {"A new process started at " + (Get-Date) | Out-File c:\log.txt -

Append}

Get-EventSubscriber

You will see below the details which are returned by default

How could I have done this in PowerShell 1.0?

Register-ObjectEvent and Register-WmiEvent contain examples of how to create events in

.NET

Related Cmdlets

http://go.microsoft.com/fwlink/?LinkID=135155
http://msdn.microsoft.com/en-us/library/system.management.managementeventwatcher.aspx
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-94-get-eventsubscriber.html/get-eventsubscriber

164

Register-ObjectEvent

Register-EngineEvent

Register-WmiEvent

Unregister-Event

Get-Event

New-Event

Remove-Event

Wait-Event

165

#95 Register-EngineEvent

Register-EngineEvent

What can I do with it?

Subscribe to events generated by the PowerShell engine or the New-Event cmdlet.

Example:

Subscribe to an event when the PowerShell session exits, and save information including the

date and time out to a log file.

Register-EngineEvent PowerShell.Exiting

-Action {"PowerShell exited at " + (Get-Date) | Out-File c:\log.txt -

Append}

After closing the PowerShell session (by typing Exit) the date and time it was closed is

written to the log file.

How could I have done this in PowerShell 1.0?

PowerShell engine events are a new feature in PowerShell 2.0.

Related Cmdlets

Register-ObjectEvent

Register-WmiEvent

Unregister-Event

Get-Event

http://go.microsoft.com/fwlink/?LinkID=135243
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-95-register-engine-event.html/register-engineevent
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-95-register-engine-event.html/register-engineevent2
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-95-register-engine-event.html/register-engineevent
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-95-register-engine-event.html/register-engineevent2

166

New-Event

Remove-Event

Wait-Event

167

#96 New-Event

New-Event

What can I do with it?

Create a custom event.

Example:

The built-in PowerShell help has a great example for New-Event. It uses New-Event to create

a custom event based on a reaction to another event.

function Enable-ProcessCreationEvent

{

 $query = New-Object System.Management.WqlEventQuery

"__InstanceCreationEvent", (New-Object TimeSpan 0,0,1), "TargetInstance isa

'Win32_Process'"

 $processWatcher = New-Object System.Management.ManagementEventWatcher

$query

 $identifier = "WMI.ProcessCreated"

 Register-ObjectEvent $processWatcher "EventArrived" -SupportEvent

$identifier -Action {

 [void] (New-Event -SourceIdentifier "PowerShell.ProcessCreated" -

Sender $args[0] -EventArguments

$args[1].SourceEventArgs.NewEvent.TargetInstance)

 }

}

You will notice that if you execute this function and then create a new process a new event is

automatically generated.

How could I have done this in PowerShell 1.0?

http://go.microsoft.com/fwlink/?LinkID=135234
http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-96-new-event.html/new-event

168

PowerShell engine events are a new feature in PowerShell 2.0.

Related Cmdlets

Register-ObjectEvent

Register-EngineEvent

Register-WmiEvent

Unregister-Event

Get-Event

Remove-Event

Wait-Event

169

#97 Get-Event

Get-Event

What can I do with it?

Retrieve events from the event queue.

Example:

The built-in PowerShell help has a great example for New-Event. It uses New-Event to create

a custom event based on a reaction to another event. Once the event has been created Get-

Event can be used to examine details of that event and any others currently in the queue.

function Enable-ProcessCreationEvent

{

 $query = New-Object System.Management.WqlEventQuery

"__InstanceCreationEvent", (New-Object TimeSpan 0,0,1), "TargetInstance isa

'Win32_Process'"

 $processWatcher = New-Object System.Management.ManagementEventWatcher

$query

 $identifier = "WMI.ProcessCreated"

 Register-ObjectEvent $processWatcher "EventArrived" -SupportEvent

$identifier -Action {

 [void] (New-Event -SourceIdentifier "PowerShell.ProcessCreated" -

Sender $args[0] -EventArguments

$args[1].SourceEventArgs.NewEvent.TargetInstance)

 }

}

Get-Event

You will notice that if you execute this function and then create a new process a new event is

automatically generated. Get-Event retrieves details of this event.

http://go.microsoft.com/fwlink/?LinkID=113453
http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-96-new-event.html/new-event

170

How could I have done this in PowerShell 1.0?

PowerShell engine events are a new feature in PowerShell 2.0.

Related Cmdlets

Register-ObjectEvent

Register-EngineEvent

Register-WmiEvent

Unregister-Event

New-Event

Remove-Event

Wait-Event

171

#98 Wait-Event

Wait-Event

What can I do with it?

Pause a running script or session and wait for an event to occur before continuing.

Example:

The built-in PowerShell help has a great example for New-Event. It uses New-Event to create

a custom event based on a reaction to another event. Use Wait-Event to make the current

session pause until a new process has been opened. Open Windows Calculator to make the

event trigger and return the prompt to the user.

function Enable-ProcessCreationEvent

{

 $query = New-Object System.Management.WqlEventQuery

"__InstanceCreationEvent", (New-Object TimeSpan 0,0,1), "TargetInstance isa

'Win32_Process'"

 $processWatcher = New-Object System.Management.ManagementEventWatcher

$query

 $identifier = "WMI.ProcessCreated"

 Register-ObjectEvent $processWatcher "EventArrived" -SupportEvent

$identifier -Action {

 [void] (New-Event -SourceIdentifier "PowerShell.ProcessCreated" -

Sender $args[0] -EventArguments

$args[1].SourceEventArgs.NewEvent.TargetInstance)

 }

}

Wait-Event -SourceIdentifier PowerShell.ProcessCreated

Before opening Windows Calculator:

You will notice that after the opening of Windows Calculator the event is triggered and the

prompt is returned to the user.

http://go.microsoft.com/fwlink/?LinkID=135276
http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-98-wait-event.html/wait-event2

172

How could I have done this in PowerShell 1.0?

PowerShell engine events are a new feature in PowerShell 2.0.

Related Cmdlets

Register-ObjectEvent

Register-EngineEvent

Register-WmiEvent

Unregister-Event

Get-Event

New-Event

Remove-Event

http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-98-wait-event.html/wait-event

173

#99 Unregister-Event

Unregister-Event

What can I do with it?

Clear an event subscription.

Example:

Use Get-EventSubscriber to retrieve details of current events. Clear the event with

subscription id 1 and Get-EventSubscriber again to confirm that it has been removed.

Get-EventSubscriber

Unregister-Event -SubscriptionId 1

Get-EventSubscriber

You will see that the event subscription has been cleared.

How could I have done this in PowerShell 1.0?

PowerShell engine events are a new feature in PowerShell 2.0.

Related Cmdlets

Register-ObjectEvent

Register-EngineEvent

Register-WmiEvent

Get-Event

New-Event

Remove-Event

Wait-Event

http://go.microsoft.com/fwlink/?LinkID=135269
http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-99-unregister-event.html/unregister-event

174

#100 Remove-Event

Remove-Event

What can I do with it?

Delete an event from the current session. Note: to unsubscribe from an event you will need to

use Unregister-Event.

Example:

Retrieve current events in the queue with Get-Event, use Remove-Event to clear the event

with the SourceIdentifier of Timer, then Get-Event again to confirm that it has been

removed.

Get-Event

Remove-Event -SourceIdentifier Timer

Get-Event

You will see that the event has been cleared.

How could I have done this in PowerShell 1.0?

PowerShell engine events are a new feature in PowerShell 2.0.

Related Cmdlets

Register-ObjectEvent

Register-EngineEvent

Register-WmiEvent

Unregister-Event

Get-Event

New-Event

http://go.microsoft.com/fwlink/?LinkID=135247
http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-100-remove-event.html/remove-event

175

Wait-Event

176

#101 Wait-Process

Wait-Process

What can I do with it?

Wait for a process to stop before proceeding further.

Example:

Open an instance of Notepad. Use Wait-Process to pause the console session until Notepad is

closed.

Notepad

Wait-Process -Name Notepad

You will notice that the console pauses whilst Notepad is open

Once Notepad is closed, control of the session is returned to the user.

How could I have done this in PowerShell 1.0?

Store the result of Get-Process Notepad in a variable, then use the WaitForExit method to

wait for the process to stop.

Notepad

$Process = Get-Process Notepad

$Process.WaitForExit()

Related Cmdlets

Get-Process

Start-Process

http://go.microsoft.com/fwlink/?LinkID=135277
http://technet.microsoft.com/en-us/library/dd347630.aspx
http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-101-wait-process.html/wait-process1
http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-101-wait-process.html/wait-process2
http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-101-wait-process.html/wait-process1
http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-101-wait-process.html/wait-process2

177

Stop-Process

Debug-Process

http://technet.microsoft.com/en-us/library/dd347595.aspx
http://technet.microsoft.com/en-us/library/dd315393.aspx
http://technet.microsoft.com/en-us/library/dd315393.aspx

178

#102 Disable-PSRemoting

Disable-PSRemoting . Note: This is a proxy command which calls the Disable-

PSSessionConfiguration cmdlet.

What can I do with it?

Disable PowerShell remoting on a computer that has previously been enabled for remoting.

Note: This command must be run from a PowerShell session with administrative privileges.

Example:

Retrieve the current PSSessionConfiguration settings. Disable PowerShell remoting, and then

retrieve the PSSessionConfiguration settings again to compare.

Get-PSSessionConfiguration

Disable-PSRemoting

Get-PSSessionConfiguration

Notice the PSSessionConfiguration on a machine enabled for PowerShell remoting

Disable PowerShell Remoting. You will receive the following warning that using this

command does not necessarily reverse everything that Enable-PSRemoting may have done.

WARNING: Disabling the session configurations does not undo all the changes made by the

Enable-PSRemoting or

Enable-PSSessionConfiguration cmdlet. You might have to manually undo the changes by

following these steps.

1. Stop and disable the WinRM service.

2. Delete the listener that accepts requests on any IP address.

3. Disable the firewall exceptions for WS-Management communications.

4. Restore the value of the LocalAccountTokenFilterPolicy to 0, which restricts remote

access to members of the

Administrators group on the computer.

http://go.microsoft.com/fwlink/?LinkID=144298
http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-102-disable-psremoting.html/disable-psremoting1
http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-102-disable-psremoting.html/disable-psremoting2
http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-102-disable-psremoting.html/disable-psremoting1
http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-102-disable-psremoting.html/disable-psremoting2

179

Now check the impact on the PSSessionconfiguration - the AccessDenied permission has

been applied to Everyone.

How could I have done this in PowerShell 1.0?

Remoting did not exist in PowerShell 1.0; you would have needed to use Remote Desktop to

run an interactive session on a remote server.

Related Cmdlets

Enable-PSRemoting

Disable-PSSessionConfiguration

Get-PSSessionConfiguration

Register-PSSessionConfiguration

Set-PSSessionConfiguration

Unregister-PSSessionConfiguration

http://www.jonathanmedd.net/2010/05/powershell-2-0-one-cmdlet-at-a-time-102-disable-psremoting.html/disable-psremoting3

180

#103 Update-List

Update-List

What can I do with it?

Add, Remove or Replace items from a property value of an object. This cmdlet can only

update a property when it supports the IList interface. So far this does not include any of the

core Windows PowerShell cmdlets - however it does include some of the cmdlets that ship

with Exchange 2007 and later.

Example:

Add additional email addresses to the Test1 user's mailbox using the Add parameter of

Update-List.

Get-Mailbox Test1 | Update-List -Property EmailAddresses -Add

admin@contoso.com,webmaster@contoso.com

| Set-Mailbox

How could I have done this in PowerShell 1.0?

Shay Levy has a great blog post on dealing with AD / Mailbox accounts with multi-valued

attributes.

http://go.microsoft.com/fwlink/?LinkID=113447
http://msdn.microsoft.com/en-us/library/system.collections.ilist.aspx
http://blogs.microsoft.co.il/blogs/scriptfanatic/archive/2010/02/04/modifying-multivalued-active-directory-attributes.aspx

181

#104 Trace-Command

Trace-Command

What can I do with it?

Begin a trace of a command or expression.

Example:

Examine debug info for Parameter Binding when piping a string through to Get-Service.

Trace-Command -Name ParameterBinding -Option All -Expression {'winmgmt' |

Get-Service} -PSHost

You will see it is possible to work through the debug info to find out what is happening:

Note: it is also possible to output the debug info to a file, simply remove the PSHost

parameter and use FilePath instead.

Trace-Command -Name ParameterBinding -Option All -Expression {'winmgmt' |

Get-Service} -FilePath C:\Debug.txt

The resulting debug info is now easily viewable in Notepad.

http://go.microsoft.com/fwlink/?LinkID=113419
http://www.jonathanmedd.net/2010/06/powershell-2-0-one-cmdlet-at-a-time-104-trace-command.html/trace-command

182

How could I have done this in PowerShell 1.0?

You could have used Set-TraceSource , but Trace-Command applies the trace only to the

specified command.

Related Cmdlets

Get-TraceSource

Set-TraceSource

http://technet.microsoft.com/en-us/library/dd315364.aspx
http://technet.microsoft.com/en-us/library/dd347586.aspx
http://technet.microsoft.com/en-us/library/dd315364.aspx
http://www.jonathanmedd.net/2010/06/powershell-2-0-one-cmdlet-at-a-time-104-trace-command.html/trace-command2-2

183

#105 Set-StrictMode

Set-StrictMode

What can I do with it?

Configure strict mode for the current scope. An error will be generated when the content of

an expression, script or script block violates coding rules. Note: it is possible to use the

Version parameter to pick which coding rules to use. The PowerShell help lists the current

possible options as:

1.0

-- Prohibits references to uninitialized variables, except for uninitialized variables in strings.

2.0

-- Prohibits references to uninitialized variables (including uninitialized variables in strings).

-- Prohibits references to non-existent properties of an object.

-- Prohibits function calls that use the syntax for calling methods.

-- Prohibits a variable without a name (${}).

Latest

--Selects the latest (most strict) version available. Use this value to assure that scripts use the

strictest available version, even when new versions are added to Windows PowerShell.

Example:

Examine what happens when you add the undefined $b to the undefined $a with strict mode

off. Next, turn on strict mode using Version 1.0 and run the same test.

$a + $b

Set-StrictMode -Version 1.0

$a + $b

Note the error message generated with strict mode on because $a has not been initialised.

http://go.microsoft.com/fwlink/?LinkID=113450
http://go.microsoft.com/fwlink/?LinkID=113450
http://www.jonathanmedd.net/2010/06/powershell-2-0-one-cmdlet-at-a-time-105-set-strictmode.html/set-strictmode1

184

Examine what happens when you define $a to be a numerical value and attempt to reference a

property with strict mode off. Next, turn on strict mode using Version 2.0 and run the same

test.

$a = 32

$a.Time

Set-StrictMode -Version 2.0

$a.Time

Note the error message generated with strict mode on because the Time property does not

exist.

How could I have done this in PowerShell 1.0?

You could have used Set-PSDebug, however Set-Strictmode applies only to the current scope

or child scopes and does not impact the global scope. For more information on scopes in

PowerShell look here.

http://technet.microsoft.com/en-us/library/dd315302.aspx
http://technet.microsoft.com/en-us/library/dd315289.aspx
http://www.jonathanmedd.net/2010/06/powershell-2-0-one-cmdlet-at-a-time-105-set-strictmode.html/set-strictmode2

185

#106 Import-LocalizedData

Import-LocalizedData

What can I do with it?

Enable text in scripts displayed to users to be presented in their own language. The cmdlet

uses the automatic variable $PSUICulture to determine the language to use and alternate text

is stored within .psd1 files in subdirectories of the folder that the script is stored.

Example:

In a script called RegionalTest.ps1 use the ConvertFrom-StringData cmdlet to create a series

of text messages to display to the user. Import-LocalizedData will retrieve the value of the

$PSUICulture automatic variable, get the contents of the RegionalTest.psd1 file in the es-

ES directory (assume the user is Spanish) and store the data within the variable designated by

the BindingVariable parameter. Then display the Welcome text.

$UserMessages = Data {

 # culture="en-US"

 ConvertFrom-StringData @'

 Welcome = Welcome to the application

 Error1 = You have entered an incorrect username

 Error2 = You have entered an incorrect password

'@

 }

Import-LocalizedData -BindingVariable $UserMessages

$UserMessages.Welcome

The contents of the RegionalTest.psd1 file for Spanish would look like (apologies for any bad

translation!)

ConvertFrom-StringData @'

 Welcome = Bienvenido a la aplicación

 Error1 = Ha introducido un nombre de usuario incorrecto

 Error2 = Ha introducido una contraseña incorrecta

'@

and be stored in the es-ES folder below C:\Scripts where RegionalTest.ps1 lives

http://go.microsoft.com/fwlink/?LinkID=113342

186

When run on the Spanish user's machine the Spanish text would be displayed rather than the

original English.

How could I have done this in PowerShell 1.0?

Script Internationalisation features were introduced in PowerShell 2.0 and not supported in

version 1.0 - more info here.

http://technet.microsoft.com/en-us/library/dd315390.aspx

187

#107 Add-Type

Add-Type

What can I do with it?

Imbed code from modern programming languages into your PowerShell session or scripts.

The valid languages are: C#, C# 3.0, VisualBasic and JScript - C# is the default. Use the

Language parameter to specify one if it is not C#.

Example:

Within a PowerShell session use some C# code to create a TakeAway class and create a

static method Minus. Use the Add-Type cmdlet to add the class to the session and then call

the TakeAway class and Minus static method.

$csharp = @"

public class TakeAway

{

 public static int Minus(int a, int b)

 {

 return (a - b);

 }

}

"@

Add-Type -TypeDefinition $csharp

[TakeAway]::Minus(10,7)

You will see that we get the expected answer of 3:

How could I have done this in PowerShell 1.0?

PowerShell 1.0 did not support adding C# or other code into PowerShell scripts, you could

however have created your own cmdlet which I'm sure would have been very straightforward

http://go.microsoft.com/fwlink/?LinkID=135195
http://www.jonathanmedd.net/2010/06/powershell-2-0-one-cmdlet-at-a-time-107-add-type.html/add-type1-2
http://www.jonathanmedd.net/2010/06/powershell-2-0-one-cmdlet-at-a-time-107-add-type.html/add-type2
http://www.jonathanmedd.net/2010/06/powershell-2-0-one-cmdlet-at-a-time-107-add-type.html/add-type1-2
http://www.jonathanmedd.net/2010/06/powershell-2-0-one-cmdlet-at-a-time-107-add-type.html/add-type2

188

for most sysadmins :-)

Related Cmdlets

Add-Member

New-Object

http://technet.microsoft.com/en-us/library/dd347695.aspx
http://technet.microsoft.com/en-us/library/dd315334.aspx

	GetRandom
	SendMailMessage
	GetCounter
	OutGridview
	GetHotFix
	TestConnection
	ResetComputerMachinePassword
	GetModule
	CheckpointComputer
	RestartComputer
	AddComputer
	WriteEventLog
	ClearEventLog
	StartProcess
	StartJob
	GetJob
	ReceiveJob
	RemoveJob
	StopJob
	WaitJob
	SelectXML
	EnableComputerRestore
	DisableComputerRestore
	GetComputerRestorePoint
	RestoreComputer
	NewWebServiceProxy
	TestComputerSecureChannel
	ExportCounter
	ImportCounter
	EnablePSRemoting
	EnterPSSession
	ExitPSSession
	NewPSSession
	InvokeCommand
	NewPSSessionOption
	GetPSSessionOption
	GetPSSession
	RemovePSSessionOption
	RemovePSSession
	GetPSSessionConfiguration
	RegisterPSSessionConfiguration
	SetPSSessionConfiguration
	DisabelPSSessionConfiguration
	EnablePSSessionConfiguration
	UnregisterPSSessionConfiguration
	SetWSManQuickConfig
	ConnectWSMan
	TestWSMan
	InvokeWSManAction
	GetWSManInstance
	NewWSManInstance
	SetWSManInstance
	RemoveWSManInstance
	NewWSManSessionOption
	EnableWSManCredSSP
	GetWSManCredSSP
	DisableWSManCredSSP
	DisconnectWSMan
	ImportPSSession
	ExportPSSession
	SetPSBreakpoint
	GetPSBreakpoint
	DisablePSBreakpoint
	EnablePSBreakpoint
	RemovePSBreakpoint
	ClearHistory
	NewEventLog
	LimitEventLog
	RemoveEventLog
	ShowEventLog
	GetWinEvent
	ImportModule
	NewModule
	ExportModuleMember
	NewModuleManifest
	TestModuleManifest
	RemoveModule
	StopComputer
	RemoveComputer
	StartTransaction
	CompleteTransaction
	GetTransaction
	UndoTransaction
	UseTransaction
	ConvertToCSV
	ConvertFromCSV
	ConvertFromStringData
	GetFormatData
	ConvertToXML
	ExportFormatData
	InvokeWmiMethod
	RemoveWmiObject
	SetWmiInstance
	RegisterWmiEvent
	RegisterObjectEvent
	GetEventSubscriber
	RegisterEngineEvent
	NewEvent
	GetEvent
	GetEvent
	WaitEvent
	UnregisterEvent
	RemoveEvent
	WaitProcess
	DisablePSRemoting
	UpdateList
	TraceCommand
	SetStrictMode
	ImportLocalizedData
	AddType

