

0

1

2

3

4

5

6

Table	of	Contents
ReadMe

Introduction

HTML	Report	Basics

Gathering	the	Information

Building	the	HTML

Combining	HTML	Reports	and	a	GUI	Application

Contacting	Me

Creating	HTML	Reports	in	PowerShell

2

Learn	to	properly	use	ConvertTo-HTML	to	produce	multi-section,	well-formed	HTML	reports
–	but	then	go	further	with	a	custom	EnhancedHTML	module!	Produce	beautiful,	color-coded,
dynamic,	multi-section	reports	easily	and	quickly.	By	Don	Jones.

Creating	HTML	Reports	in	PowerShell

3ReadMe

Creating	HTML	Reports	in	PowerShell
By	Don	Jones

Cover	design	by	Nathan	Vonnahme

Learn	to	properly	use	ConvertTo-HTML	to	produce	multi-section,	well-formed	HTML	reports
–	but	then	go	further	with	a	custom	EnhancedHTML	module!	Produce	beautiful,	color-coded,
dynamic,	multi-section	reports	easily	and	quickly.	By	Don	Jones.

This	guide	is	released	under	the	Creative	Commons	Attribution-NoDerivs	3.0	Unported
License.	The	authors	encourage	you	to	redistribute	this	file	as	widely	as	possible,	but	ask
that	you	do	not	modify	the	document.

Getting	the	Code	The	EnhancedHTML2	module	mentioned	in	this	book	can	be	found	in	the
https://www.powershellgallery.com/packages/EnhancedHTML2/.	That	page	includes
download	instructions.	PowerShellGet	is	requires,	and	can	be	obtained	from
PowerShellGallery.com

Was	this	book	helpful?	The	author(s)	kindly	ask(s)	that	you	make	a	tax-deductible	(in	the
US;	check	your	laws	if	you	live	elsewhere)	donation	of	any	amount	to	The	DevOps
Collective	to	support	their	ongoing	work.

Check	for	Updates!	Our	ebooks	are	often	updated	with	new	and	corrected	content.	We
make	them	available	in	three	ways:

Our	main,	authoritative	GitHub	organization,	with	a	repo	for	each	book.	Visit
https://github.com/devops-collective-inc/
Our	GitBook	page,	where	you	can	browse	books	online,	or	download	as	PDF,	EPUB,	or
MOBI.	Using	the	online	reader,	you	can	link	to	specific	chapters.	Visit
https://www.gitbook.com/@devopscollective
On	LeanPub,	where	you	can	download	as	PDF,	EPUB,	or	MOBI	(login	required),	and
"purchase"	the	books	to	make	a	donation	to	DevOps	Collective.	You	can	also	choose	to
be	notified	of	updates.	Visit	https://leanpub.com/u/devopscollective

GitBook	and	LeanPub	have	slightly	different	PDF	formatting	output,	so	you	can	choose	the
one	you	prefer.	LeanPub	can	also	notify	you	when	we	push	updates.	Our	main	GitHub	repo
is	authoritative;	repositories	on	other	sites	are	usually	just	mirrors	used	for	the	publishing

Creating	HTML	Reports	in	PowerShell

4Introduction

https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://github.com/devops-collective-inc/
https://www.gitbook.com/@devopscollective
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://leanpub.com/u/devopscollective

process.	GitBook	will	usually	contain	our	latest	version,	including	not-yet-finished	bits;
LeanPub	always	contains	the	most	recent	"public	release"	of	any	book.

Creating	HTML	Reports	in	PowerShell

5Introduction

HTML	Report	Basics
First,	understand	that	PowerShell	isn't	limited	to	creating	reports	in	HTML.	But	I	like	HTML
because	it's	flexible,	can	be	easily	e-mailed,	and	can	be	more	easily	made	to	look	pretty
than	a	plain-text	report.	But	before	you	dive	in,	you	do	need	to	know	a	bit	about	how	HTML
works.

An	HTML	page	is	just	a	plain	text	file,	looking	something	like	this:

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Strict//EN"		"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html	xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>HTML	TABLE</title>

</head><body>

<table>

<colgroup><col/><col/><col/><col/><col/></colgroup>

<tr><th>ComputerName</th><th>Drive</th><th>Free(GB)</th><th>Free(%)</th><th>Size(GB)</th>

<tr><td>CLIENT</td><td>C:</td><td>49</td><td>82</td><td>60</td></tr>

</table>

</body></html>

When	read	by	a	browser,	this	file	is	rendered	into	the	display	you	see	within	the	browser's
window.	The	same	applies	to	e-mail	clients	capable	of	displaying	HTML	content.	While	you,
as	a	person,	can	obviously	put	anything	you	want	into	the	file,	if	you	want	the	output	to	look
right	you	need	to	follow	the	rules	that	browsers	expect.

One	of	those	rules	is	that	each	file	should	contain	one,	and	only	one,	HTML	document.
That's	all	of	the	content	between	the		<HTML>		tag	and	the		</HTML>		tag	(tag	names	aren't
case-sensitive,	and	it's	common	to	see	them	in	all-lowercase	as	in	the	example	above).	I
mention	this	because	one	of	the	most	common	things	I'll	see	folks	do	in	PowerShell	looks
something	like	this:

Get-WmiObject	-class	Win32_OperatingSystem	|	ConvertTo-HTML	|	Out-File	report.html

Get-WmiObject	-class	Win32_BIOS	|	ConvertTo-HTML	|	Out-File	report.html	-append

Get-WmiObject	-class	Win32_Service	|	ConvertTo-HTML	|	Out-File	report.html	-append

"Aaarrrggh,"	says	my	colon	every	time	I	see	that.	You're	basically	telling	PowerShell	to
create	three	complete	HTML	documents	and	jam	them	into	a	single	file.	While	some
browsers	(Internet	Explorer,	notable)	will	figure	that	out	and	display	something,	it's	just

Creating	HTML	Reports	in	PowerShell

6HTML	Report	Basics

wrong.	Once	you	start	getting	fancy	with	reports,	you'll	figure	out	pretty	quickly	that	this
approach	is	painful.	It	isn't	PowerShell's	fault;	you're	just	not	following	the	rules.	Hence	this
guide!

You'll	notice	that	the	HTML	consists	of	a	lot	of	other	tags,	too:		<TABLE>,	<TD>,	<HEAD>	,	and
so	on.	Most	of	these	are	paired,	meaning	they	come	in	an	opening	tag	like		<TD>		and	a
closing	tag	like		</TD>	.	The		<TD>		tag	represents	a	table	cell,	and	everything	between	those
tags	is	considered	the	contents	of	that	cell.

The		<HEAD>		section	is	important.	What's	inside	there	isn't	normally	visible	in	the	browser;
instead,	the	browser	focuses	on	what's	in	the		<BODY>		section.	The		<HEAD>		section	provides
additional	meta-data,	like	what	the	title	of	the	page	will	be	(as	displayed	in	the	browser's
window	title	bar	or	tab,	not	in	the	page	itself),	any	style	sheets	or	scripts	that	are	attached	to
the	page,	and	so	on.	We're	going	to	do	some	pretty	awesome	stuff	with	the		<HEAD>		section,
trust	me.

You'll	also	notice	that	this	HTML	is	pretty	"clean,"	as	opposed	to,	say,	the	HTML	output	by
Microsoft	Word.	This	HTML	doesn't	have	a	lot	of	visual	information	embedded	in	it,	like
colors	or	fonts.	That's	good,	because	it	follows	correct	HTML	practices	of	separating
formatting	information	from	the	document	structure.	It's	disappointing	at	first,	because	your
HTML	pages	look	really,	really	boring.	But	we're	going	to	fix	that,	also.

In	order	to	help	the	narrative	in	this	book	stay	focused,	I'm	going	to	start	with	a	single
example.	In	that	example,	we're	going	to	retrieve	multiple	bits	of	information	about	a	remote
computer,	and	format	it	all	into	a	pretty,	dynamic	HTML	report.	Hopefully,	you'll	be	able	to
focus	on	the	techniques	I'm	showing	you,	and	adapt	those	to	your	own	specific	needs.

In	my	example,	I	want	the	report	to	have	five	sections,	each	with	the	following	information:

Computer	Information

The	computer's	operating	system	version,	build	number,	and	service	pack	version.

Hardware	info:	the	amount	of	installed	RAM	and	number	of	processes,	along	with	the
manufacturer	and	model.

An	list	of	all	processes	running	on	the	machine.

A	list	of	all	services	which	are	set	to	start	automatically,	but	which	aren't	running.

Information	about	all	physical	network	adapters	in	the	computer.	Not	IP	addresses,
necessarily	-	hardware	information	like	MAC	address.

I	realize	this	isn't	a	universally-interesting	set	of	information,	but	these	sections	will	allow	be
to	demonstrate	some	specific	techniques.	Again,	I'm	hoping	that	you	can	adapt	these	to	your
precise	needs.

Creating	HTML	Reports	in	PowerShell

7HTML	Report	Basics

Creating	HTML	Reports	in	PowerShell

8HTML	Report	Basics

Gathering	the	Information
I'm	a	big	fan	of	modular	programming.	Big,	big	fan.	With	that	in	mind,	I	tend	to	write
functions	that	gather	the	information	I	want	to	be	in	my	report	-	and	I'll	usually	do	one
function	per	major	section	of	my	report.	You'll	see	in	a	bit	how	that's	beneficial.	By	writing
each	function	individually,	I	make	it	easier	to	use	that	same	information	in	other	tasks,	and	I
make	it	easier	to	debug	each	one.	The	trick	is	to	have	each	function	output	a	single	type	of
object	that	combines	all	of	the	information	for	that	report	section.	I've	created	five	functions,
which	I've	pasted	into	a	single	script	file.	I'll	give	you	each	of	those	functions	one	at	a	time,
with	a	brief	commentary	for	each.	Here's	the	first:

function	Get-InfoOS	{

				[CmdletBinding()]

				param(

								[Parameter(Mandatory=$True)][string]$ComputerName

)

				$os	=	Get-WmiObject	-class	Win32_OperatingSystem	-ComputerName	$ComputerName

				$props	=	@{'OSVersion'=$os.version;

															'SPVersion'=$os.servicepackmajorversion;

															'OSBuild'=$os.buildnumber}

				New-Object	-TypeName	PSObject	-Property	$props

}

This	is	a	straightforward	function,	and	the	main	reason	I	bothered	to	even	make	it	a	function
-	as	opposed	to	just	using	Get-WmiObject	directly	-	is	that	I	want	different	property	names,
like	"OSVersion"	instead	of	just	"Version."	That	said,	I	tend	to	follow	this	exact	same
programming	pattern	for	all	info-retrieval	functions,	just	to	keep	them	consistent.

function	Get-InfoCompSystem	{

				[CmdletBinding()]

				param(

								[Parameter(Mandatory=$True)][string]$ComputerName

)

				$cs	=	Get-WmiObject	-class	Win32_ComputerSystem	-ComputerName	$ComputerName

				$props	=	@{'Model'=$cs.model;

															'Manufacturer'=$cs.manufacturer;

															'RAM	(GB)'="{0:N2}"	-f	($cs.totalphysicalmemory	/	1GB);

															'Sockets'=$cs.numberofprocessors;

															'Cores'=$cs.numberoflogicalprocessors}

				New-Object	-TypeName	PSObject	-Property	$props

}

Creating	HTML	Reports	in	PowerShell

9Gathering	the	Information

Very	similar	to	the	last	one.	You'll	notice	here	that	I'm	using	the	-f	formatting	operator	with
the	RAM	property,	so	that	I	get	a	value	in	gigabytes	with	2	decimal	places.	The	native	value
is	in	bytes,	which	isn't	useful	for	me.

function	Get-InfoBadService	{

				[CmdletBinding()]

				param(

								[Parameter(Mandatory=$True)][string]$ComputerName

)

				$svcs	=	Get-WmiObject	-class	Win32_Service	-ComputerName	$ComputerName	`

											-Filter	"StartMode='Auto'	AND	State<>'Running'"

				foreach	($svc	in	$svcs)	{

								$props	=	@{'ServiceName'=$svc.name;

																			'LogonAccount'=$svc.startname;

																			'DisplayName'=$svc.displayname}

								New-Object	-TypeName	PSObject	-Property	$props

				}

}

Here,	I've	had	to	recognize	that	I'll	be	getting	back	more	than	one	object	from	WMI,	so	I
have	to	enumerate	through	them	using	a	ForEach	construct.	Again,	I'm	primarily	just
renaming	properties.	I	absolutely	could	have	done	that	with	a	Select-Object	command,	but	I
like	to	keep	the	overall	function	structure	similar	to	my	other	functions.	Just	a	personal
preference	that	helps	me	include	fewer	bugs,	since	I'm	used	to	doing	things	this	way.

function	Get-InfoProc	{

				[CmdletBinding()]

				param(

								[Parameter(Mandatory=$True)][string]$ComputerName

)

				$procs	=	Get-WmiObject	-class	Win32_Process	-ComputerName	$ComputerName

				foreach	($proc	in	$procs)	{	

								$props	=	@{'ProcName'=$proc.name;

																			'Executable'=$proc.ExecutablePath}

								New-Object	-TypeName	PSObject	-Property	$props

				}

}

Very	similar	to	the	function	for	services.	You	can	probably	start	to	see	how	using	this	same
structure	makes	a	certain	amount	of	copy-and-paste	pretty	effective	when	I	create	a	new
function.

Creating	HTML	Reports	in	PowerShell

10Gathering	the	Information

function	Get-InfoNIC	{

				[CmdletBinding()]

				param(

								[Parameter(Mandatory=$True)][string]$ComputerName

)

				$nics	=	Get-WmiObject	-class	Win32_NetworkAdapter	-ComputerName	$ComputerName	`

											-Filter	"PhysicalAdapter=True"

				foreach	($nic	in	$nics)	{						

								$props	=	@{'NICName'=$nic.servicename;

																			'Speed'=$nic.speed	/	1MB	-as	[int];

																			'Manufacturer'=$nic.manufacturer;

																			'MACAddress'=$nic.macaddress}

								New-Object	-TypeName	PSObject	-Property	$props

				}

}

The	main	thing	of	note	here	is	how	I've	converted	the	speed	property,	which	is	natively	in
bytes,	to	megabytes.	Because	I	don't	care	about	decimal	places	here	(I	want	a	whole
number),	casting	the	value	as	an	integer,	by	using	the	-as	operator,	is	easier	for	me	than	the
-f	formatting	operator.	Also,	it	gives	me	a	chance	to	show	you	this	technique!

Note	that,	for	the	purposes	of	this	book,	I'm	going	to	be	putting	these	functions	into	the	same
script	file	as	the	rest	of	my	code,	which	actually	generates	the	HTML.	I	don't	normally	do
that.	Normally,	info-retrieval	functions	go	into	a	script	module,	and	I	then	write	my	HTML-
generation	script	to	load	that	module.	Having	the	functions	in	a	module	makes	them	easier
to	use	elsewhere,	if	I	want	to.	I'm	skipping	the	module	this	time	just	to	keep	things	simpler
for	this	demonstration.	If	you	want	to	learn	more	about	script	modules,	pick	up	Learn
PowerShell	Toolmaking	in	a	Month	of	Lunches	or	PowerShell	in	Depth,	both	of	which	are
available	from	Manning.com.

Creating	HTML	Reports	in	PowerShell

11Gathering	the	Information

Building	the	HTML
I'm	going	to	abandon	the	native	ConvertTo-HTML	cmdlet	that	I've	discussed	so	far,	Instead,
I'm	going	to	ask	you	to	use	the	EnhancedHTML2	module	that	comes	with	this	ebook.	Note
that,	as	of	October	2013,	this	is	a	new	version	of	the	module	-	it's	simpler	than	the
EnhancedHTML	module	I	introduced	with	the	original	edition	of	this	book.

Let's	start	with	the	script	that	actually	uses	the	module.	It's	included	with	this	book	as
EnhancedHTML2-Demo.ps1,	so	herein	I'm	going	to	paste	the	whole	thing,	and	then	insert
explanations	about	what	each	bit	does.	Note	that	I	can't	control	how	the	code	will	line-wrap
in	an	e-reader,	so	it	might	look	wacky.

#requires	-module	EnhancedHTML2

<#

.SYNOPSIS

Generates	an	HTML-based	system	report	for	one	or	more	computers.

Each	computer	specified	will	result	in	a	separate	HTML	file;	

specify	the	-Path	as	a	folder	where	you	want	the	files	written.

Note	that	existing	files	will	be	overwritten.

.PARAMETER	ComputerName

One	or	more	computer	names	or	IP	addresses	to	query.

.PARAMETER	Path

The	path	of	the	folder	where	the	files	should	be	written.

.PARAMETER	CssPath

The	path	and	filename	of	the	CSS	template	to	use.	

.EXAMPLE

.\New-HTMLSystemReport	-ComputerName	ONE,TWO	`

																							-Path	C:\Reports\	

#>

[CmdletBinding()]

param(

				[Parameter(Mandatory=$True,

															ValueFromPipeline=$True,

															ValueFromPipelineByPropertyName=$True)]

				[string[]]$ComputerName,

				[Parameter(Mandatory=$True)]

				[string]$Path

)

Creating	HTML	Reports	in	PowerShell

12Building	the	HTML

The	above	section	tells	us	that	this	is	an	"advanced	script,"	meaning	it	uses	PowerShell's
cmdlet	binding.	You	can	specify	one	or	more	computer	names	to	report	from,	and	you	must
specify	a	folder	path	(not	a	filename)	in	which	to	store	the	final	reports.

BEGIN	{

				Remove-Module	EnhancedHTML2

				Import-Module	EnhancedHTML2

}

The	BEGIN	block	can	technically	be	removed.	I	use	this	demo	to	test	the	module,	so	it's
important	that	it	unload	any	old	version	from	memory	and	then	re-load	the	revised	version.	In
production	you	don't	need	to	do	the	removal.	In	fact,	PowerShell	v3	and	later	won't	require
the	import,	either,	if	the	module	is	properly	located	in
	\Documents\WindowsPowerShell\Modules\EnhancedHTML2	.

PROCESS	{

$style	=	@"

<style>

body	{

				color:#333333;

				font-family:Calibri,Tahoma;

				font-size:	10pt;

}

h1	{

				text-align:center;

}

h2	{

				border-top:1px	solid	#666666;

}

th	{

				font-weight:bold;

				color:#eeeeee;

				background-color:#333333;

				cursor:pointer;

}

.odd		{	background-color:#ffffff;	}

.even	{	background-color:#dddddd;	}

.paginate_enabled_next,	.paginate_enabled_previous	{

				cursor:pointer;	

				border:1px	solid	#222222;	

				background-color:#dddddd;	

				padding:2px;	

Creating	HTML	Reports	in	PowerShell

13Building	the	HTML

				margin:4px;

				border-radius:2px;

}

.paginate_disabled_previous,	.paginate_disabled_next	{

				color:#666666;	

				cursor:pointer;

				background-color:#dddddd;	

				padding:2px;	

				margin:4px;

				border-radius:2px;

}

.dataTables_info	{	margin-bottom:4px;	}

.sectionheader	{	cursor:pointer;	}

.sectionheader:hover	{	color:red;	}

.grid	{	width:100%	}

.red	{

				color:red;

				font-weight:bold;

}	

</style>

"@

That's	called	a	Cascading	Style	Sheet,	or	CSS.	There	are	a	few	cool	things	to	pull	out	from
this:

I've	jammed	the	entire		<style></style>		section	into	a	here-string,	and	stored	that	in	the
variable	$style.	That'll	make	it	easy	to	refer	to	this	later.

Notice	that	I've	defined	styling	for	several	HTML	tags,	such	as	H1,	H2,	BODY,	and	TH.
Those	style	definitions	list	the	tag	name	without	a	preceding	period	or	hash	sign.	Inside	curly
brackets,	you	define	the	style	elements	you	care	about,	such	as	font	size,	text	alignment,
and	so	on.	Tags	like	H1	and	H2	already	have	predefined	styles	set	by	your	browser,	like	their
font	size;	anything	you	put	in	the	CSS	will	override	the	browser	defaults.

Styles	also	inherit.	The	entire	body	of	the	HTML	page	is	contained	within	the		<BODY></BODY>	
tags,	so	whatever	you	assign	to	the	BODY	tag	in	the	CSS	will	also	apply	to	everything	in	the
page.	My	body	sets	a	font	family	and	a	font	color;	H1	and	H2	tags	will	use	the	same	font	and
color.

You'll	also	see	style	definitions	preceded	by	a	period.	Those	are	called	class	styles,	and	I
made	them	up	out	of	thin	air.	These	are	sort	of	reusable	style	templates	that	can	be	applied
to	any	element	within	the	page.	The	".paginate"	ones	are	actually	used	by	the	JavaScript	I

Creating	HTML	Reports	in	PowerShell

14Building	the	HTML

use	to	create	dynamic	tables;	I	didn't	like	the	way	its	Prev/Next	buttons	looked	out	of	the
box,	so	I	modified	my	CSS	to	apply	different	styles.

Pay	close	attention	to	.odd,	.even,	and	.red	in	the	CSS.	I	totally	made	those	up,	and	you'll
see	me	use	them	in	a	bit.

function	Get-InfoOS	{

				[CmdletBinding()]

				param(

								[Parameter(Mandatory=$True)][string]$ComputerName

)

				$os	=	Get-WmiObject	-class	Win32_OperatingSystem	-ComputerName	$ComputerName

				$props	=	@{'OSVersion'=$os.version

															'SPVersion'=$os.servicepackmajorversion;

															'OSBuild'=$os.buildnumber}

				New-Object	-TypeName	PSObject	-Property	$props

}

function	Get-InfoCompSystem	{

				[CmdletBinding()]

				param(

								[Parameter(Mandatory=$True)][string]$ComputerName

)

				$cs	=	Get-WmiObject	-class	Win32_ComputerSystem	-ComputerName	$ComputerName

				$props	=	@{'Model'=$cs.model;

															'Manufacturer'=$cs.manufacturer;

															'RAM	(GB)'="{0:N2}"	-f	($cs.totalphysicalmemory	/	1GB);

															'Sockets'=$cs.numberofprocessors;

															'Cores'=$cs.numberoflogicalprocessors}

				New-Object	-TypeName	PSObject	-Property	$props

}

function	Get-InfoBadService	{

				[CmdletBinding()]

				param(

								[Parameter(Mandatory=$True)][string]$ComputerName

)

				$svcs	=	Get-WmiObject	-class	Win32_Service	-ComputerName	$ComputerName	`

											-Filter	"StartMode='Auto'	AND	State<>'Running'"

				foreach	($svc	in	$svcs)	{

								$props	=	@{'ServiceName'=$svc.name;

																			'LogonAccount'=$svc.startname;

																			'DisplayName'=$svc.displayname}

								New-Object	-TypeName	PSObject	-Property	$props

				}

}

function	Get-InfoProc	{

				[CmdletBinding()]

				param(

								[Parameter(Mandatory=$True)][string]$ComputerName

)

Creating	HTML	Reports	in	PowerShell

15Building	the	HTML

				$procs	=	Get-WmiObject	-class	Win32_Process	-ComputerName	$ComputerName

				foreach	($proc	in	$procs)	{	

								$props	=	@{'ProcName'=$proc.name;

																			'Executable'=$proc.ExecutablePath}

								New-Object	-TypeName	PSObject	-Property	$props

				}

}

function	Get-InfoNIC	{

				[CmdletBinding()]

				param(

								[Parameter(Mandatory=$True)][string]$ComputerName

)

				$nics	=	Get-WmiObject	-class	Win32_NetworkAdapter	-ComputerName	$ComputerName	`

											-Filter	"PhysicalAdapter=True"

				foreach	($nic	in	$nics)	{						

								$props	=	@{'NICName'=$nic.servicename;

																			'Speed'=$nic.speed	/	1MB	-as	[int];

																			'Manufacturer'=$nic.manufacturer;

																			'MACAddress'=$nic.macaddress}

								New-Object	-TypeName	PSObject	-Property	$props

				}

}

function	Get-InfoDisk	{

				[CmdletBinding()]

				param(

								[Parameter(Mandatory=$True)][string]$ComputerName

)

				$drives	=	Get-WmiObject	-class	Win32_LogicalDisk	-ComputerName	$ComputerName	`

											-Filter	"DriveType=3"

				foreach	($drive	in	$drives)	{						

								$props	=	@{'Drive'=$drive.DeviceID;

																			'Size'=$drive.size	/	1GB	-as	[int];

																			'Free'="{0:N2}"	-f	($drive.freespace	/	1GB);

																			'FreePct'=$drive.freespace	/	$drive.size	*	100	-as	[int]}

								New-Object	-TypeName	PSObject	-Property	$props	

				}

}

The	preceding	six	functions	do	nothing	but	retrieve	data	from	a	single	computer	(notice	that
their	-ComputerName	parameter	is	defined	as		[string]	,	accepting	one	value,	rather	than
	[string[]]		which	would	accept	multiples).	If	you	can't	figure	out	how	these	work...	you
probably	need	to	step	back	a	bit!

For	formatting	purposes	in	this	book,	you're	seeing	me	use	the	back	tick	character	(like	after
	-ComputerName	$ComputerName).	That	escapes	the	carriage	return	right	after	it,	turning	it	into	a
kind	of	line-continuation	character.	I	point	it	out	because	it's	easy	to	miss,	being	such	a	tiny
character.

Creating	HTML	Reports	in	PowerShell

16Building	the	HTML

foreach	($computer	in	$computername)	{

				try	{

								$everything_ok	=	$true

								Write-Verbose	"Checking	connectivity	to	$computer"

								Get-WmiObject	-class	Win32_BIOS	-ComputerName	$Computer	-EA	Stop	|	Out-Null

				}	catch	{

								Write-Warning	"$computer	failed"

								$everything_ok	=	$false

				}

The	above	kicks	off	the	main	body	of	my	demo	script.	It's	taking	whatever	computer	names
were	passed	to	the	script's		-ComputerName		parameter,	and	going	through	them	one	at	a
time.	It's	making	a	call	to		Get-WmiObject		as	a	test	-	if	this	fails,	I	don't	want	to	do	anything
with	the	current	computer	name	at	all.	The	remainder	of	the	script	only	runs	if	that	WMI	call
succeeds.

	if	($everything_ok)	{

								$filepath	=	Join-Path	-Path	$Path	-ChildPath	"$computer.html"

Remember	that	this	script's	other	parameter	is		-Path	.	I'm	using		Join-Path		to	combine
	$Path		with	a	filename.		Join-Path		ensures	the	right	number	of	backslashes,	so	that	if		-
Path		is	"C:"	or	"C:\"	I'll	get	a	valid	file	path.	The	filename	will	be	the	current	computer's
name,	followed	by	the	.html	filename	extension.

								$params	=	@{'As'='List';

																				'PreContent'='<h2>OS</h2>'}

								$html_os	=	Get-InfoOS	-ComputerName	$computer	|

																			ConvertTo-EnhancedHTMLFragment	@params

Here's	my	first	use	of	the	EnhancedHTML2	module:	The	ConvertTo-
EnhancedHTMLFragment.	Notice	what	I'm	doing:

1.	 I'm	using	a	hashtable	to	define	the	command	parameters,	including	both	-As	List	and	-
PreContent	'	<h2>OS</h2>	'	as	parameters	and	their	values.	This	specifies	a	list-style
output	(vs.	a	table),	preceded	by	the	heading	"OS"	in	the	H2	style.	Glance	back	at	the
CSS,	and	you'll	see	I've	applied	a	top	border	to	all		<H2>		element,	which	will	help
visually	separate	my	report	sections.

2.	 I'm	running	my	Get-InfoOS	command,	passing	in	the	current	computer	name.	The
output	is	being	piped	to...

3.	 ConvertTo-EnhancedHTMLFragment,	which	is	being	given	my	hashtable	of	parameters.
The	result	will	be	a	big	string	of	HTML,	which	will	be	stored	in	$html_os.

Creating	HTML	Reports	in	PowerShell

17Building	the	HTML

								$params	=	@{'As'='List';

																				'PreContent'='<h2>Computer	System</h2>'}

								$html_cs	=	Get-InfoCompSystem	-ComputerName	$computer	|

																			ConvertTo-EnhancedHTMLFragment	@params

That's	a	very	similar	example,	for	the	second	section	of	my	report.

								$params	=	@{'As'='Table';

																				'PreContent'='<h2>♦	Local	Disks</h2>';

																				'EvenRowCssClass'='even';

																				'OddRowCssClass'='odd';

																				'MakeTableDynamic'=$true;

																				'TableCssClass'='grid';

																				'Properties'='Drive',

															@{n='Size(GB)';e={$_.Size}},

															@{n='Free(GB)';e={$_.Free};css={if	($_.FreePct	-lt	80)	{	'red'	}}},

															@{n='Free(%)';e={$_.FreePct};css={if	($_.FreeePct	-lt	80)	{	'red'	}}}}

								$html_dr	=	Get-InfoDisk	-ComputerName	$computer	|

																			ConvertTo-EnhancedHTMLFragment	@params

OK,	that's	a	more	complex	example.	Let's	look	at	the	parameters	I'm	feeding	to	ConvertTo-
EnhancedHTMLFragment:

As	is	being	given	Table	instead	of	List,	so	this	output	will	be	in	a	columnar	table	layout
(a	lot	like	Format-Table	would	produce,	only	in	HTML).

For	my	section	header,	I've	added	a	diamond	symbol	using	the	HTML	♦	entity.	I	think	it
looks	pretty.	That's	all.

Since	this	will	be	a	table,	I	get	to	specify	-EvenRowCssClass	and	-OddRowCssClass.
I'm	giving	them	the	values	"even"	and	"odd,"	which	are	the	two	classes	(.even	and	.odd)
I	defined	in	my	CSS.	See,	this	is	creating	the	link	between	those	table	rows	and	my
CSS.	Any	table	row	"tagged"	with	the	"odd"	class	will	inherit	the	formatting	of	".odd"
from	my	CSS.	You	don't	include	the	period	when	specifying	the	class	names	with	these
parameters;	only	the	CSS	puts	a	period	in	front	of	the	class	name.

	-MakeTableDynamic		is	being	set	to	$True,	which	will	apply	the	JavaScript	necessary	to
turn	this	into	a	sortable,	paginated	table.	This	will	require	the	final	HTML	to	link	to	the
necessary	JavaScript	file,	which	I'll	cover	when	we	get	there.

	-TableCssClass		is	optional,	but	I'm	using	it	to	assign	the	class	"grid."	Again,	if	you	peek
back	at	the	CSS,	you'll	see	that	I	defined	a	style	for	".grid,"	so	this	table	will	inherit	those
style	instructions.

Creating	HTML	Reports	in	PowerShell

18Building	the	HTML

Last	up	is	the		-Properties		parameter.	This	works	a	lot	like	the		-Properties	
parameters	of		Select-Object		and		Format-Table	.	The	parameter	accepts	a	comma-
separated	list	of	properties.	The	first,	Drive,	is	already	being	produced	by		Get-
InfoDisk	.	The	next	three	are	special:	they're	hashtables,	creating	custom	columns	just
like	Format-Table	would	do.	Within	the	hashtable,	you	can	use	the	following	keys:

n	(or	name,	or	l,	or	label)	specifies	the	column	header	-	I'm	using	"Size(GB),"
"Free(GB)",	and	"Free(%)"	as	column	headers.

e	(or	expression)	is	a	script	block,	which	defines	what	the	table	cell	will	contain.
Within	it,	you	can	use	$_	to	refer	to	the	piped-in	object.	In	this	example,	the	piped-in
object	comes	from	Get-InfoDisk,	so	I'm	referring	to	the	object's	Size,	Free,	and
FreePct	properties.

css	(or	cssClass)	is	also	a	script	block.	While	the	rest	of	the	keys	work	the	same	as
they	do	with	Select-Object	or	Format-Table,	css	(or	cssClass)	is	unique	to
ConvertTo-EnhancedHTMLFragment.	It	accepts	a	script	block,	which	is	expected	to
produce	either	a	string,	or	nothing	at	all.	In	this	case,	I'm	checking	to	see	if	the
piped-in	object's	FreePct	property	is	less	than	80	or	not.	If	it	is,	I	output	the	string
"red."	That	string	will	be	added	as	a	CSS	class	of	the	table	cell.	Remember,	back	in
my	CSS	I	defined	the	class	".red"	and	this	is	where	I'm	attaching	that	class	to	table
cells.

As	a	note,	I	realize	it's	silly	to	color	it	red	when	the	disk	free	percent	is	less	than
80%.	It's	just	a	good	example	to	play	with.	You	could	easily	have	a	more	complex
formula,	like	if	($\.FreePct	-lt	20)	{	'red'	}	elseif	($_.FreePct	-lt	40)	{	'yellow'	}	else	{
'green'	}_	-	that	would	assume	you'd	defined	the	classes	".red"	and	".yellow"	and
".green"	in	your	CSS.

$params	=	@{'As'='Table';

																										'PreContent'='<h2>♦	Processes</h2>';

																										'MakeTableDynamic'=$true;

																										'TableCssClass'='grid'}

$html_pr	=	Get-InfoProc	-ComputerName	$computer	|

																														ConvertTo-EnhancedHTMLFragment	@params	

$params	=	@{'As'='Table';

																										'PreContent'='<h2>♦	Services	to	Check</h2>';

																										'EvenRowCssClass'='even';

																										'OddRowCssClass'='odd';

																										'MakeHiddenSection'=$true;

																										'TableCssClass'='grid'}

	$html_sv	=	Get-InfoBadService	-ComputerName	$computer	|

																															ConvertTo-EnhancedHTMLFragment	@params

Creating	HTML	Reports	in	PowerShell

19Building	the	HTML

More	of	the	same	in	the	above	two	examples,	with	just	one	new	parameter:	-
MakeHiddenSection.	This	will	cause	that	section	of	the	report	to	be	collapsed	by	default,
displaying	only	the	-PreContent	string.	Clicking	on	the	string	will	expand	and	collapse	the
report	section.

Notice	way	back	in	my	CSS	that,	for	the	class	.sectionHeader,	I	set	the	cursor	to	a	pointer
icon,	and	made	the	section	text	color	red	when	the	mouse	hovers	over	it.	That	helps	cue	the
user	that	the	section	header	can	be	clicked.	The	EnhancedHTML2	module	always	adds	the
CSS	class	"sectionheader"	to	the	-PreContent,	so	by	defining	".sectionheader"	in	your	CSS,
you	can	further	style	the	section	headers.

								$params	=	@{'As'='Table';

																				'PreContent'='<h2>♦	NICs</h2>';

																				'EvenRowCssClass'='even';

																				'OddRowCssClass'='odd';

																				'MakeHiddenSection'=$true;

																				'TableCssClass'='grid'}

								$html_na	=	Get-InfoNIC	-ComputerName	$Computer	|

																			ConvertTo-EnhancedHTMLFragment	@params

Nothing	new	in	the	above	snippet,	but	now	we're	ready	to	assemble	the	final	HTML:

								$params	=	@{'CssStyleSheet'=$style;

																				'Title'="System	Report	for	$computer";

																				'PreContent'="<h1>System	Report	for	$computer</h1>";

												'HTMLFragments'=@($html_os,$html_cs,$html_dr,$html_pr,$html_sv,$html_na);

																				'jQueryDataTableUri'='C:\html\jquerydatatable.js';

																				'jQueryUri'='C:\html\jquery.js'}

								ConvertTo-EnhancedHTML	@params	|

								Out-File	-FilePath	$filepath

								<#

								$params	=	@{'CssStyleSheet'=$style;

																				'Title'="System	Report	for	$computer";

																				'PreContent'="<h1>System	Report	for	$computer</h1>";

												'HTMLFragments'=@($html_os,$html_cs,$html_dr,$html_pr,$html_sv,$html_na)}

								ConvertTo-EnhancedHTML	@params	|

								Out-File	-FilePath	$filepath

								#>

				}

}

}

The	uncommented	code	and	commented	code	both	do	the	same	thing.	The	first	one,
uncommented,	sets	a	local	file	path	for	the	two	required	JavaScript	files.	The	commented
one	doesn't	specify	those	parameters,	so	the	final	HTML	defaults	to	pulling	the	JavaScript

Creating	HTML	Reports	in	PowerShell

20Building	the	HTML

from	Microsoft's	Web-based	Content	Delivery	Network	(CDN).	In	both	cases:

-CssStyleSheet	specifies	my	CSS	-	I'm	feeding	it	my	predefined	$style	variable.	You
could	also	link	to	an	external	style	sheet	(there's	a	different	parameter,	-CssUri,	for	that),
but	having	the	style	embedded	in	the	HTML	makes	it	more	self-contained.

-Title	specifies	what	will	be	displayed	in	the	browser	title	bar	or	tab.

-PreContent,	which	I'm	defining	using	the	HTML		<H1>		tags,	will	appear	at	the	tippy-top
of	the	report.	There's	also	a	-PostContent	if	you	want	to	add	a	footer.

-HTMLFragments	wants	an	array	(hence	my	use	of	@()	to	create	an	array)	of	HTML
fragments	produced	by	ConvertTo-EnhancedHTMLFragment.	I'm	feeding	it	the	6	HTML
report	sections	I	created	earlier.

The	final	result	is	piped	out	to	the	file	path	I	created	earlier.	The	result:

Creating	HTML	Reports	in	PowerShell

21Building	the	HTML

I	have	my	two	collapsed	sections	last.	Notice	that	the	process	list	is	paginated,	with
Previous/Next	buttons,	and	notice	that	my	80%-free	disk	is	highlighted	in	red.	The	tables
show	10	entries	by	default,	but	can	be	made	larger,	and	they	offer	a	built-in	search	box.
Column	headers	are	clickable	for	sorting	purposes.

Frankly,	I	think	it's	pretty	terrific!

Creating	HTML	Reports	in	PowerShell

22Building	the	HTML

Combining	HTML	Reports	and	a	GUI
Application
I've	had	a	number	of	folks	ask	questions	in	the	forums	at	PowerShell.org,	with	the	theme	of
"how	can	I	use	a	RichTextBox	in	a	Windows	GUI	application	to	display	nicely	formatted
data?"	My	answer	is	don't.	Use	HTML	instead.	For	example,	let's	say	you	followed	the
examples	in	the	previous	chapter	and	produced	a	beautiful	HTML	report.	Keep	in	mind	that
the	report	stays	"in	memory,"	not	in	a	text	file,	until	the	very	end:

						$params	=	@{'CssStyleSheet'=$style;

																				'Title'="System	Report	for	$computer";

																				'PreContent'="<h1>System	Report	for	$computer</h1>";

																				'CssIdsToMakeDataTables'=@('tableProc','tableNIC','tableSvc');

																				'HTMLFragments'=@($html_os,$html_cs,$html_pr,$html_sv,$html_na)}

								ConvertTo-EnhancedHTML	@params	|

								Out-File	-FilePath	$filepath

For	the	sake	of	illustration,	let's	say	that's	now	in	a	file	named	C:\Report.html.	I'm	going	to
use	SAPIEN's	PowerShell	Studio	2012	to	display	that	report	in	a	GUI,	rather	than	popping	it
up	in	a	Web	browser.	Here,	I've	started	a	simple,	single-form	project.	I've	changed	the	text	of
the	form	to	"Report,"	and	I've	added	a	WebBrowser	control	from	the	toolbox.	That	control
automatically	fills	the	entire	form,	which	is	perfect.	I	named	the	WebBrowser	control	"web,"
which	makes	it	accessible	from	code	via	the	variable	$web.

I'll	note	that	PowerShell	Studio	2012	is	very	out-of-date	at	this	point,	but	you	should	still	get
the	general	idea.

Creating	HTML	Reports	in	PowerShell

23Combining	HTML	Reports	and	a	GUI	Application

I	expect	you'd	make	a	form	like	this	part	of	a	larger	overall	project,	but	I'm	just	focusing	on
how	to	do	this	one	bit.	So	I'll	have	the	report	load	into	the	WebBrowser	control	when	this
form	loads:

$OnLoadFormEvent={

#TODO:	Initialize	Form	Controls	here

				$web.Navigate('file://C:\report.html')

}

Now	I	can	run	the	project:

Creating	HTML	Reports	in	PowerShell

24Combining	HTML	Reports	and	a	GUI	Application

I	get	a	nice	pop-up	dialog	that	displays	the	HTML	report.	I	can	resize	it,	minimize	it,
maximize	it,	and	close	it	using	the	standard	buttons	on	the	window's	title	bar.	Easy,	and	it
only	took	5	minutes	to	create.

Creating	HTML	Reports	in	PowerShell

25Combining	HTML	Reports	and	a	GUI	Application

Contacting	me
If	you're	having	problems,	want	to	do	something	and	can't	figure	out	how,	found	a	bug	and
want	to	offer	a	correction,	or	just	have	feedback	on	this	guide	or	the	EnhancedHTML
module,	I'd	love	to	hear	from	you.

The	easiest	way	is	to	post	in	the	"General	Q&A"	forum	on	http://powershell.org/wp/forums/.	I
keep	a	pretty	close	eye	on	that,	and	I'll	respond	as	soon	as	I'm	able.

Do	check	back	from	time	to	time,	to	make	sure	you've	got	the	most	recent	version	of	this
guide	and	its	code.

Creating	HTML	Reports	in	PowerShell

26Contacting	Me

http://powershell.org/wp/forums/

	ReadMe
	Introduction
	HTML Report Basics
	Gathering the Information
	Building the HTML
	Combining HTML Reports and a GUI Application
	Contacting Me

