

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Table	of	Contents
ReadMe

About	this	Book

Introduction	to	PowerShell	for	Unix	People

Commands	Summary

Command	Detail	-	A

Command	Detail	-	B

Command	Detail	-	C

Command	Detail	-	D

Command	Detail	-	E

Command	Detail	-	F

Command	Detail	-	G

Command	Detail	-	H

Command	Detail	-	I

Command	Detail	-	J

Command	Detail	-	K

Command	Detail	-	L

Command	Detail	-	M

Command	Detail	-	N

Command	Detail	-	O

Command	Detail	-	P

Command	Detail	-	Q

Command	Detail	-	R

Command	Detail	-	S

Command	Detail	-	T

Command	Detail	-	U

Command	Detail	-	V

Command	Detail	-	W

Command	Detail	-	X

Command	Detail	-	Y

Command	Detail	-	Z

A	Unix	Person's	Guide	to	PowerShell

2

30

31

Command	Detail	-	Non-alphabetical

To-do

A	Unix	Person's	Guide	to	PowerShell

3

This	e-book	is	intended	as	a	'Quick	Start'	guide	to	PowerShell	for	people	who	already	know
Bash	or	one	of	the	other	Unix	shells.

The	book	has	3	elements:

an	introductory	chapter	which	covers	some	PowerShell	concepts

a	summary	list	of	PowerShell	equivalents	of	Unix	commands	in	one	e-book	chapter

a	detailed	discussion	of	Powershell	equivalents	of	Unix	commands,	organised	in	the
alphabetical	order	of	the	unix	command

A	Unix	Person's	Guide	to	PowerShell

4ReadMe

About
Principal	author:	Matt	Penny

This	e-book	is	intended	as	a	'Quick	Start'	guide	to	PowerShell	for	people	who	already	know
Bash	or	one	of	the	other	Unix	shells.

The	book	has	3	elements:

an	introductory	chapter	which	covers	some	PowerShell	concepts

a	summary	list	of	PowerShell	equivalents	of	Unix	commands	in	one	e-book	chapter

a	detailed	discussion	of	Powershell	equivalents	of	Unix	commands,	organised	in	the
alphabetical	order	of	the	unix	command

This	guide	is	released	under	the	Creative	Commons	Attribution-NoDerivs	3.0	Unported
License.	The	authors	encourage	you	to	redistribute	this	file	as	widely	as	possible,	but	ask
that	you	do	not	modify	the	document.

Was	this	book	helpful?	The	author(s)	kindly	ask(s)	that	you	make	a	tax-deductible	(in	the
US;	check	your	laws	if	you	live	elsewhere)	donation	of	any	amount	to	The	DevOps
Collective	to	support	their	ongoing	work.

Check	for	Updates!	Our	ebooks	are	often	updated	with	new	and	corrected	content.	We
make	them	available	in	three	ways:

Our	main,	authoritative	GitHub	organization,	with	a	repo	for	each	book.	Visit
https://github.com/devops-collective-inc/
Our	GitBook	page,	where	you	can	browse	books	online,	or	download	as	PDF,	EPUB,	or
MOBI.	Using	the	online	reader,	you	can	link	to	specific	chapters.	Visit
https://www.gitbook.com/@devopscollective
On	LeanPub,	where	you	can	download	as	PDF,	EPUB,	or	MOBI	(login	required),	and
"purchase"	the	books	to	make	a	donation	to	DevOps	Collective.	You	can	also	choose	to
be	notified	of	updates.	Visit	https://leanpub.com/u/devopscollective

GitBook	and	LeanPub	have	slightly	different	PDF	formatting	output,	so	you	can	choose	the
one	you	prefer.	LeanPub	can	also	notify	you	when	we	push	updates.	Our	main	GitHub	repo
is	authoritative;	repositories	on	other	sites	are	usually	just	mirrors	used	for	the	publishing

A	Unix	Person's	Guide	to	PowerShell

5About	this	Book

https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://github.com/devops-collective-inc/
https://www.gitbook.com/@devopscollective
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://leanpub.com/u/devopscollective

process.	GitBook	will	usually	contain	our	latest	version,	including	not-yet-finished	bits;
LeanPub	always	contains	the	most	recent	"public	release"	of	any	book.

A	Unix	Person's	Guide	to	PowerShell

6About	this	Book

Introduction	to	PowerShell	for	Unix	people
The	point	of	this	section	is	to	outline	a	few	areas	which	I	think	*nix	people	should	pay
particular	attention	to	when	learning	Powershell.

Resources	for	learning	PowerShell
A	full	introduction	to	PowerShell	is	beyond	the	scope	of	this	e-book.	My	recommendations
for	an	end-to-end	view	of	PowerShell	are:

Learn	Windows	PowerShell	in	a	Month	of	Lunches	-	Written	by	powershell.org's	Don
Jones	and	Jeffery	Hicks,	I	would	guess	that	this	is	the	book	that	most	people	have	used
to	learn	Powershell.	It's	'the	Llama	book'	of	Powershell.

Microsoft	Virtual	Academy's	'Getting	Started	with	PowerShell'	and	'Advanced	Tools	&
Scripting	with	PowerShell'	Jump	Start	courses	-	these	are	recordings	of	day	long
webcasts,	and	are	both	free.

unix-like	aliases
PowerShell	is	a	friendly	environment	for	Unix	people	to	work	in.	Many	of	the	concepts	are
similar,	and	the	PowerShell	team	have	built	in	a	number	of	Powershell	aliases	that	look	like
unix	commands.	So,	you	can,	for	example	type:

ls

....and	get	this:

				Directory:	C:\temp

Mode																LastWriteTime					Length	Name

----																-------------					------	----

-a---								22/02/2015					16:51						25773	all_the_details.md

-a---								20/02/2015					07:31							3390	commands-summary.md

These	can	be	quite	useful	when	you're	switching	between	shells,	although	I	found	that	it	can
be	irritating	when	the	'muscle-memory'	kicks	in	and	you	find	yourself	typing		ls	-ltr		in
PowerShell	and	get	an	error.	The	'ls'	is	just	an	alias	for	the	PowerShell		get-childitem		and
the	Powershell	command	doesn't	understand		-ltr	[1].

A	Unix	Person's	Guide	to	PowerShell

7Introduction	to	PowerShell	for	Unix	People

http://www.manning.com/jones3/
http://www.microsoftvirtualacademy.com/training-courses/getting-started-with-powershell-3-0-jump-start
http://www.microsoftvirtualacademy.com/training-courses/advanced-tools-scripting-with-powershell-3-0-jump-start

the	pipeline
The	PowerShell	pipeline	is	much	the	same	as	the	Bash	shell	pipeline.	The	output	of	one
command	is	piped	to	another	one	with	the	'	|	'	symbol.

The	big	difference	between	piping	in	the	two	shells	is	that	in	the	unix	shells	you	are	piping
text,	whereas	in	PowerShell	you	are	piping	objects.

This	sounds	like	it's	going	to	be	a	big	deal,	but	it's	not	really.

In	practice,	if	you	wanted	to	get	a	list	of	process	names,	in	bash	you	might	do	this:

ps	-ef	|	cut	-c	49-70

...whereas	In	PowerShell	you	would	do	this:

get-process	|	select	ProcessName

In	Bash	you	are	working	with	characters,	or	tab-delimited	fields.	In	PowerShell	you	work	with
field	names,	which	are	known	as	'properties'.

get-help,	get-command,	get-member

get-member

When	you	run	a	PowerShell	command,	such	as		get-history		only	a	subset	of	the		get-
history		output	is	returned	to	the	screen.

In	the	case	of		get-history	,	by	default	two	properties	are	shown	-	'Id'	and	'Commandline'...

$	get-history

		Id	CommandLine

		--	-----------

			1	dir	-recurse	c:\temp

...but	get-history	has	4	other	properties	which	you	might	or	might	not	be	interested	in:

A	Unix	Person's	Guide	to	PowerShell

8Introduction	to	PowerShell	for	Unix	People

$	get-history	|	select	*

Id																	:	1

CommandLine								:	dir	-recurse	c:\temp

ExecutionStatus				:	Completed

StartExecutionTime	:	06/05/2015	13:46:56

EndExecutionTime			:	06/05/2015	13:47:07

The	disparity	between	what	is	shown	and	what	is	available	is	even	greater	for	more	complex
entities	like	'process'.	By	default		get-process		shows	8	columns,	but	there	are	actually	over
50	properties	(as	well	as	20	or	so	methods)	available.

The	full	range	of	what	you	can	return	from	a	PowerShell	command	is	given	by	the		get-
member		command[2].

To	run		get-member	,	you	pipe	the	output	of	the	command	you're	interested	in	to	it,	for
example:

get-process	|	get-member

....or,	more	typically:

get-process	|	gm

	get-member		is	one	of	the	'trinity'	of	'help'-ful	commands:

get-member
get-help
get-command

get-help

	get-help		is	similar	to	the	Unix		man	[3].

So	if	you	type		get-help	get-process	,	you'll	get	this:

A	Unix	Person's	Guide	to	PowerShell

9Introduction	to	PowerShell	for	Unix	People

NAME

				Get-Process

SYNOPSIS

				Gets	the	processes	that	are	running	on	the	local	computer	or	a	remote	computer.

SYNTAX

				Get-Process	[[-Name]	<String[]>]	[-ComputerName	<String[]>]	[-FileVersionInfo]	[-Module]	[<CommonParameters>]

				Get-Process	[-ComputerName	<String[]>]	[-FileVersionInfo]	[-Module]	-Id	<Int32[]>	[<CommonParameters>]

				Get-Process	[-ComputerName	<String[]>]	[-FileVersionInfo]	[-Module]	-InputObject	<Process[]>	[<CommonParameters>]

DESCRIPTION

				The	Get-Process	cmdlet	gets	the	processes	on	a	local	or	remote	computer.

				Without	parameters,	Get-Process	gets	all	of	the	processes	on	the	local	computer.	You	can	also	specify	a	particular

				process	by	process	name	or	process	ID	(PID)	or	pass	a	process	object	through	the	pipeline	to	Get-Process.

				By	default,	Get-Process	returns	a	process	object	that	has	detailed	information	about	the	process	and	supports

				methods	that	let	you	start	and	stop	the	process.	You	can	also	use	the	parameters	of	Get-Process	to	get	file

				version	information	for	the	program	that	runs	in	the	process	and	to	get	the	modules	that	the	process	loaded.

RELATED	LINKS

				Online	Version:	http://go.microsoft.com/fwlink/?LinkID=113324

				Debug-Process

				Get-Process

				Start-Process

				Stop-Process

				Wait-Process

REMARKS

				To	see	the	examples,	type:	"get-help	Get-Process	-examples".

				For	more	information,	type:	"get-help	Get-Process	-detailed".

				For	technical	information,	type:	"get-help	Get-Process	-full".

				For	online	help,	type:	"get-help	Get-Process	-online"

There	are	a	couple	of	wrinkles	which	actually	make	the	PowerShell	'help'	even	more	help-
ful.

you	get	basic	help	by	typing		get-help	,	more	help	by	typing		get-help	-full	
and...probably	the	best	bit	as	far	as	I'm	concerned...you	can	cut	to	the	chase	by	typing
	get-help	-examples	

A	Unix	Person's	Guide	to	PowerShell

10Introduction	to	PowerShell	for	Unix	People

there	are	lots	of	'	about_	'	pages.	These	cover	concepts,	new	features	(in	for	example
	about_Windows_Powershell_5.0)	and	subjects	which	dont	just	relate	to	one	particular
command.	You	can	see	a	full	list	of	the	'about'	topics	by	typing		get-help	about	

get-help	works	like		man	-k		or		apropos	.	If	you're	not	sure	of	the	command	you	want	to
see	help	on,	just	type		help	process		and	you'll	see	a	list	of	all	the	help	topics	that	talk
about	processes.	If	there	was	only	one	it	would	just	show	you	that	topic

Comment-based	help.	When	you	write	your	own	commands	you	can	(and	should!)	use
the	comment-based	help	functionality.	You	follow	a	loose	template	for	writing	a
comment	header	block,	and	then	this	becomes	part	of	the	get-help	subsystem.	It's
good.

get-command

If	you	don't	want	to	go	through	the	help	system,	and	you're	not	sure	what	command	you
need,	you	can	use		get-command	.

I	use	this	most	often	with	wild-cards	either	to	explore	what's	available	or	to	check	on
spelling.

For	example,	I	tend	to	need	to	look	up	the	spelling	of		ConvertTo-Csv		on	a	fairly	regular
basis.	PowerShell	commands	have	a	very	good,	very	intuitive	naming	convention	of	a	verb
followed	by	a	noun	(for	example,		get-process	,		invoke-webrequest),	but	I'm	never	quite
sure	where	'to'	and	'from'	go	for	the	conversion	commands.

To	quickly	look	it	up	I	can	type:

	get-command	*csv*		...	which	returns:

$	get-command	*csv*

CommandType					Name																				ModuleName

-----------					----																				----------

Alias											epcsv	->	Export-Csv

Alias											ipcsv	->	Import-Csv

Cmdlet										ConvertFrom-Csv									Microsoft.PowerShell.Utility

Cmdlet										ConvertTo-Csv											Microsoft.PowerShell.Utility

Cmdlet										Export-Csv														Microsoft.PowerShell.Utility

Cmdlet										Import-Csv														Microsoft.PowerShell.Utility

Application					ucsvc.exe

Application					vmicsvc.exe

Functions

A	Unix	Person's	Guide	to	PowerShell

11Introduction	to	PowerShell	for	Unix	People

Typically	PowerShell	coding	is	done	in	the	form	of	functions[4].	What	you	do	to	code	and
write	a	function	is	this:

Create	a	function	in	a	plain	text	.ps1	file[5]

gvim	say-HelloWorld.ps1

...then	source	the	function	when	they	need	it

$.	.\say-HelloWorld.ps1

...then	run	it

$	say-helloworld

Hello,	World

Often	people	autoload	their	functions	in	their		$profile		or	other	startup	script,	as	follows:

write-verbose	"About	to	load	functions"

foreach	($FUNC	in	$(dir	$FUNCTION_DIR*.ps1))		

{

		write-verbose	"Loading	$FUNC....	"

		.	$FUNC.FullName

}

Footnotes

[1]	If	you	wanted	the	equivalent	of		ls	-ltr		you	would	use		gci	|	sort	lastwritetime	.	'gci'
is	an	alias	for	'get-childitem',	and	I	think,	'sort'	is	an	alias	for	'sort-object'.

[2]	Another	way	of	returning	all	of	the	properties	of	an	object	is	to	use	'select	*'...so	in	this
case	you	could	type		get-process	|	select	*	

[3]	There	is	actually	a	built-in	alias		man		which	tranlates	to		get-help	,	so	you	can	just	type
	man		if	you're	pining	for	Unix.

[4]	See	the	following	for	more	detail	on	writing	functions	rather	than	scripts:
http://blogs.technet.com/b/heyscriptingguy/archive/2011/06/26/don-t-write-scripts-write-
powershell-functions.aspx

A	Unix	Person's	Guide	to	PowerShell

12Introduction	to	PowerShell	for	Unix	People

http://blogs.technet.com/b/heyscriptingguy/archive/2011/06/26/don-t-write-scripts-write-powershell-functions.aspx

[5]	I'm	using	'gvim'	here,	but	notepad	would	work	just	as	well.	PowerShell	has	a	free
'scripting	environment'	called	PowerShell	ISE,	but	you	don't	have	to	use	it	if	you	dont	want
to.

A	Unix	Person's	Guide	to	PowerShell

13Introduction	to	PowerShell	for	Unix	People

commands	summary

alias	(set	aliases)

set-alias

More

alias	(show	aliases)

get-alias

More

apropos

get-help

More

basename

dir	|	select	name

More

cal
No	equivalent,	but	see	the	script	at	http://www.vistax64.com/powershell/17834-unix-cal-
command.html

A	Unix	Person's	Guide	to	PowerShell

14Commands	Summary

https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-a.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-a.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-a.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-b.txt
http://www.vistax64.com/powershell/17834-unix-cal-command.html

cd

cd

More

clear

clear-host

More

date

get-date

More

date	-s

set-date

More

df	-k

Get-WMIObject	Win32_LogicalDisk	|	ft	-a

More

diff

A	Unix	Person's	Guide	to	PowerShell

15Commands	Summary

https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-c.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-c.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-d.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-d.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-d.txt

Compare-Object	-ReferenceObject	(Get-Content	file1)	-DifferenceObject	(Get-Content	file2)

dirname

dir	|	select	directory

More

du
No	equivalent,	but	see	the	link

echo

write-output

More

echo	-n

write-host	-nonewline

More

|	egrep	-i	sql

	|	where	{[Regex]::Ismatch($_.name.tolower(),	"sql")	}

More

egrep	-i

A	Unix	Person's	Guide	to	PowerShell

16Commands	Summary

https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-d.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-d.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-e.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-e.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-e.txt

select-string

More

egrep

select-string		-casesensitive

More

egrep	-v

select-string	-notmatch

More

env

Get-ChildItem	Env:	|	fl

or

get-variable

More

errpt

get-eventlog

More

export	PS1=”$	“

A	Unix	Person's	Guide	to	PowerShell

17Commands	Summary

https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-e.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-e.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-e.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-e.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-e.txt

function	prompt	{"$	"	}

More

find

dir		*whatever*	-recurse

More

for	(start,	stop,	step)

for	($i	=	1;	$i	-le	5;	$i++)	{whatever}

More

head

gc	file.txt	|	select-object	-first	10

More

history

get-history

More

history	|	egrep	-i	ls

history	|	select	commandline	|	where	commandline	-like	'*ls*'	|	fl

More

A	Unix	Person's	Guide	to	PowerShell

18Commands	Summary

https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-e.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-f.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-f.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-h.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-h.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-h.txt

hostname

hostname

More

if-then-else

if		(condition)	{	do-this	}	elseif	{	do-that	}	else	{do-theother}

More

if	[-f	"$FileName"]

if	(test-path	$FileName)

More

kill

stop-process

More

less

more

More

locate

A	Unix	Person's	Guide	to	PowerShell

19Commands	Summary

https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-h.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-i.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-i.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-k.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-m.txt

no	equivalent	but	see	link

More

ls

get-childitem	OR	gci	OR	dir	OR	ls

More

ls	-a

ls	-force

More

ls	-ltr

dir	c:\	|	sort-object	-property	lastwritetime

More

lsusb

gwmi	Win32_USBControllerDevice

More

mailx

send-mailmessage

More

A	Unix	Person's	Guide	to	PowerShell

20Commands	Summary

https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-l.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-l.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-l.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-l.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-l.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-m.txt

man

get-help

More

more

more

More

mv

rename-item

More

pg

more

More

ps	-ef

get-process

More

ps	-ef	|	grep	oracle

A	Unix	Person's	Guide	to	PowerShell

21Commands	Summary

https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-m.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-m.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-m.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-m.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-p.txt

get-process	oracle

More

pwd

get-location

More

read

read-host

More

rm

remove-item

More

script

start-transcript

More

sleep

start-sleep

More

A	Unix	Person's	Guide	to	PowerShell

22Commands	Summary

https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-p.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-p.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-r.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-r.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-s.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-s.txt

sort

sort-object

More

sort	-uniq

get-unique

More

tail

gc	file.txt	|	select-object	-last	10

More

tail	-f

gc	-tail	10	-wait	file.txt

More

time

measure-command

More

touch	-	create	an	empty	file

A	Unix	Person's	Guide	to	PowerShell

23Commands	Summary

https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-s.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-s.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-t.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-t.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-t.txt

set-content	-Path	./file.txt	-Value	$null

More

touch	-	update	the	modified	date

set-itemproperty	-path	./file.txt	-name	LastWriteTime	-value	$(get-date)

More

wc	-l

gc	./file.txt	|	measure-object	|	select	count

More

whoami

[Security.Principal.WindowsIdentity]::GetCurrent()	|	select	name

More

whence	or	type

No	direct	equivalent,	but	see	link

More

unalias

remove-item	-path	alias:aliasname

More

A	Unix	Person's	Guide	to	PowerShell

24Commands	Summary

https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-t.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-t.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-w.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-w.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-w.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-u.txt

uname	-m

Get-WmiObject	-Class	Win32_ComputerSystem	|	select	manufacturer,	model

More

uptime

get-wmiobject	-class	win32_operatingsystem	|	select	LastBootUpTime`

More

\	(line	continuation)

`	(a	backtick)

More

A	Unix	Person's	Guide	to	PowerShell

25Commands	Summary

https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-u.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-u.txt
https://www.penflip.com/powershellorg/a-unix-persons-guide-to-powershell/blob/master/commands-detail-non-alphabetical.txt

commands	detail	-	a

alias	(list	all	the	aliases)
The	Powershell	equivalent	of	typing		alias		at	the	bash	prompt	is:

get-alias

alias	(set	an	alias)
At	it's	simplest,	the	powershell	equivalent	of	the	unix	'alias'	when	it's	used	to	set	an	alias	is
'set-alias'

set-alias	ss	select-string

However,	there's	a	slight	wrinkle....

In	unix,	you	can	do	this

alias	bdump="cd	/u01/app/oracle/admin/$ORACLE_SID/bdump/"

If	you	try	doing	this	in	Powershell,	it	doesn't	work	so	well.	If	you	do	this:

set-alias	cdtemp	"cd	c:\temp"

cdtemp

...then	you	get	this	error:

cdtemp	:	The	term	'cd	c:\temp'	is	not	recognized	as	the	name	of	a	cmdlet,	function,	script	file,	or	operable	program.	Check	the	spelling	of	the	name,	or	if	a	path	was	included,	verify	that	the	path	is	correct	and	try	again.

At	line:1	char:1

+	cdtemp

+	~~~~~~

				+	CategoryInfo										:	ObjectNotFound:	(cd	c:\temp:String)	[],	CommandNotFoundException

				+	FullyQualifiedErrorId	:	CommandNotFoundException

A	way	around	this	is	to	create	a	function	instead:

A	Unix	Person's	Guide	to	PowerShell

26Command	Detail	-	A

remove-item	-path	alias:cdtemp

function	cdtemp	{cd	c:\temp}

You	can	then	create	an	alias	for	the	function:

set-alias	cdt	cdtemp

apropos
	apropos		is	one	of	my	favourite	bash	commands,	not	so	much	for	what	it	does...but	because
I	like	the	word	'apropos'.

I'm	not	sure	it	exists	on	all	flavours	of	*nix,	but	in	bash		apropos		returns	a	list	of	all	the	man
pages	which	have	something	to	do	with	what	you're	searching	for.	If	apropos	isn't
implemented	on	your	system	you	can	use		man	-k		instead.

Anyway	on	bash,	if	you	type:

apropos	process

...then	you	get:

AF_LOCAL	[unix]						(7)		-	Sockets	for	local	interprocess	communication

AF_UNIX	[unix]							(7)		-	Sockets	for	local	interprocess	communication

Apache2::Process					(3pm)		-	Perl	API	for	Apache	process	record

BSD::Resource								(3pm)		-	BSD	process	resource	limit	and	priority	functions

CPU_CLR	[sched_setaffinity]	(2)		-	set	and	get	a	process's	CPU	affinity	mask

CPU_ISSET	[sched_setaffinity]	(2)		-	set	and	get	a	process's	CPU	affinity	mask

CPU_SET	[sched_setaffinity]	(2)		-	set	and	get	a	process's	CPU	affinity	mask

CPU_ZERO	[sched_setaffinity]	(2)		-	set	and	get	a	process's	CPU	affinity	mask

GConf2														(rpm)	-	A	process-transparent	configuration	system

The	Powershell	equivalent	of		apropos		or		man	-k		is	simply		get-help	

get-help	process

Name																		Category		Module					Synopsis

----																		--------		------					--------

get-dbprocesses							Function													Get	processes	for	a	particul...

show-dbprocesses						Function													Show	processes	for	a	particu...

Debug-Process									Cmdlet				Microso...	Debugs	one	or	more	processes...

Get-Process											Cmdlet				Microso...	Gets	the	processes	that	are	...

A	Unix	Person's	Guide	to	PowerShell

27Command	Detail	-	A

This	is	quite	a	nice	feature	of	PowerShell	compared	to	Bash.	If		get-help		in	Powershell	shell
scores	a	'direct	hit'	(i.e.	you	type	something	like		get-help	debug-process)	it	will	show	you	the
help	for	that	particular	function.	If	you	type	something	more	vague,	it	will	show	you	a	list	of
all	the	help	pages	you	might	be	interested	in.

By	contrast	if	you	typed		man	process		at	the	Bash	prompt,	you'd	just	get

No	manual	entry	for	process

A	Unix	Person's	Guide	to	PowerShell

28Command	Detail	-	A

commands	detail	-	b

basename
A	rough	PowerShell	equivalent	for	the	unix	basename	is:

dir	<whatever>	|	select	name

This	depends	on	the	file	actually	existing,	whereas	basename	doesn't	care.

A	more	precise	(but	perhaps	less	concise)	alternative[1]	is:

	[System.IO.Path]::GetFileName('c:\temp\double_winners.txt')	

Notes	[1]	I	found		[System.IO.Path]::GetFileName		after	reading	Power	Tips	of	the	Day	-
Useful	Path	Manipulations	Shortcuts,	which	has	some	other	useful	commands

A	Unix	Person's	Guide	to	PowerShell

29Command	Detail	-	B

http://powershell.com/cs/blogs/tips/archive/2014/09/08/useful-path-manipulation-shortcuts.aspx

commands	detail	-	c

cal
There's	no	one-liner	equivalent	for	the	Linux		cal	,	but	there's	a	useful	script,	with	much	of
the		cal		functionality	here	:

http://www.vistax64.com/powershell/17834-unix-cal-command.html

cd
The	PowerShell	equivalent	of		cd		is:

Set-Location

...although	there	is	a	builtin	PowerShell	alias		cd		which	points	at		set-location	

cd	~

	cd	~		moves	you	to	your	home	folder	in	both	unix	and	Powershell.

clear
The	unix		clear		command	clears	your	screen.	The	Powershell	equivalent	to	the	unix
	clear		is

clear-host

PowerShell	also	has	built-in	alias		clear		for		clear-host	.

However,	it's	possibly	worth	noting	that	the	behaviour	of	the	two	commands	is	slightly
different	between	the	two	environments.

In	my	Linux	environment,	running	putty,		clear		gives	you	a	blank	screen	by	effectively
scrolling	everything	up,	which	means	you	can	scroll	it	all	back	down.

A	Unix	Person's	Guide	to	PowerShell

30Command	Detail	-	C

http://www.vistax64.com/powershell/17834-unix-cal-command.html

The	Powershell		Clear-host		on	the	other	hand	seems	to	wipe	the	previous	output	(actually
in	the	same	way	that	cmd's		cls		command	does....).	This	could	be	quite	a	significant
difference,	depending	on	what	you	want	to	clear	and	why!

cp
The	Posh	version	of	cp	is

copy-item

The	following	are	built-in	aliases	for	copy-item:

cp

copy

cp	-R
To	recursively	copy:

copy	-recurse

A	Unix	Person's	Guide	to	PowerShell

31Command	Detail	-	C

commands	detail	-	d

date
The	Powershell	equivalent	of	the	Unix		date		is

get-date

The	Powershell	equivalent	of	the	Unix		date	-s		is

set-date

I	was	anticipating	doing	a	fairly	tedious	exercise	of	going	through	all	the	Unix	date	formats
and	then	working	out	the	Powershell	equivalent,	but	discovered	the	Powershell	Team	has
effectively	done	all	this	for	me.	There	is	a	Powershell	option		-UFormat		which	stands	for	'unix
format'.

So	the	Powershell:

date	-Uformat	'%D'

09/08/14

is	the	same	as	the	*nix

date	+'%D'

09/08/14

This	is	handy...but	I	have	found	the	odd	difference.	I	tried	this	for	a	demo:

Unix:

date	+'Today	is	%A	the	%d	of	%B,	the	%V	week	of	the	year	%Y.	My	timezone	is	%Z,	and	here	it	is	%R'

Today	is	Monday	the	08	of	September,	the	37	week	of	the	year	2014.	My	timezone	is	BST,	and	here	it	is	17:24

Powershell:

A	Unix	Person's	Guide	to	PowerShell

32Command	Detail	-	D

get-date	-Uformat	'Today	is	%A	the	%d	of	%B,	the	%V	week	of	the	year	%Y.	My	timezone	is	%Z,	and	here	it	is	%R'

Today	is	Monday	the	08	of	September,	the	36	week	of	the	year	2014.	My	timezone	is	+01,	and	here	it	is	17:25

I	presume	the	discrepancy	in	the	week	of	the	year	is	to	do	with	when	the	week	turns	-	as	you
can	see	I	ran	the	command	on	a	Monday.	Some	systems	have	the	turn	of	the	week	being
Monday,	others	have	it	on	Sunday.

I	don't	know	why		%Z		outputs	different	things....and	I	can't	help	feeling	I'm	being	churlish
pointing	this	out.	The	-UFormat	option	is	a	really	nice	thing	to	have.

df	-k
A	quick	and	dirty	Powershell	equivalent	to	'df	-k'	is

Get-WMIObject	Win32_LogicalDisk	-filter	"DriveType=3"	|	ft

A	slightly	prettier	version	is	this	function:

function	get-serversize	{	Param([String]	$ComputerName)

Get-WMIObject	Win32_LogicalDisk	-filter	"DriveType=3"	-computer	$ComputerName	|	

			Select	SystemName,	DeviceID,	VolumeName,

										@{Name="size	(GB)";Expression={"{0:N1}"	-f($_.size/1gb)}},

										@{Name="freespace	(GB)";Expression={"{0:N1}"	-f($_.freespace/1gb)}}	

}

function	ss	{	Param([String]	$ComputerName)

				get-serversize	$ComputerName	|	ft

}

....then	you	can	just	do:

$	ss	my_server

....and	get

SystemName			DeviceID				VolumeName					size(GB)										freespace(GB)

----------			--------				----------					--------										-------------

my_server				C:										OS													30.0																								7.8

my_server				D:										App												250.0																							9.3

my_server				E:																									40.0																								5.0

A	Unix	Person's	Guide	to	PowerShell

33Command	Detail	-	D

dirname
A	good	PowerShell	equivalent	to	the	unix		dirname		is

gi	c:\double_winners\chelsea.doc	|	select	directory

However,	this	isn't	a	direct	equivalent.	Here,	I'm	telling	Powershell	to	look	at	an	actual	file
and	then	return	that	file's	directory.	The	file	has	to	exist.	The	unix	'dirname'	doesn't	care
whether	the	file	you	specify	exists	or	not.	If	you	type	in		dirname
/tmp/double_winners/chelsea.doc		on	any	Unix	server	it	will	return		/tmp/double_winners	,	I
think.		dirname		is	essentially	a	string-manipulation	command.

A	more	precise	Powershell	equivalent	to	the	unix	'dirname'	is	this

[System.IO.Path]::GetDirectoryName('c:\double_winners\chelsea.doc')

....but	it's	not	as	easy	to	type,	and	9	times	out	of	10	I	do	want	to	get	the	folder	for	an	existing
file	rather	than	an	imaginary	one.

du
While	I	think	there	are	implementations	of		du		in	PowerShell,	personally	my
recommendation	would	be	to	download	Mark	Russinovich's	'du'	tool,	which	is	here:

Windows	Sysinternals	-	Disk	Usage

This	is	part	of	the	Microsoft's	'sysinternals'	suite.

A	Unix	Person's	Guide	to	PowerShell

34Command	Detail	-	D

http://technet.microsoft.com/en-us/sysinternals/bb896651.aspx

commands	detail	-	e

echo
	echo		is	an	alias	in	PowerShell.	As	you	would	expect	it's	an	alias	for	the	closest	equivalent
to	the	Linux		echo	:

	write-output	

You	use	it	as	follows:

write-output	"Blue	is	the	colour"

As	well	as	write-output	there	are	a	couple	of	options	for	use	in	Powershell	scripts	and
functions:

	write-debug	

	write-verbose	

Whether	these	produce	any	output	is	controlled	by	commandline	or	environment	flags.

echo	-n
In	bash,		echo	-n		echoes	back	the	string	without	printing	a	newline,	so	if	you	do	this:

$	echo	-n	Blue	is	the	colour

you	get:

Blue	is	the	colour$

....with	your	cursor	ending	up	on	the	same	line	as	the	output,	just	after	the	dollar	prompt

Powershell	has	an	exact	equivalent	of	'echo	-n'.	If	you	type:

PS	C:\Users\matt>	write-host	-nonewline	"Blue	is	the	colour"

....then	you	get	this:

A	Unix	Person's	Guide	to	PowerShell

35Command	Detail	-	E

PS	C:\Users\matt>	write-host	-nonewline	"Blue	is	the	colour"

Blue	is	the	colourPS	C:\Users\matt>

Note	that		-nonewline		doesn't	'work'	if	you're	in	the	ISE.

egrep
The	best	PowerShell	equivalent	to		egrep		or		grep		is		select-string	:

select-string	stamford	blue_flag.txt

A	nice	feature	of		select-string		which	isn't	available	in		grep		is	the		-context		option.	The	-
context	switch	allows	you	to	see	a	specified	number	of	lines	either	side	of	the	matching	one.
I	think	this	is	similar	to		SEARCH	/WINDOW		option	in	DCL.

egrep	-i
Powershell	is	case-insensitive	by	default,	so:

select-string	stamford	blue_flag.txt

...would	return:

blue_flag.txt:3:From	Stamford	Bridge	to	Wembley

If	you	want	to	do	a	case	sensitive	search,	then	you	can	use:

select-string		-casesensitive	stamford	blue_flag.txt

egrep	-v
The	Powershell	equivalent	to	the		-v		option	would	be		-notmatch	

select-string	-notmatch	stamford	blue_flag.txt

egrep	'this|that'

A	Unix	Person's	Guide	to	PowerShell

36Command	Detail	-	E

To	search	for	more	than	one	string	within	a	file	in	bash,	you	use	the	syntax:

egrep	'blue|stamford'	blue_flag.txt

This	will	return	lines	which	contain	either	'blue'	or	'stamford'.

The	PowerShell	equivalent	is	to	seperate	the	two	strings	with	a	comma,	so:

$	select-string		stamford,blue	blue_flag.txt

...returns:

blue_flag.txt:2:We'll	keep	the	blue	flag	flying	high

blue_flag.txt:3:From	Stamford	Bridge	to	Wembley

blue_flag.txt:4:We'll	keep	the	blue	flag	flying	high

|	egrep	-i	sql
This	is	an	interesting	one,	in	that	it	points	up	a	conceptual	difference	between	PowerShell
and	Bash.

In	bash,	if	you	want	to	pipe	into	a	grep,	you	would	do	this:

ps	-ef	|	egrep	sql

This	would	show	you	all	the	processes	which	include	the	string	'sql'	somewhere	in	the	line
returned	by		ps	.	The	egrep	is	searching	across	the	whole	line.	If	the	username	is	'mr_sql'
then	a	line	would	be	returned,	and	if	the	process	is	'sqlplus'	than	a	line	would	also	be
returned.

To	do	something	similar	in	PowerShell	you	would	do	something	more	specific

get-process	|	where	processname	-like	'*sql*'

So	the	string	'sql'	has	to	match	the	contents	of	the	property		processname	.	As	it	happens,
get-process	by	default	only	returns	one	text	field,	so	in	this	case	it's	relatively	academic,	but
hopefully	it	illustrates	the	point.

env

A	Unix	Person's	Guide	to	PowerShell

37Command	Detail	-	E

The	Linux	'env'	shows	all	the	environment	variables.

In	PowerShell	there	are	two	set	of	environment	variables:

windows-level	variables	and
Powershell-level	variable

Windows-level	variables	are	given	by:

Get-ChildItem	Env:	|	fl

PowerShell-level	variables	are	given	by:

get-variable

errpt
I	think	errpt	is	possibly	just	an	AIX	thing	(the	linux	equivalent	is,	I	think,	looking	at
	/var/log/message).	It	shows	system	error	and	log	messages.

The	PowerShell	equivalent	would	be	to	look	at	the	Windows	eventlog,	as	follows

get-eventlog	-computername	bigserver	-logname	application	-newest	15

The	lognames	that	I	typically	look	at	are	'system',	'application'	or	'security'.

export	PS1="$	"
In	bash	the	following	changes	the	prompt	when	you	are	at	the	command	line

export	PS1="$	"

The	Powershell	equivalent	to	this	is:

function	prompt	{

	"$	"

	}

I	found	this	on	Richard	Siddaway's	Blog

A	Unix	Person's	Guide	to	PowerShell

38Command	Detail	-	E

http://msmvps.com/blogs/richardsiddaway/archive/2013/07/21/fun-with-prompts.aspx

commands	detail	-	f

find
The	bash		find		command	has	loads	of	functionality	-	I	could	possibly	devote	many	pages	to
Powershell	equivalents	of	the	various	options,	but	at	it's	simplest	the	bash		find		does	this:

find	.	-name	'*BB.txt'

./Archive/Script_WO7171BB.txt

./Archive/Script_WO8541BB.txt

./Archive/Script_WO8645_BB.txt

./Archive/WO8559B/Script_WO8559_Master_ScriptBB.txt

./Archive/WO8559B/WO8559_finalBB.txt

./Archive/WO8559B/WO8559_part1BB.txt

./Archive/WO8559B/WO8559_part2BB.txt

The	simplest	Powershell	equivalent	of	the	bash		find		is	simply	to	stick	a		-recurse		on	the
end	of	a		dir		command

PS	x:\>	dir		*BB.txt	-recurse

				Directory:	x:\Archive\WO8559B

Mode																LastWriteTime					Length	Name

----																-------------					------	----

-----								28/02/2012					17:15								608	Script_WO8559_Master_ScriptBB.txt

-----								28/02/2012					17:17									44	WO8559_finalBB.txt

-----								28/02/2012					17:17						14567	WO8559_part1BB.txt

-----								28/02/2012					17:15							1961	WO8559_part2BB.txt

				Directory:	x:\Archive

Mode																LastWriteTime					Length	Name

----																-------------					------	----

-----								15/06/2011					08:56							2972	Script_WO7171BB.txt

-----								14/02/2012					16:39							3662	Script_WO8541BB.txt

-----								27/02/2012					15:22							3839	Script_WO8645_BB.txt

If	you	want	Powersehll	to	give	you	output	that	looks	more	like	the	Unix	find	then	you	can
pipe	into		|	select	fullname	

A	Unix	Person's	Guide	to	PowerShell

39Command	Detail	-	F

PS	x:\>	dir		*BB.txt	-recurse	|	select	fullname

FullName

x:\Archive\WO8559B\Script_WO8559_Master_ScriptBB.txt

x:\Archive\WO8559B\WO8559_finalBB.txt

x:\Archive\WO8559B\WO8559_part1BB.txt

x:\Archive\WO8559B\WO8559_part2BB.txt

x:\Archive\Script_WO7171BB.txt

x:\Archive\Script_WO8541BB.txt

x:\Archive\Script_WO8645_BB.txt

for

for	loop	-	start,	stop,	step

The	equivalent	of	this	bash:

for	((i	=	1	;	i	<=	5	;	i++))

do			

		echo	"Hello,	world	$i"

done

Hello,	world	1

Hello,	world	2

Hello,	world	3

Hello,	world	4

Hello,	world	5

...is

for	($i	=	1;	$i	-le	5;	$i++)

{

		write-output	"Hello,	world	$i"

}

Hello,	world	1

Hello,	world	2

Hello,	world	3

Hello,	world	4

Hello,	world	5

for	loop	-	foreach	item	in	a	list

For	the	Bash

A	Unix	Person's	Guide	to	PowerShell

40Command	Detail	-	F

for	I	in	Chelsea	Arsenal	Spuds

do

		echo	$I

done

the	equivalent	Powershell	is:

foreach	($Team	in	("Chelsea",	"Arsenal",	"Spuds"))	{write-output	$Team}

for	loop	-	for	each	word	in	a	string

For	the	bash:

london="Chelsea	Arsenal	Spurs"

for	team	in	$london;	do			echo	"$team";	done

...the	equivalent	Powershell	is:

$London	=	"Chelsea	Arsenal	Spuds"

foreach	($Team	in	($London.split()))	{write-output	$Team}

for	loops	-	for	lines	in	a	file

Bash:

for	team	in	$(egrep	-v	mill	london.txt)

>	do

>			echo	$team

>	done

Posh:

select-string	-notmatch	millwall	london.txt	|	select	line	|	foreach	{write-output	$_}

or:

foreach	($team	in	(select-string	-notmatch	millwall	london.txt	|	select	line))	{$team}

for	loop	-	for	each	file	in	a	folder</h4>

A	Unix	Person's	Guide	to	PowerShell

41Command	Detail	-	F

Bash:

for	LocalFile	in	*

do			

		echo	$LocalFile

done

Posh:

foreach	($LocalFile	in	$(gci))	{write-output	$LocalFile.Name}

A	Unix	Person's	Guide	to	PowerShell

42Command	Detail	-	F

commands	detail	-	g
Not	got	any	commands	beginning	with	'g'	yet.

A	Unix	Person's	Guide	to	PowerShell

43Command	Detail	-	G

commands	detail	-	h

head
The	PowerShell	equivalent	of	the	*nix		head		is:

gc	file.txt	|	select-object	-first	10

history
The	Powershell	equivalent	of		history		is:

get-history

There	is	a	built	in	alias		history	

It's	worth	noting	that	history	doesn't	persist	across	PowerShell	sessions,	although	if	you
search	online	there	are	a	couple	of	published	techniques	for	making	it	persistent.

It's	also	perhaps	worth	noting	that	Powershell	gives	you	a	couple	of	extra	bits	of	information,
if	you	want	them:

get-history	|	gm	-MemberType	Property

			TypeName:	Microsoft.PowerShell.Commands.HistoryInfo

Name															MemberType	Definition																																																																	

----															----------	----------																																																																	

CommandLine								Property			string	CommandLine	{get;}																																																		

EndExecutionTime			Property			datetime	EndExecutionTime	{get;}																																											

ExecutionStatus				Property			System.Management.Automation.Runspaces.PipelineState	ExecutionStatus	{get;}

Id																	Property			long	Id	{get;}																																																													

StartExecutionTime	Property			datetime	StartExecutionTime	{get;}

history	|	egrep	-i	ls

A	Unix	Person's	Guide	to	PowerShell

44Command	Detail	-	H

There	is	no	direct	equivalent	of	the	shell	functionality	you	get	with		set	-o	vi		sadly.	You	can
up-	and	down-	arrow	by	default,	but	if	you	want	to	search	through	your	history	then	you	need
to	do	something	like	this

history	|	select	commandline	|	where-object	{$_.commandline	-like	'*ls*'}	|	fl

hostname
There	is	a	windows		hostname		which	does	much	the	same	thing	as	the	Unix		hostname	,	but
it's	not	Powershell.	It's	a	standard-ish	Windows	executable	that	on	my	machine	lives	in
c:\windows\system32

Details	are	here:	Microsoft	Windows	XP	-	Hostname

You	can	get	the	server	name	through	PowerShell	like	this:

get-wmiobject	-class	win32_operatingsystem	|	select	__SERVER

A	Unix	Person's	Guide	to	PowerShell

45Command	Detail	-	H

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/hostname.mspx?mfr=true

commands	detail	-	i

if-then-else
The	bash		if-then-elif-else		as	per:

HOUR_OF_DAY=$(date	+'%H')	

if		[$HOUR_OF_DAY	-lt	6]

then		

		echo		"Still	nightime"

elif	[$HOUR_OF_DAY	-lt	12]

then

		echo	"Morning	has	broken"

elif	[$HOUR_OF_DAY	-lt	18]

then

		echo	"After	noon"

else

		echo	"Nightime	again"

fi

...could	be	rendered	in	PowerShell	as:

[int]$HourOfDay	=	$(get-date	-UFormat	'%H')

if		($HourOfDay	-lt	6)

{

		write-output		"Still	nightime"

}

elseif	($HourOfDay	-lt	12)

{

		write-output	"Morning	has	broken"

}

elseif	($HourOfDay	-lt	18)

{

		write-output	"After	noon"

}

else

{

		write-output	"Nightime	again"

}

if	[-f	"$FileName"]

A	Unix	Person's	Guide	to	PowerShell

46Command	Detail	-	I

Testing	for	the	existence	of	a	file	in	bash	is	done	as	follows

export	FileName=~/.matt

if	[-f	"$FileName"]

then

		echo	"$FileName	found."

else

		echo	"$FileName	not	found."

fi

In	PowerShell	this	could	be[1]

$FileName	=	"c:\powershell\.matt.ps1x"

if	(test-path	$FileName)	

		{echo	"$FileName	found"}

else

		{echo	"$FileName	not	found"}

Footnotes
[1]	The	way	I've	rendered	the	PowerShell	here	isn't	great,	but	I've	left	it	like	that	because	for
a	couple	of	reasons.	First,	it	shows	the	similarity	between	PowerShell	and	Bash,	which	I
think	is	encouraging	for	anyone	reading	this	e-book.	Second	it	allows	me	make	a	brief	point
about	using	aliases.

	echo		is	handy.	It's	short,	and	it	looks	like	it	does	the	same	thing	as		echo		in	Unix,	MS-DOS
and	probably	a	few	other	languages	besides.	It	pretty	much	does...but	does		echo		alias
	write-output		which	allows	you	to	pipe	to	other	PowerShell	commands,	or	does	it	alias	to
	write-host	,	which	doesn't?

I've	been	using	PowerShell	for	a	few	years	now	but	I	didn't	know.	I	had	to	look	it	up.	This	is
extra	hassle	if	you're	reading	a	script,	which	is	one	of	the	reasons	that	it's	usually	seen	as
being	better	practice	in	scripts	to	be	explicit	by	using	the	full	command	rather	than	the	alias.

Also,	in	PowerShell	scripts	rather	than	this:

if	(test-path	$FileName)	

		{write-host	"$FileName	found"}

...it	would	typically	be	seen	as	better	to	format	using	one	of	these	two	alternatives:

A	Unix	Person's	Guide	to	PowerShell

47Command	Detail	-	I

if	(test-path	$FileName)	{

		write-host	"$FileName	found"

}

or:

if	(test-path	$FileName)	

{

		write-host	"$FileName	found"

}

A	Unix	Person's	Guide	to	PowerShell

48Command	Detail	-	I

commands	detail	-	j
None	as	yet

A	Unix	Person's	Guide	to	PowerShell

49Command	Detail	-	J

commands	detail	-	k

kill
The	equivalent	of	bash's		kill		is:

stop-process

A	typical	usage	in	Powershell	might	be:

#	find	the	process

get-process	|	select	id,	ProcessName	|	where	{$_.processname	-like	'iex*'}

#	kill	the	process

stop-process	5240

There	is	a	built	in	alias		kill		which	translates	to	stop-process

get-alias	k*

CommandType					Name

-----------					----

Alias											kill	->	Stop-Process

A	Unix	Person's	Guide	to	PowerShell

50Command	Detail	-	K

commands	detail	-	l

locate
There	isn't	a	builtin	PowerShell	version	of	locate,	but	Chrissy	LeMaire's	(website)	has	written
an	Invoke-Locate	script	'in	the	spirit	of	(Linux/Unix)	GNU	findutils'	locate'.	It	works	really	well

ls
The	PowerShell	equivalent	of	the	Unix	ls	is:

Get-ChildItem

...	for	which	there	are	aliases	dir,	ls	and	gci

ls	-a

In	linux,	ls	-a	displays	hidden	files	as	well	as	'normal'	files.

So	ls	gives:

$	ls

README.md

but	ls	-a	gives

$	ls	-a

.		..		.function-prompt.ps1.swp		.git		README.md

The	Powershell	equivalent	of	ls	-a	is	get-childitem	-force.	Here,	I've	used	the	alias	ls

A	Unix	Person's	Guide	to	PowerShell

51Command	Detail	-	L

http://blog.netnerds.net
https://gallery.technet.microsoft.com/scriptcenter/Invoke-Locate-PowerShell-0aa2673a

$	ls

				Directory:	C:\Users\matt\Documents\WindowsPowerShell\functions

Mode																LastWriteTime					Length	Name		

----																-------------					------	----	

-a---								04/06/2015					13:20							1422	README.md

$	ls	-force

				Directory:	C:\Users\matt\Documents\WindowsPowerShell\functions

Mode																LastWriteTime					Length	Name															

----																-------------					------	----														

d--h-								04/06/2015					13:20												.git													

-a-h-								20/05/2015					17:33						12288	.function-prompt.ps1.swp

-a---								04/06/2015					13:20							1422	README.md

ls	-ltr

The	Powershell	equivalent	of	the	unix	ls	-ltr	(or	the	DOS	dir	/OD),	which	lists	files	last	update
order.

dir	c:\folder	|	sort-object	-property	lastwritetime

lsusb
The	unix	command	lsusb	shows	USB	devices.	The	PowerShell	equivalent	is:

gwmi	Win32_USBControllerDevice

gwmi	is	an	alias	for	get-wmiobject

A	Unix	Person's	Guide	to	PowerShell

52Command	Detail	-	L

commands	detail	-	m

mailx
To	send	an	email	from	the	PowerShell	command	line,	this	worked	for	me:

$PSEmailServer	=	"exchange_server.domain.co.uk"

send-mailmessage	-to	eden.hazard@gmail.com	-from	matt@here.co.uk	-subject	"Hello"

man
The	Powershell	equivalent	of		man		is:

get-help

	get-help		has	the	following	built-in	aliases:

	help	

	man	

There	are	a	couple	of	things	to	note	about		get-help	.

There	are	two	much-used	options:		-full		and		-examples	.	They	both	do	exactly	what	you'd
expect,	I	think.	To	give	some	idea	of	scale,	on	my	laptop		get-help	get-process		currently
returns	just	over	a	screenful	of	information,	wherease		get-help	-get-process	-full		returns
9	screenfuls.

The	help	text	can	be	brought	up-to-date	by	running	update-help	from	the	command	line.

You	can	easily	write	your	own	help	text	for	your	own	functions,	by	using	a	feature	called
comment-based	help.

man	-k
In	*nix		man	-k		allows	you	to	search	through	all	the	man	pages	for	mentions	of	a	particular
keyword.	It	returns	a	list	of	the	man	pages	which	are	relevant	to	the	word	you've	searched
for.	On	some	systems,	it's	aliased	to		apropos	.	Anyway,		man	-k	disk		would	perhaps	return

A	Unix	Person's	Guide	to	PowerShell

53Command	Detail	-	M

lines	for,	say,		du	,		df		and		lsvol		(at	the	time	of	typing	I	don't	have	a	Linux	install	to	hand,
so	I'm	guessing	here.)

There's	no	seperate	command	for	this	in	PowerShell,	because	the		get-help		command
does	this	by	default	if	it	doesn't	find	a	direct	match.

So,	if	you	type		get-help	get-process		you	would	get	this:

NAME

				Get-Process

SYNOPSIS

				Gets	the	processes	that	are	running	on	the	local	computer	or	a	remote	computer.

SYNTAX

				Get-Process	[[-Name]	<String[]>]	[-ComputerName	<String[]>]	[-FileVersionInfo]	[-Module]	[<CommonParameters>]

				Get-Process	[-ComputerName	<String[]>]	[-FileVersionInfo]	[-Module]	-InputObject	<Process[]>	[<CommonParameters>]

etc....

...whereas	if	you	typed		get-help	process		you	would	get	a	list	of	help	topics	related	to
'process'[1]:

Name										Category	Synopsis

----										--------	--------

Debug-Process	Cmdlet			Debugs	one	or	more	processes	running	on	the	local	computer.

Get-Process			Cmdlet			Gets	the	processes	that	are	running	on	the	local	computer	or	a	remote	computer.

Start-Process	Cmdlet			Starts	one	or	more	processes	on	the	local	computer.

Stop-Process		Cmdlet			Stops	one	or	more	running	processes.

Wait-Process		Cmdlet			Waits	for	the	processes	to	be	stopped	before	accepting	more	input.

more
Powershell	incorporates	a		more		command	which	broadly	works	in	the	console	similarly	to
the	unix		more	.

The	Powershell		more		is	a	wrapper	for		more.com	[2],	which	is	an	old	Microsoft
implementation	of		more	.

	more		doesn't	work	in	the	ISE,	but	you	can	however	easily	scroll	back	through	output	by
pressing	'Ctrl'	and	'Up-arrow'	at	the	same	time.	This	then	allows	you	to	use	all	the	arrow
keys	(as	well	as	Ctrl-c	and	Ctrl-V	to	cut	and	paste)	to	navigate	around	the	output	from

A	Unix	Person's	Guide	to	PowerShell

54Command	Detail	-	M

previous	commands.

mv
The	PowerShell	equivalent	of		mv		is:

Rename-Item

Footnotes

[1]	To	be	honest,	I	actually	did		get-help	process	|	select	name,	category,	synopsis	|	ft	-a	
to	tidy	up	the	output	for	the	e-book.

[2]	I	found	that	in	my	current	PowerShell	installs,	there	wasn't	much	information	on		more	.
The		get-help		command	returned	the	barest	of	details.

To	see	what	the	command	actually	does	I	ran:

get-command	more	|	select	definition	|	format-list

A	Unix	Person's	Guide	to	PowerShell

55Command	Detail	-	M

commands	detail	-	n
Nothing	yet

A	Unix	Person's	Guide	to	PowerShell

56Command	Detail	-	N

commands	detail	-	o
Nothing	for	commands	beginning	with	'o'	yet.

A	Unix	Person's	Guide	to	PowerShell

57Command	Detail	-	O

commands	detail	-	p

ps
The	PowerShell	equivalent	of	the		ps		command	is:

get-process

You	can	use		get-process		to	get	information	about	other	computers:

get-process	-ComputerName	bigserver	gvim*

You	can	use		select		and		where		to	'slice	and	dice'	the	information.

get-process		|	

		where	{$_.PeakWorkingSet	-gt	1Mb	}	|	select	ProcessName,PeakWorkingSet

As	with		ps	,	the		get-process		command	has	many	options.	This	section	of	the	e-book	will
be	expanded	over	the	next	few	months	but,	to	start	with,	these	are	some	of	the		ps	
examples	from	the	Linux		man		page.

ps	-ef	(see	every	process	on	the	system)

By	default		get-process		shows	all	of	the	processes	on	the	current	PC	or	server

ps	(show	just	current	process)

If	you	wanted	to	just	see	details	of	your	process	you	could	do	this:

get-process	-pid	$PID

ps	-ejH	(print	a	process	tree)

There	is	no	PowerShell	equivalent	to	the	Unix		ps	-eJH	,	because	as	I	understand	it
Windows	processes	aren't	part	of	a	process	tree.

ps	-eLf	(get	info	about	threads)

A	Unix	Person's	Guide	to	PowerShell

58Command	Detail	-	P

I	think	this	shows	information	about	the	processes	threads:

get-process	-pid	$pid	|	select	-expand	threads

ps	-U	(show	particular	user)

get-process	-IncludeUserName	|	?	Username	-eq	"Ronnie\Matt"

ps	-ef	|	grep	firefox

get-process	firefox

pwd
To	show	your	current	location	in	Powershell:

Get-Location

...or	there	are	aliases		gl		and		pwd	.

There	is	also	a	built-in	variable

$pwd

A	Unix	Person's	Guide	to	PowerShell

59Command	Detail	-	P

commands	detail	-	q
Write	here...

A	Unix	Person's	Guide	to	PowerShell

60Command	Detail	-	Q

commands	detail	-	r

read	-p
In	*nix:

read	-p	"Which	is	the	only	London	club	to	win	the	Champions	League?	"	team

echo	$team

In	Powershell:

$team	=	read-host	"Which	is	the	only	London	club	to	win	the	Champions	League?	"

Which	is	the	only	London	club	to	win	the	Champions	League?	:	Chelsea

$team

Chelsea

To	not	echo	the	input	to	screen,	you	would	do

$SecretString	=	read-host	"Whats	your	secret?	"-assecurestring

This	echoes	out	an	asterisk	for	each	character	input

rm

Remove-Item

A	Unix	Person's	Guide	to	PowerShell

61Command	Detail	-	R

commands	detail	-	s

script

start-transcript

sleep

start-sleep	-seconds	5

or	

start-sleep	-milliseconds	250

or	just:

sleep	3

...will	sleep	for	3	seconds

sort

get-process	|	sort-object	VirtualMemorySize

sort	-u
The	closest	PowerShell	equivalent	to	the	unix		sort	-u		is		get-unique	

gc	c:\temp\2000.txt	|	sort	|	gu

Note:	this	only	works	as	far	I	can	see	if	you	sort	it	first

Note	2:	get-unique	IS	case	sensitive

A	Unix	Person's	Guide	to	PowerShell

62Command	Detail	-	S

sql
This	isn't	really	a	Powershell	equivalent	of	a	unix	command,	but	in	case	it's	useful,	to	call
Sqlserver's	implementation	of	the	sql	command	line	from	Powershell	you	can	use		invoke-
sqlcmd	

Invoke-Sqlcmd	-ServerInstance	-query	"Select	blah"	-database	_catalog

You	need	to	have	the	sql	module	loaded	for	this	to	work,	or	be	running	the	Powershell
console	from	within	SSMS

A	Unix	Person's	Guide	to	PowerShell

63Command	Detail	-	S

commands	detail	-	t

tail

gc	file.txt	|	select-object	-last	10

tail	-f

gc	-tail	10	-wait	c:\windows\windowsupdate.log

tee
The	Powershell	equivalent	of	the	unix	tee	is	tee-object....which,	by	default	is	aliased	to	tee

So	you	can	do	this:

get-process	|	tee	c:\temp\test_tee.txt

...to	both	get	a	list	of	processes	on	your	screen	and	get	that	output	saved	into	the	file	in
c:\temp

time
The	Powershell	equivalent	of	the	bash	shell	'time'	is	'measure-command'.

So,	in	bash	you	would	do	this:

time	egrep	ORA-	*log

....and	get	all	the	egrep	output,	then

real				0m4.649s

user				0m0.030s

sys					0m0.112s

A	Unix	Person's	Guide	to	PowerShell

64Command	Detail	-	T

In	Powershell,	you	would	do	this

measure-command	{select-string	ORA-	*.sql}

...and	get...

Days														:	0

Hours													:	0

Minutes											:	0

Seconds											:	0

Milliseconds						:	105

Ticks													:	1057357

TotalDays									:	1.22379282407407E-06

TotalHours								:	2.93710277777778E-05

TotalMinutes						:	0.00176226166666667

TotalSeconds						:	0.1057357

TotalMilliseconds	:	105.7357

...you	don't	get	the	'user	CPU'	time	and	'system	CPU'	time,	but	you	do	get	the	added	bonus
of	seeing	how	long	the	command	took	rendered	as	a	fraction	of	a	day!

touch	-	create	an	empty	file

set-content	-Path	c:\temp\new_empty_file.dat	-Value	$null

I	found	the	set-content	command	at	Super	User,	the	contributor	being	user	techie007

touch	-	update	the	modified	date

set-itemproperty	-path	c:\temp\new_empty_file.dat	-name	LastWriteTime	-value	$(get-date)

I	got	this	from	a	comment	by	Manung	Han	on	the	Lab49	Blog.	Doug	Finke	shares	touch
function	in	a	later	comment	on	the	same	post	that	fully	implements	the	linux	command.

A	Unix	Person's	Guide	to	PowerShell

65Command	Detail	-	T

http://superuser.com/questions/502374/equivalent-of-linux-touch-to-create-an-empty-file-with-powershell
http://superuser.com/users/23133/techie007
https://twitter.com/manung
http://blog.lab49.com/archives/249#comment-1076
http://blog.lab49.com/archives/249

commands	detail	-	u

unalias

remove-item	-path	alias:cdtemp

uname

uname	-s

	uname	-s		in	Unix,	according	to	the	man	page,	gives	the	'kernel-version'	of	the	OS.	This	is
the	'top-level	version'	of	the	Unix	that	you're	on.	Typical	values	are	'Linux',	or	'AIX'	or	'HP-
UX'.	So,	on	my	laptop,	typing		uname	-s		gives:

Linux

I've	only	used	this	when	writing	a	Unix	script	which	have	to	do	slightly	different	things	on
different	flavours	of	unix.

Obviously,	there's	only	one	manufacturer	for	Windows	software	-	Microsoft.	So	there's	no
direct	equivalent	to		uname	-s	.	The	closest	equivalent	on	Powershell	would	I	think	be:

get-wmiobject	-class	win32_operatingsystem	|	select	caption

This	returns:

caption

Microsoft	Windows	7	Professional

or

Microsoft	Windows	8.1	Pro

or

Microsoft(R)	Windows(R)	Server	2003,	Standard	Edition

A	Unix	Person's	Guide	to	PowerShell

66Command	Detail	-	U

or

Microsoft	Windows	Server	2008	R2	Enterprise

or

Microsoft	Windows	Server	2012	Standard

uname	-n

According	to	the	Linux	help,	uname	-n	does	this:

							-n,	--nodename

														print	the	network	node	hostname

So,	typing	uname	-n	gives

$	uname	-n

nancy.one2one.co.uk

I	haven't	found	a	neat	equivalent	for	this	in	Powershell,	but	this	works:

get-wmiobject	-class	win32_computersystem		|	select	dnshostname,	domain

The	output	is:

dnshostname																																																	domain

-----------																																																	------

nancy																																																							one2one.co.uk

uname	-r

uname	-r	gives	the	kernel	release	in	Unix.	The	output	varies	depending	on	the	flavour	of
Unix	-	Wikipedia	has	a	good	list	of	examples

On	my	system	uname	-r	gives:

2.6.32-200.20.1.el5uek:

The	best	Powershell	equivalent	would	seem	to	be:

A	Unix	Person's	Guide	to	PowerShell

67Command	Detail	-	U

get-wmiobject	-class	win32_operatingsystem	|	select	version

...which	gives:

6.1.7601

The	7601	is	Microsoft's	build	number.

uname	-v

uname	-v	typically	gives	the	date	of	the	unix	build.	As	far	a	I	can	think,	there	isn't	a
Powershell	equivalent

uname	-m

To	be	honest,	I'm	not	entirely	sure	what	uname	-m	shows	us	on	Unix.	The	wikipedia	page	for
uname	shows	various	outputs	none	of	which	are	hugely	useful.

Running	uname	-m	on	my	server	gives:

x86_64

Is	this	a	PowerShell	equivalent?

$	get-ciminstance	-class	cim_computersystem	|	select	SystemType

SystemType

x64-based	PC

uptime
On	most,	but	from	memory	possibly	not	all,	flavours	of	*nix	'uptime'	tells	you	how	long	the
server	has	been	up	and	running

$	uptime

	15:54:24	up	9	days,		5:43,		2	users,		load	average:	0.10,	0.09,	0.07

A	rough	Powershell	equivalent	to	show	how	long	the	server	(or	PC)	has	been	running	is:

A	Unix	Person's	Guide	to	PowerShell

68Command	Detail	-	U

get-wmiobject	-class	win32_operatingsystem		|	select	LastBootUpTime

....of	course	you	can	also	do

get-wmiobject	-class	win32_operatingsystem	-ComputerName	some_other_server	|	

				select	LastBootUpTime

...to	get	the	bootup	time	for	a	remote	server,	or	PC.

A	Unix	Person's	Guide	to	PowerShell

69Command	Detail	-	U

commands	detail	-	v
No	commands	beginning	with	'v'	so	far.

A	Unix	Person's	Guide	to	PowerShell

70Command	Detail	-	V

commands	detail	-	w

wc	-l

gc	c:\temp\file.txt	|	measure-object	|	select	count

to	show	the	number	of	non-blank	lines:

gc	c:\temp\file.txt	|	measure-object	-line

whoami
This	shows	user	that	you	are	logged	on	as:

[Security.Principal.WindowsIdentity]::GetCurrent()	|	select	name

whence	or	type
There	isn't	a	single	equivalent	to	the	unix		whence		command,	but	there	are	a	couple	of	things
worth	mentioning.

This	shows	the	sort	of	thing	(exe,	bat,	alias,	function)	that	you're	looking	at:

get-command	whoami

CommandType					Name																																															ModuleName

-----------					----																																															----------

Application					whoami.exe

....and	if	what	you're	looking	for	is	a	file	in	your	path,	then	this	will	find	it

foreach	($FOLDER	in	$ENV:PATH.split(";"))	{	dir	$FOLDER\whoami.exe	-ea	Si	|	select	fullname	}

FullName

C:\Windows\system32\whoami.exe

A	Unix	Person's	Guide	to	PowerShell

71Command	Detail	-	W

This	splits	the	path	into	its	constituent	folders,	then	does	a	dir	to	see	if	the	file	(in	this	case
I'm	looking	for	whoami.exe)	exists	in	each.

A	Unix	Person's	Guide	to	PowerShell

72Command	Detail	-	W

commands	detail	-	x
Write	here...

A	Unix	Person's	Guide	to	PowerShell

73Command	Detail	-	X

commands	detail	-	y
Write	here...

A	Unix	Person's	Guide	to	PowerShell

74Command	Detail	-	Y

commands	detail	-	z
Write	here...

A	Unix	Person's	Guide	to	PowerShell

75Command	Detail	-	Z

commands	detail	-	non-alphabetical
Write	here...

A	Unix	Person's	Guide	to	PowerShell

76Command	Detail	-	Non-alphabetical

Todo
While	the	first	version	of	this	e-book	is	being	written	this	list	will	be	largely	mechanical	stuff
which	needs	to	be	done	to	get	the	e-book	into	a	suitable	state.	Subsequently	it	will	be	more
a	list	of	unix	stuff	for	which	I/we	stilll	need	to	find	or	document	a	PowerShell	equivalent.

#	for	version	'1.0'
more	or	the	resources,	perhaps

check	each	page	in	pdf	or	word

for	future	versions
look	at	http://blogs.technet.com/b/josebda/archive/2015/04/18/windows-powershell-
equivalents-for-common-networking-commands-ipconfig-ping-nslookup.aspx

test	conditions	(not	entirely	sure	that's	the	right	unix	terminology)	-	built	test	conditions	like	if
file	exists	and	is	not	a	directory,	if	variable	exists	and	is	not	null

pushd/popd

shutdown	-r	-	restart-computer

more/less	-	remember	it	doesn't	work	in	ISE

find	-	the	various	options.	-newer,	-exec

uname	uname	options

crontab	-l	cp	-r	ls	-R	.profile

bg	cp	cut

env	eval	file	find	free	(memory)	fuser	filename	head

tee

/var/log/message	write	&	(run	in	background)	PS1	(line	contunuation	prompt)	declare	-F	type
Parameter	passing	cut	-f	3	for	(p127)	while	(p139)	until	case	select	p113,	p136	String
comparisons	p118	File	attribute	operations	p122	fileinfo	Number	comparisons	p126	IFS

A	Unix	Person's	Guide	to	PowerShell

77To-do

http://blogs.technet.com/b/josebda/archive/2015/04/18/windows-powershell-equivalents-for-common-networking-commands-ipconfig-ping-nslookup.aspx

(internal	field	separator)	p127	PS3	getopts	p145	let	p145	arrays	p160	here	-documents	p165
debugging	stuff	p221	-n	(syntax	check)	-v	-x

For	the	section	on	'	|	egrep	-i'	i.e.	how	to	search	for	something	within	the	pipeline,	I've
currently	got	instructions	on	how	to	use	-like	against	a	particular	property.	It	would	be	good
to	have	an	alternative	which	did	allow	you	to	search	across	the	whole	output.	Not	very	useful
typically,	but	it	would	be	nice	to	cover	it	off

export	(variables)

my	search	history	function

Mark	L's	comments

would	expect	to	see	stuff	like	'if-then-else'	in	the	introductory	pages
would	be	worth	looking	at	the	man	pages	for	bash	itself	(and	perhaps	for	cmd)
cover	re-direction
'special	variables'	-	$HOME,	$PROFILE

More	detail	on	invoke-locate	?

Cover	Get-Item	as	well	as	Get-ChildItem	for	ls

Convert	from	gwmi	to	get-ciminstance

More	on	mailx/send-mailmessage

Think	about	whether	to	expand	any	and	all	aliases	to	the	full	command	name

More	on	mv?

Fill	out	detail	on	the	ps	process	tree	option.	All	unix	processes	being	descendants	of	root,
windows	processes	not	necessarily	being	descendants	of	anything

More	on	more	:).	More	isn't	an	alias	for	out-host	-paging

ps	options	-	starting	with	those	in	the	cygwin	or	bash	help

ps	-0	(get	security	info)	ps	-eo	euser,ruser,suser,fuser,f,comm,label	ps	axZ	ps	-eM

....have	been	looking	at	the	cim	but	not	got	anything	much	yet.
http://powershell.com/cs/blogs/tips/archive/2009/12/17/get-process-owners.aspx	has	wmi

ps	-o

A	Unix	Person's	Guide	to	PowerShell

78To-do

http://powershell.com/cs/blogs/tips/archive/2009/12/17/get-process-owners.aspx

			To	see	every	process	with	a	user-defined	format:

						ps	-eo	pid,tid,class,rtprio,ni,pri,psr,pcpu,stat,wchan:14,comm

						ps	axo	stat,euid,ruid,tty,tpgid,sess,pgrp,ppid,pid,pcpu,comm

						ps	-eopid,tt,user,fname,tmout,f,wchan

ps	-C

			Print	only	the	process	IDs	of	syslogd:

						ps	-C	syslogd	-o	pid=

ps	-p

			Print	only	the	name	of	PID	42:

						ps	-p	42	-o	comm=

rm	options

rmdir

sort	and	sort	-uniq	-	more	detail	on	each

uptime	-	restore	the	'sos'	function	etc....but	work	out	what	the	approved	verb	would	be	for
'show'

who	am	i	-	as	opposed	to	whoami.	I	think	it	shows	the	user	you	originally	logged	on	as

the	non-alphabetical	stuff:	\	and	backtick

$	env	|	sort	_=/bin/env	CVS_RSH=ssh	G_BROKEN_FILENAMES=1	HISTSIZE=1000
HOME=/home/matt	HOSTNAME=whatever.co.uk	INPUTRC=/etc/inputrc	LANG=en_GB
LESSOPEN=|/usr/bin/lesspipe.sh	%s	LOGNAME=matt
LS_COLORS=no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:bd=40;33;01:cd=40;33;01:
or=01;05;37;41:mi=01;05;37;41:ex=00;32:.cmd=00;32:.exe=00;32:.com=00;32:.btm=00;32:.
bat=00;32:.sh=00;32:.csh=00;32:.tar=00;31:.tgz=00;31:.arj=00;31:.taz=00;31:.lzh=00;31:.zip
=00;31:.z=00;31:.Z=00;31:.gz=00;31:.bz2=00;31:.bz=00;31:.tz=00;31:.rpm=00;31:.cpio=00;3
1:.jpg=00;35:.gif=00;35:.bmp=00;35:.xbm=00;35:.xpm=00;35:.png=00;35:.tif=00;35:
MAIL=/var/spool/mail/matt	PATH=/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/home/matt/bin
PS1=$	PWD=/home/matt	SHELL=/bin/bash	SHLVL=1	SSH_TTY=/dev/pts/1	TERM=xterm

A	Unix	Person's	Guide	to	PowerShell

79To-do

	ReadMe
	About this Book
	Introduction to PowerShell for Unix People
	Commands Summary
	Command Detail - A
	Command Detail - B
	Command Detail - C
	Command Detail - D
	Command Detail - E
	Command Detail - F
	Command Detail - G
	Command Detail - H
	Command Detail - I
	Command Detail - J
	Command Detail - K
	Command Detail - L
	Command Detail - M
	Command Detail - N
	Command Detail - O
	Command Detail - P
	Command Detail - Q
	Command Detail - R
	Command Detail - S
	Command Detail - T
	Command Detail - U
	Command Detail - V
	Command Detail - W
	Command Detail - X
	Command Detail - Y
	Command Detail - Z
	Command Detail - Non-alphabetical
	To-do

