

0

1

2

3

4

5

6

7

8

Table	of	Contents
ReadMe

About	this	Book

Remoting	Basics

Accessing	Remote	Computers

Working	with	Endpoints,	AKA	Session	Configurations

Diagnostics	and	Troubleshooting

Session	Management

PowerShell	Remoting	and	Security

Configuring	Remoting	via	GPO

Secrets	of	PowerShell	Remoting

2

Introduced	in	Windows	PowerShell	2.0,	Remoting	is	one	of	PowerShell's	most	useful,	and
most	important,	core	technologies.	It	enables	you	to	run	almost	any	command	that	exists	on
a	remote	computer,	opening	up	a	universe	of	possibilities	for	bulk	and	remote	administration.
Remoting	underpins	other	technologies,	including	Workflow,	Desired	State	Configuration,
certain	types	of	background	jobs,	and	much	more.	This	guide	isn't	intended	to	be	a	complete
document	of	what	Remoting	is	and	does,	although	it	does	provide	a	good	introduction.
Instead,	this	guide	is	designed	to	document	all	the	little	configuration	details	that	don't
appear	to	be	documented	elsewhere.

Secrets	of	PowerShell	Remoting

3ReadMe

Secrets	of	PowerShell	Remoting
Principle	author:	Don	Jones	Contributing	author:	Dr.	Tobias	Weltner	With	contributions	by
Dave	Wyatt	and	Aleksandar	Nikolik	Cover	design	by	Nathan	Vonnahme

Introduced	in	Windows	PowerShell	2.0,	Remoting	is	one	of	PowerShell's	most	useful,	and
most	important,	core	technologies.	It	enables	you	to	run	almost	any	command	that	exists	on
a	remote	computer,	opening	up	a	universe	of	possibilities	for	bulk	and	remote	administration.
Remoting	underpins	other	technologies,	including	Workflow,	Desired	State	Configuration,
certain	types	of	background	jobs,	and	much	more.	This	guide	isn't	intended	to	be	a	complete
document	of	what	Remoting	is	and	does,	although	it	does	provide	a	good	introduction.
Instead,	this	guide	is	designed	to	document	all	the	little	configuration	details	that	don't
appear	to	be	documented	elsewhere.

This	guide	is	released	under	the	Creative	Commons	Attribution-NoDerivs	3.0	Unported
License.	The	authors	encourage	you	to	redistribute	this	file	as	widely	as	possible,	but	ask
that	you	do	not	modify	the	document.

Was	this	book	helpful?	The	author(s)	kindly	ask(s)	that	you	make	a	tax-deductible	(in	the
US;	check	your	laws	if	you	live	elsewhere)	donation	of	any	amount	to	The	DevOps
Collective	to	support	their	ongoing	work.

Check	for	Updates!	Our	ebooks	are	often	updated	with	new	and	corrected	content.	We
make	them	available	in	three	ways:

Our	main,	authoritative	GitHub	organization,	with	a	repo	for	each	book.	Visit
https://github.com/devops-collective-inc/
Our	GitBook	page,	where	you	can	browse	books	online,	or	download	as	PDF,	EPUB,	or
MOBI.	Using	the	online	reader,	you	can	link	to	specific	chapters.	Visit
https://www.gitbook.com/@devopscollective
On	LeanPub,	where	you	can	download	as	PDF,	EPUB,	or	MOBI	(login	required),	and
"purchase"	the	books	to	make	a	donation	to	DevOps	Collective.	You	can	also	choose	to
be	notified	of	updates.	Visit	https://leanpub.com/u/devopscollective

GitBook	and	LeanPub	have	slightly	different	PDF	formatting	output,	so	you	can	choose	the
one	you	prefer.	LeanPub	can	also	notify	you	when	we	push	updates.	Our	main	GitHub	repo
is	authoritative;	repositories	on	other	sites	are	usually	just	mirrors	used	for	the	publishing

Secrets	of	PowerShell	Remoting

4About	this	Book

https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://github.com/devops-collective-inc/
https://www.gitbook.com/@devopscollective
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://leanpub.com/u/devopscollective

process.	GitBook	will	usually	contain	our	latest	version,	including	not-yet-finished	bits;
LeanPub	always	contains	the	most	recent	"public	release"	of	any	book.

Secrets	of	PowerShell	Remoting

5About	this	Book

Remoting	Basics
Windows	PowerShell	2.0	introduced	a	powerful	new	technology,	Remoting,	which	was
refined	and	expanded	upon	for	PowerShell	3.0.	Based	primarily	upon	standardized	protocols
and	techniques,	Remoting	is	possibly	one	of	the	most	important	aspects	of	PowerShell:
future	Microsoft	products	will	rely	upon	it	almost	entirely	for	administrative	communications
across	a	network.

Unfortunately,	Remoting	is	also	a	complex	set	of	components,	and	while	Microsoft	has
attempted	to	provide	solid	guidance	for	using	it	in	a	variety	of	scenarios,	many
administrators	still	struggle	with	it.	This	"mini	e-book"	is	designed	to	help	you	better
understand	what	Remoting	is,	how	it	works,	and-most	importantly-how	to	use	it	in	a	variety
of	different	situations.

Note	This	guide	isn't	meant	to	replace	the	myriad	of	existing	books	that	cover	Remoting
basics,	such	as	Don's	own	Learn	Windows	PowerShell	in	a	Month	of	Lunches	(
http://MoreLunches.com)	or	PowerShell	in	Depth.	Instead,	this	guide	supplements	those	by
providing	step-by-step	instructions	for	many	of	the	"edge"	cases	in	Remoting,	and	by
explaining	some	of	the	more	unusual	Remoting	behaviors	and	requirements.

What	is	Remoting?
In	essence,	Remoting	enables	you	to	access	remote	machines	across	a	network	and
retrieve	data	from	or	execute	code	on	one	or	many	remote	computers.	This	is	not	a	new
idea,	and	in	the	past	a	number	of	different	remoting	technologies	have	evolved.	Some
cmdlets	have	traditionally	provided	their	own	limited	remoting	capabilities	while	the	majority
of	cmdlets	do	not	support	remoting	on	their	own.

With	PowerShell	remoting	there	is	finally	a	generic	remoting	environment	that	allows	remote
execution	for	literally	any	command	that	can	run	in	a	local	PowerShell.	So	instead	of	adding
remoting	capabilities	to	every	single	cmdlet	and	application,	you	simply	leave	it	to
PowerShell	to	transfer	your	PowerShell	code	to	the	target	computer(s),	execute	it	there,	and
then	marshal	back	the	results	to	you.

Throughout	this	eBook,	we	will	focus	on	PowerShell	remoting	and	not	cover	non-standard
private	remoting	capabilities	built	into	selected	cmdlets.

Examining	Remoting	Architecture

Secrets	of	PowerShell	Remoting

6Remoting	Basics

http://MoreLunches.com

As	shown	in	figure	1.1,	PowerShell's	generic	Remoting	architecture	consists	of	numerous
different,	interrelated	components	and	elements.

Figure	1.1:	The	elements	and	components	of	PowerShell	Remoting

Here	is	the	complete	list:

■	At	the	bottom	of	the	figure	is	your	computer,	or	more	properly	your	client.	This	is	where
you	physically	sit,	and	it's	where	you'll	initiate	most	of	your	Remoting	activities.

■	Your	computer	will	communicate	via	the	WS-MAN,	or	Web	Services	for	Management,
protocol.	This	is	an	HTTP(S)-based	protocol	that	can	encapsulate	a	variety	of	different
communications.	We've	illustrated	this	as	using	HTTP,	which	is	Remoting's	default
configuration,	but	it	could	just	as	easily	be	HTTPS.

Secrets	of	PowerShell	Remoting

7Remoting	Basics

■	On	the	remote	computer,	in	the	proper	terminology	the	server	(which	does	not	refer	to	the
operating	system),	the	Windows	Remote	Management	(WinRM)	service	runs.	This	service	is
configured	to	have	one	or	more	listeners.	Each	listener	waits	for	incoming	WS-MAN	traffic
on	a	specific	port,	each	bound	to	a	specific	protocol	(HTTP	or	HTTPS),	and	on	specific	IP
addresses	(or	all	local	addresses).

■	When	a	listener	receives	traffic,	the	WinRM	service	looks	to	see	which	endpoint	the	traffic
is	meant	for.	For	our	purposes,	an	endpoint	will	usually	be	launching	an	instance	of	Windows
PowerShell.	In	PowerShell	terms,	an	endpoint	is	also	called	a	session	configuration.	This	is
because,	in	addition	to	launching	PowerShell,	it	can	auto-load	scripts	and	modules,	place
restrictions	upon	what	can	be	done	by	the	connecting	user,	and	apply	additional	session
specific	settings	not	mentioned	here.

Note	Although	we	show	PowerShell.exe	in	our	diagram,	that's	for	illustration	purposes.
PowerShell.exe	is	the	PowerShell	console	application,	and	it	would	not	make	sense	to	have
this	running	as	a	background	process	on	a	remote	computer.	The	actual	process	is	called
Wsmprovhost.exe,	which	hosts	PowerShell	in	the	background	for	Remoting	connections.

As	you	can	see,	a	single	remote	computer	can	easily	have	dozens	or	even	hundreds	of
endpoints,	each	with	a	different	configuration.	PowerShell	3.0	sets	up	three	such	endpoints
by	default:	One	for	32-bit	PowerShell	(on	64-bit	systems),	the	default	PowerShell	endpoint
(which	is	64-bit	on	x64	systems),	and	one	for	PowerShell	Workflow.	Beginning	with	Windows
Server	2008	R2,	there	is	a	fourth	default	endpoint	for	Server	Manager	Workflow	tasks.

Enabling	Remoting
Most	client	versions	of	Windows,	beginning	with	Windows	Vista,	do	not	enable	incoming
Remoting	connections	by	default.	Newer	Windows	Server	versions	do,	but	older	versions
may	not.	So	your	first	step	with	Remoting	will	usually	be	to	enable	it	on	those	computers
which	you	want	to	receive	incoming	connections.	There	are	three	ways	to	enable	Remoting,
and	table	1.1	compares	what	is	achievable	with	each	of	them.

Table	1.1	Comparing	the	ways	of	enabling	remoting

Secrets	of	PowerShell	Remoting

8Remoting	Basics

Enable-
PSRemoting Group	Policy Manually	Step-by-Step

Set	WinRM	to
auto-start	and
start	the
service

Yes Yes Yes	-	use	Set-Service
and	Start-Service.

Configure
HTTP	listener Yes

You	can	configure
auto-registration	of
listeners,	not	create
custom	listeners

Yes	-	use	WSMAN
command-line	utility	and
WSMAN:	drive	in
PowerShell

Configure
HTTPS	listener No No

Yes	-	use	WSMAN
command-line	utility	and
WSMAN:	drive	in
PowerShell

Configure
endpoints	/
session
configurations

Yes No
Yes	-	use
PSSessionConfiguration
cmdlets

Configure
Windows
Firewall
exception

Yes* Yes*
Yes*	-	use	Firewall
cmdlets	or	Windows
Firewall	GUI

Note	Existing	client	versions	of	Windows,	such	as	Windows	Vista,	do	not	permit	firewall
exceptions	on	any	network	identified	as	"Public".	Networks	must	either	be	"Home"	or
"Work/Domain"	in	order	to	permit	exceptions.	In	PowerShell	3.0,	you	can	run	Enable-
PSRemoting	with	the	-SkipNetworkProfileCheck	switch	to	avoid	this	problem.

We'll	be	enabling	Remoting	in	our	test	environment	by	running	Enable-PSRemoting.	It's
quick,	easy,	and	comprehensive;	you'll	also	see	most	of	the	manual	tasks	performed	in	the
upcoming	sections.

Test	Environment
We'll	be	using	a	consistent	test	environment	throughout	the	following	sections;	this	was
created	on	six	virtual	machines	at	CloudShare.com,	and	is	configured	as	shown	in	figure
1.2.

Secrets	of	PowerShell	Remoting

9Remoting	Basics

Figure	1.2:	Test	environment	configuration

Some	important	notes:

■	.NET	Framework	v4	and	PowerShell	3.0	is	installed	on	all	computers.	Most	of	what	we'll
cover	also	applies	to	PowerShell	2.0.

■	As	shown,	most	computers	have	a	numeric	computer	name	(C2108222963,	and	so	on);
the	domain	controller	for	each	domain	(which	is	also	a	DNS	server)	has	CNAME	records
with	easier-to-remember	names.

■	Each	domain	controller	has	a	conditional	forwarder	set	up	for	the	other	domain,	so	that
machines	in	either	domain	can	resolve	computer	names	in	the	other	domain.

■	We	performed	all	tasks	as	a	member	of	the	Domain	Admins	group,	unless	noted
otherwise.

■	We	created	a	sixth,	completely	standalone	server	that	isn't	in	any	domain	at	all.	This	will
be	useful	for	covering	some	of	the	non-domain	situations	you	can	find	yourself	in	with
Remoting.

Caution	When	opening	PowerShell	on	a	computer	that	has	User	Account	Control	(UAC)
enabled,	make	sure	you	right-click	the	PowerShell	icon	and	select	Run	as	Administrator.	If
the	resulting	PowerShell	window's	title	bar	doesn't	begin	with	Administrator:	then	you	do

Secrets	of	PowerShell	Remoting

10Remoting	Basics

not	have	administrative	privileges.	You	can	check	permissions	programmatically	with	this
(whoami	/all	|	select-string	S-1-16-12288)	-ne	$null	from	the	PowerShell	console.	In	an
elevated	shell	True	is	returned,	otherwise	False	is.

Enabling	Remoting
We	began	by	running	Enable-PSRemoting	on	all	six	computers.	We	took	care	to	ensure	that
the	command	ran	without	error;	any	errors	at	this	point	are	a	signal	that	you	must	stop	and
resolve	the	error	before	attempting	to	proceed.	Figure	1.3	shows	the	expected	output.

Figure	1.3:	Expected	output	from	Enable-PSRemoting

Note:	You'll	notice	profligate	use	of	screen	shots	throughout	this	guide.	It	helps	ensure	that	I
don't	make	any	typos	or	copy/paste	errors	-	you're	seeing	exactly	what	we	typed	and	ran.

Running	Get-PSSessionConfiguration	should	reveal	the	three	or	four	endpoints	created	by
Enable-PSRemoting.	Figure	1.4	shows	the	expected	output	on	a	server.

Secrets	of	PowerShell	Remoting

11Remoting	Basics

Figure	1.4:	Expected	output	from	Get-PSSessionConfiguration

Note:	Figure	1.4	illustrates	that	you	can	expect	different	endpoints	to	be	configured	on
different	machines.	This	example	was	from	a	Windows	Server	2008	R2	computer,	which	has
fewer	endpoints	than	a	Windows	2012	machine.

It's	worth	taking	a	moment	to	quickly	test	the	Remoting	configuration.	For	computers	that	are
all	part	of	the	same	domain,	when	you're	logged	on	as	a	Domain	Admin	from	that	domain,
Remoting	should	"just	work."	Quickly	check	it	by	attempting	to	remote	from	one	computer	to
another	using	Enter-PSSession.

Note:	In	other	environments,	a	Domain	Admin	account	may	not	be	the	only	account	that	can
use	Remoting.	If	your	home	or	work	environment	has	additional	accounts	in	the	local
Administrators	group	as	standard	across	your	domain,	you	will	also	be	able	to	use	these
accounts	for	Remoting.

Figure	1.5	shows	the	expected	output,	in	which	we	also	ran	a	quick	Dir	command	and	then
exited	the	remote	session.

Secrets	of	PowerShell	Remoting

12Remoting	Basics

Figure	1.5:	Checking	remoting	connectivity	from	COMPANY.loc's	CLIENTA	to	the	DCA
domain	controller.

Caution:	If	you're	following	along	in	your	own	test	environment,	don't	proceed	until	you've
confirmed	Remoting	connectivity	between	two	computers	in	the	same	domain.	No	other
scenario	needs	to	work	right	now;	we'll	get	to	them	in	the	upcoming	sections.

Core	Remoting	Tasks
PowerShell	provides	for	two	principal	Remoting	use	cases.	The	first,	1-to-1	Remoting,	is
similar	in	nature	to	the	SSH	secure	shell	offered	on	UNIX	and	Linux	systems.	With	it,	you	get
a	command-line	prompt	on	a	single	remote	computer.	The	second,	1-to-Many	Remoting,
enables	you	to	send	a	command	(or	a	list	of	commands)	in	parallel	to	a	set	of	remote
computers.	There	are	also	a	couple	of	useful	secondary	techniques	we'll	look	at.

1-to-1	Remoting

The	Enter-PSSession	command	connects	to	a	remote	computer	and	gives	you	a	command-
line	prompt	on	that	computer.	You	can	run	whatever	commands	are	on	that	computer,
provided	you	have	permission	to	perform	that	task.	Note	that	you	are	not	creating	an
interactive	logon	session;	your	connection	will	be	audited	as	a	network	logon,	just	as	if	you

Secrets	of	PowerShell	Remoting

13Remoting	Basics

were	connecting	to	the	computer's	C$	administrative	share.	PowerShell	will	not	load	or
process	profile	scripts	on	the	remote	computer.	Any	scripts	that	you	choose	to	run	(and	this
includes	importing	script	modules)	will	only	work	if	the	remote	machine's	Execution	Policy
permits	it.

Enter-PSSession	-computerName	DC01

Note:	While	connected	to	a	remote	machine	via	Enter-PSSession,	your	prompt	changes	and
displays	the	name	of	the	remote	system	in	square	brackets.	If	you	have	customized	your
prompt,	all	customizations	will	be	lost	because	the	prompt	is	now	created	on	the	remote
system	and	transferred	back	to	you.	All	of	your	interactive	keyboard	input	is	sent	to	the
remote	machine,	and	all	results	are	marshaled	back	to	you.	This	is	important	to	note
because	you	cannot	use	Enter-PSSession	in	a	script.	If	you	did,	the	script	would	still	run	on
your	local	machine	since	no	code	was	entered	interactively.

1-to-Many	Remoting

With	this	technique,	you	specify	one	or	more	computer	names	and	a	command	(or	a
semicolon-separated	list	of	commands);	PowerShell	sends	the	commands,	via	Remoting,	to
the	specified	computers.	Those	computers	execute	the	commands,	serialize	the	results	into
XML,	and	transmit	the	results	back	to	you.	Your	computer	deserializes	the	XML	back	into
objects,	and	places	them	in	the	pipeline	of	your	PowerShell	session.	This	is	accomplished
via	the	Invoke-Command	cmdlet.

Invoke-Command	-computername	DC01,CLIENT1	-scriptBlock	{	Get-Service	}

If	you	have	a	script	of	commands	to	run,	you	can	have	Invoke-Command	read	it,	transmit
the	contents	to	the	remote	computers,	and	have	them	execute	those	commands.

Invoke-Command	-computername	DC01,CLIENT1	-filePath	c:\Scripts\Task.ps1

Note	that	Invoke-Command	will,	by	default,	communicate	with	only	32	computers	at	once.	If
you	specify	more,	the	extras	will	queue	up,	and	Invoke-Command	will	begin	processing
them	as	it	finishes	the	first	32.	The	-ThrottleLimit	parameter	can	raise	this	limit;	the	only	cost
is	to	your	computer,	which	must	have	sufficient	resources	to	maintain	a	unique	PowerShell
session	for	each	computer	you're	contacting	simultaneously.	If	you	expect	to	receive	large
amounts	of	data	from	the	remote	computers,	available	network	bandwidth	can	be	another
limiting	factor.

Sessions

Secrets	of	PowerShell	Remoting

14Remoting	Basics

When	you	run	Enter-PSSession	or	Invoke-Command	and	use	their	-ComputerName
parameter,	Remoting	creates	a	connection	(or	session),	does	whatever	you've	asked	it	to,
and	then	closes	the	connection	(in	the	case	of	an	interactive	session	created	with	Enter-
PSSession,	PowerShell	knows	you're	done	when	you	run	Exit-PSSession).	There's	some
overhead	involved	in	that	set-up	and	tear-down,	and	so	PowerShell	also	offers	the	option	of
creating	a	persistent	connection	-	called	a	PSSession.	You	run	New-PSSession	to	create	a
new,	persistent	session.	Then,	rather	than	using	-ComputerName	with	Enter-PSSession	or
Invoke-Command,	you	use	their	-Session	parameter	and	pass	an	existing,	open	PSSession
object.	That	lets	the	commands	re-use	the	persistent	connection	you'd	previously	created.

When	you	use	the	-ComputerName	parameter	and	work	with	ad-hoc	sessions,	each	time
you	send	a	command	to	a	remote	machine,	there	is	a	significant	delay	caused	by	the
overhead	it	takes	to	create	a	new	session.	Since	each	call	to	Enter-PSSession	or	Invoke-
Command	sets	up	a	new	session,	you	also	cannot	preserve	state.	In	the	example	below,	the
variable	$test	is	lost	in	the	second	call:

PS>	Invoke-Command	-computername	CLIENT1	-scriptBlock	{	$test	=	1	}

PS>	Invoke-Command	-computername	CLIENT1	-scriptBlock	{	$test	}

PS>

When	you	use	persistent	sessions,	on	the	other	hand,	re-connections	are	much	faster,	and
since	you	are	keeping	and	reusing	sessions,	they	will	preserve	state.	So	here,	the	second
call	to	Invoke-Command	will	still	be	able	to	access	the	variable	$test	that	was	set	up	in	the
first	call

PS>	$Session	=	New-PSSession	-ComputerName	CLIENT1

PS>	Invoke-Command	-Session	$Session	-scriptBlock	{	$test	=	1	}

PS>	Invoke-Command	-Session	$Session	-scriptBlock	{	$test	}

1

PS>	Remove-PSSession	-Session	$Session

Various	other	commands	exist	to	check	the	session's	status	and	retrieve	sessions	(Get-
PSSession),	close	them	(Remove-PSSession),	disconnect	and	reconnect	them	(Disconnect-
PSSession	and	Reconnect-PSSession,	which	are	new	in	PowerShell	v3),	and	so	on.	In
PowerShell	v3,	you	can	also	pass	an	open	session	to	Get-Module	and	Import-Module,
enabling	you	to	see	the	modules	listed	on	a	remote	computer	(via	the	opened	PSSession),
or	to	import	a	module	from	a	remote	computer	into	your	computer	for	implicit	Remoting.
Review	the	help	on	those	commands	to	learn	more.

Note:	Once	you	use	New-PSSession	and	create	your	own	persistent	sessions,	it	is	your
responsibility	to	do	housekeeping	and	close	and	dispose	the	session	when	you	are	done
with	them.	Until	you	do	that,	persistent	sessions	remain	active,	consume	resources	and	may

Secrets	of	PowerShell	Remoting

15Remoting	Basics

prevent	others	from	connecting.	By	default,	only	10	simultaneous	connections	to	a	remote
machine	are	permitted.	If	you	keep	too	many	active	sessions,	you	will	easily	run	into
resource	limits.	This	line	demonstrates	what	happens	if	you	try	and	set	up	too	many
simultaneous	sessions:

PS>	1..10	|	Foreach-Object	{	New-PSSession	-ComputerName	CLIENT1	}

Remoting	Returns	Deserialized	Data
The	results	you	receive	from	a	remote	computer	have	been	serialized	into	XML,	and	then
deserialized	on	your	computer.	In	essence,	the	objects	placed	into	your	shell's	pipeline	are
static,	detached	snapshots	of	what	was	on	the	remote	computer	at	the	time	your	command
completed.	These	deserialized	objects	lack	the	methods	of	the	originals	objects,	and	instead
only	offer	static	properties.

If	you	need	to	access	methods	or	change	properties,	or	in	other	words	if	you	must	work	with
the	live	objects,	simply	make	sure	you	do	so	on	the	remote	side,	before	the	objects	get
serialized	and	travel	back	to	the	caller.	This	example	uses	object	methods	on	the	remote
side	to	determine	process	owners	which	works	just	fine:

PS>	Invoke-Command	-ComputerName	CLIENT1	-scriptBlock	{	Get-WmiObject	-Class	Win32_Process	|	Select-Object	Name,	{	$_.GetOwner().User	}	}

Once	the	results	travel	back	to	you,	you	can	no	longer	invoke	object	methods	because	now
you	work	with	"rehydrated"	objects	that	are	detached	from	the	live	objects	and	do	not
contain	any	methods	anymore:

PS>	Invoke-Command	-ComputerName	CLIENT1	-scriptBlock	{	Get-WmiObject	-Class	Win32_Process	}	|	Select-Object	Name,	{	$_.GetOwner().User	}

Serializing	and	deserializing	is	relatively	expensive.	You	can	optimize	speed	and	resources
by	making	sure	that	your	remote	code	emits	only	the	data	you	really	need.	You	could	for
example	use	Select-Object	and	carefully	pick	the	properties	you	want	back	rather	than
serializing	and	deserializing	everything.

Enter-PSSession	vs.	Invoke-Command

Secrets	of	PowerShell	Remoting

16Remoting	Basics

A	lot	of	newcomers	will	get	a	bit	confused	about	remoting,	in	part	because	of	how
PowerShell	executes	scripts.	Consider	the	following,	and	assume	that	SERVER2	contains	a
script	named	C:\RemoteTest.ps1:

Enter-PSSession	-ComputerName	SERVER2		

C:\RemoteTest.ps1

If	you	were	to	sit	and	type	these	commands	interactively	in	the	console	window	on	your
client	computer,	this	would	work	(assuming	remoting	was	set	up,	you	had	permissions,	and
all	that).	However,	if	you	pasted	these	into	a	script	and	ran	that	script,	it	wouldn't	work.	The
script	would	try	to	run	C:\RemoteTest.ps1	on	your	local	computer.

The	practical	upshot	of	this	is	that	Enter-PSSession	is	really	meant	for	interactive	use	by	a
human	being,	not	for	batch	use	by	a	script.	If	you	wanted	to	send	a	command	to	a	remote
computer,	from	within	a	script,	Invoke-Command	is	the	right	way	to	do	it.	You	can	either	set
up	a	session	in	advance	(useful	if	you	plan	to	send	more	than	one	command),	or	you	can
use	a	computer	name	if	you	only	want	to	send	a	single	command.	For	example:

$session	=	New-PSSession	-ComputerName	SERVER2		

Invoke-Command	-session	$session	-ScriptBlock	{	C:\RemoteTest.ps1	}

Obviously,	you'll	need	to	use	some	caution.	If	those	were	the	only	two	lines	in	the	script,	then
when	the	script	finished	running,	$session	would	cease	to	exist.	That	might	disconnect	you
(in	a	sense)	from	the	session	running	on	SERVER2.	What	you	do,	and	even	whether	you
need	to	worry	about	it,	depends	a	lot	on	what	you're	doing	and	how	you're	doing	it.	In	this
example,	everything	would	probably	be	okay,	because	Invoke-Command	would	"keep"	the
local	script	running	until	the	remote	script	finished	and	returned	its	output	(if	any).

Secrets	of	PowerShell	Remoting

17Remoting	Basics

Accessing	Remote	Computers
There	are	really	two	scenarios	for	accessing	a	remote	computer.	The	difference	between
those	scenarios	primarily	lies	in	the	answer	to	one	question:	Can	WinRM	identify	and
authenticate	the	remote	machine?

Obviously,	the	remote	machine	needs	to	know	who	you	are,	because	it	will	be	executing
commands	on	your	behalf.	But	you	need	to	know	who	it	is,	as	well.	This	mutual
authentication	-	e.g.,	you	authenticate	each	other	-	is	an	important	security	step.	It	means
that	when	you	type	SERVER2,	you're	really	connecting	to	the	real	SERVER2,	and	not	some
machine	pretending	to	be	SERVER2.	Lots	of	folks	have	posted	blog	articles	on	how	to
disable	the	various	authentication	checks.	Doing	so	makes	Remoting	"just	work"	and	gets	rid
of	pesky	error	messages	-	but	also	shuts	off	security	checks	and	makes	it	possible	for
someone	to	"hijack"	or	"spoof"	your	connection	and	potentially	capture	sensitive	information
-	like	your	credentials.

Caution:	Keep	in	mind	that	Remoting	involves	delegating	a	credential	to	the	remote
computer.	You're	doing	more	than	just	sending	a	username	and	password	(which	doesn't
actually	happen	all	of	the	time):	you're	giving	the	remote	machine	the	ability	to	execute	tasks
as	if	you	were	standing	there	executing	them	yourself.	An	imposter	could	do	a	lot	of	damage
with	that	power.	That	is	why	Remoting	focuses	on	mutual	authentication	-	so	that	imposters
can't	happen.

In	the	easiest	Remoting	scenarios,	you're	connecting	to	a	machine	that's	in	the	same	AD
domain	as	yourself,	and	you're	connecting	by	using	its	real	computer	name,	as	registered
with	AD.	AD	handles	the	mutual	authentication	and	everything	works.	Things	get	harder	if
you	need	to:

Connect	to	a	machine	in	another	domain
Connect	to	machine	that	isn't	in	a	domain	at	all
Connect	via	a	DNS	alias,	or	via	an	IP	address,	rather	than	via	the	machine's	actual
computer	name	as	registered	with	AD

In	these	cases,	AD	can't	do	mutual	authentication,	so	you	have	to	do	it	yourself.	You	have
two	choices:

Set	up	the	remote	machine	to	accept	HTTPS	(rather	than	HTTP)	connections,	and
equip	it	with	an	SSL	certificate.	The	SSL	certificate	must	be	issued	by	a	Certification
Authority	(CA)	that	your	machine	trusts;	this	enables	the	SSL	certificate	to	provide	the
mutual	authentication	WinRM	is	after.
Add	the	remote	machine's	name	(whatever	you're	specifying,	be	it	a	real	computer

Secrets	of	PowerShell	Remoting

18Accessing	Remote	Computers

name,	an	IP	address,	or	a	CNAME	alias)	to	your	local	computer's	WinRM	TrustedHosts
list.	Note	that	this	basically	disables	mutual	authentication:	You're	allowing	WinRM	to
connect	to	that	one	identifier	(name,	IP	address,	or	whatever)	without	mutual
authentication.	This	opens	the	possibility	for	a	machine	to	pretend	to	be	the	one	you
want,	so	use	due	caution.

In	both	cases,	you	also	have	to	specify	a	-Credential	parameter	to	your	Remoting	command,
even	if	you're	just	specifying	the	same	credential	that	you're	using	to	run	PowerShell.	We'll
cover	both	cases	in	the	next	two	sections.

Note:	Throughout	this	guide,	we'll	use	"Remoting	command"	to	generically	refer	to	any
command	that	involves	setting	up	a	Remoting	connection.	Those	include	(but	are	not	limited
to)	New-PSSession,	Enter-PSSession,	Invoke-Command,	and	so	on.

Setting	up	an	HTTPS	Listener
This	is	one	of	the	more	complex	things	you	can	do	with	Remoting,	and	will	involve	running	a
lot	of	external	utilities.	Sorry	-	that's	just	the	way	it's	done!	Right	now	there	doesn't	seem	to
be	an	easy	way	to	do	this	entirely	from	within	PowerShell,	at	least	not	that	we've	found.
Some	things,	as	you'll	see,	could	be	done	through	PowerShell,	but	are	more	easily	done
elsewhere	-	so	that's	what	I've	done.

Your	first	step	is	to	identify	the	host	name	that	people	will	use	to	access	your	server.	This	is
very,	very	important,	and	it	isn't	necessarily	the	same	as	the	server's	actual	computer	name.
For	example,	folks	accessing	"www.ad2008r2.loc"	might	in	fact	be	hitting	a	server	named
"DC01,"	but	the	SSL	certificate	you'll	create	must	be	issued	to	host	name
"www.ad2008r2.loc"	because	that's	what	people	will	be	typing.	So,	the	certificate	name
needs	to	match	whatever	name	people	will	be	typing	to	get	to	the	machine	-	even	if	that's
different	from	its	true	computer	name.	Got	that?

Note:	As	the	above	implies,	part	of	setting	up	an	HTTPS	listener	is	obtaining	an	SSL
certificate.	I'll	be	using	a	public	Certification	Authority	(CA)	named	DigiCert.com.	You	could
also	use	an	internal	PKI,	if	your	organization	has	one.	I	don't	recommend	using
MakeCert.exe,	since	such	a	certificate	can't	be	implicitly	trusted	by	the	machines	attempting
to	connect.	I	realize	that	every	blog	in	the	universe	tells	you	to	use	MakeCert.exe	to	make	a
local	self-signed	certificate.	Yes,	it's	easy	-	but	it's	wrong.	Using	it	requires	you	to	shut	off
most	of	WinRM's	security	-	so	why	bother	with	SSL	if	you	plan	to	shut	off	most	of	its	security
features?

You	need	to	make	sure	you	know	the	full	name	used	to	connect	to	a	computer,	too.	If	people
will	have	to	type	"dc01.ad2008r2.loc,"	then	that's	what	goes	into	the	certificate.	If	they'll
simply	need	to	provide	"dca,"	and	know	that	DNS	can	resolve	that	to	an	IP	address,	then

Secrets	of	PowerShell	Remoting

19Accessing	Remote	Computers

"dca"	is	what	goes	into	the	certificate.	We're	creating	a	certificate	that	just	says	"dca"	and
we'll	make	sure	our	computers	can	resolve	that	to	an	IP	address.

Creating	a	Certificate	Request

Unlike	IIS,	PowerShell	doesn't	offer	a	friendly,	graphical	way	of	creating	a	Certificate
Request	(or,	in	fact,	any	way	at	all	to	do	so.)	So,	go	to	http://DigiCert.com/util	and	download
their	free	certificate	utility.	Figure	2.1	shows	the	utility.	Note	the	warning	message.

Figure	2.1:	Launching	DigiCertUtil.exe

You	only	need	to	worry	about	this	warning	if	you	plan	to	acquire	your	certificate	from	the
DigiCert	CA;	click	the	Repair	button	to	install	their	intermediate	certificates	on	your
computer,	enabling	their	certificate	to	be	trusted	and	used.	Figure	2.2	shows	the	result	of
doing	so.	Again,	if	you	plan	to	take	the	eventual	Certificate	Request	(CSR)	to	a	different	CA,
don't	worry	about	the	Repair	button	or	the	warning	message.

Secrets	of	PowerShell	Remoting

20Accessing	Remote	Computers

http://DigiCert.com/util

Figure	2.2:	After	adding	the	DigiCert	intermediate	certificates

Click	"Create	CSR."	As	shown	in	figure	2.3,	fill	in	the	information	about	your	organization.
This	needs	to	be	exact:	The	"Common	Name"	is	exactly	what	people	will	type	to	access	the
computer	on	which	this	SSL	certificate	will	be	installed.	That	might	be	"dca,"	in	our	case,	or
"dc01.ad20082.loc"	if	a	fully	qualified	name	is	needed,	and	so	on.	Your	company	name	also
needs	to	be	accurate:	Most	CAs	will	verify	this	information.

Figure	2.3:	Filling	in	the	CSR

Secrets	of	PowerShell	Remoting

21Accessing	Remote	Computers

Figure	2.3:	Filling	in	the	CSR

We	usually	save	the	CSR	in	a	text	file,	as	shown	in	figure	2.4.	You	can	also	just	copy	it	to	the
Clipboard	in	many	cases.	When	you	head	to	your	CA,	make	sure	you're	requesting	an	SSL
("Web	Server,"	in	some	cases)	certificate.	An	e-mail	certificate	or	other	type	won't	work.

Figure	2.4:	Saving	the	CSR	into	a	text	file

Secrets	of	PowerShell	Remoting

22Accessing	Remote	Computers

Figure	2.5:	Uploading	the	CSR	to	a	CA

Caution:	Note	the	warning	message	in	figure	2.5	that	my	CSR	needs	to	be	generated	with	a
2048-bit	key.	DigiCert's	utility	offered	me	that,	or	1024-bit.	Many	CAs	will	have	a	high-bit
requirement;	make	sure	your	CSR	complies	with	what	they	need.	Also	notice	that	this	is	a
Web	server	certificate	we're	applying	for;	as	we	wrote	earlier,	it's	the	only	kind	of	certificate
that	will	work.

Eventually,	the	CA	will	issue	your	certificate.	Figure	2.6	shows	where	we	went	to	download
it.	We	chose	to	download	all	certificates;	we	wanted	to	ensure	we	had	a	copy	of	the	CA's
root	certificate,	in	case	we	needed	to	configure	another	machine	to	trust	that	root.

Tip:	The	trick	with	digital	certificates	is	that	the	machine	using	them,	and	any	machines	they
will	be	presented	to,	need	to	trust	the	CA	that	issued	the	certificate.	That's	why	you
download	the	CA	root	certificate:	so	you	can	install	it	on	the	machines	that	need	to	trust	the
CA.	In	a	large	environment,	this	can	be	done	via	Group	Policy,	if	desired.

Secrets	of	PowerShell	Remoting

23Accessing	Remote	Computers

CA.	In	a	large	environment,	this	can	be	done	via	Group	Policy,	if	desired.

Figure	2.6:	Downloading	the	issued	certificate

Make	sure	you	back	up	the	certificate	files!	Even	though	most	CAs	will	re-issue	them	as
needed,	it's	far	easier	to	have	a	handy	backup,	even	on	a	USB	flash	drive.

Installing	the	Certificate

Don't	try	to	double-click	the	certificate	file	to	install	it.	Doing	so	will	install	it	into	your	user
account's	certificate	store;	you	need	it	in	your	computer's	certificate	store	instead.	To	install
the	certificate,	open	a	new	Microsoft	Management	Console	(mmc.exe),	select	Add/Remove
Snap-ins,	and	add	the	Certificates	snap-in,	as	shown	in	figure	2.7.

Secrets	of	PowerShell	Remoting

24Accessing	Remote	Computers

Figure	2.8:	Focusing	the	Certificates	snap-in	on	the	Computer	account

Next,	as	shown	in	figure	2.9,	focus	on	the	local	computer.	Of	course,	if	you're	installing	a
certificate	onto	a	remote	computer,	focus	on	that	computer	instead.	This	is	a	good	way	to	get
a	certificate	installed	onto	a	GUI-less	Server	Core	installation	of	Windows,	for	example.

Note:	We	wish	we	could	show	you	a	way	to	do	all	of	this	from	within	PowerShell.	But	we
couldn't	find	one	that	didn't	involve	a	jillion	more,	and	more	complex,	steps.	Since	this
hopefully	isn't	something	you'll	have	to	do	often,	or	automate	a	lot,	the	GUI	is	easier	and
should	suffice.

Secrets	of	PowerShell	Remoting

25Accessing	Remote	Computers

Figure	2.8:	Focusing	the	Certificates	snap-in	on	the	Computer	account

Next,	as	shown	in	figure	2.9,	focus	on	the	local	computer.	Of	course,	if	you're	installing	a
certificate	onto	a	remote	computer,	focus	on	that	computer	instead.	This	is	a	good	way	to	get
a	certificate	installed	onto	a	GUI-less	Server	Core	installation	of	Windows,	for	example.

Note:	We	wish	we	could	show	you	a	way	to	do	all	of	this	from	within	PowerShell.	But	we
couldn't	find	one	that	didn't	involve	a	jillion	more,	and	more	complex,	steps.	Since	this
hopefully	isn't	something	you'll	have	to	do	often,	or	automate	a	lot,	the	GUI	is	easier	and
should	suffice.

Figure	2.9:	Focusing	the	Certificates	snap-in	on	the	local	computer

With	the	snap-in	loaded,	as	shown	in	figure	2.10,	right-click	the	"Personal"	store	and	select
"Import."

Secrets	of	PowerShell	Remoting

26Accessing	Remote	Computers

Figure	2.10:	Beginning	the	import	process	into	the	Personal	store

As	shown	in	figure	2.11,	browse	to	the	certificate	file	that	you	downloaded	from	your	CA.
Then,	click	Next.

Caution:	If	you	downloaded	multiple	certificates	-	perhaps	the	CA's	root	certificates	along
with	the	one	issued	to	you	-	make	sure	you're	importing	the	SSL	certificate	that	was	issued
to	you.	If	there's	any	confusion,	STOP.	Go	back	to	your	CA	and	download	just	YOUR
certificate,	so	that	you'll	know	which	one	to	import.	Don't	experiment,	here	-	you	need	to	get
this	right	the	first	time.

Figure	2.11:	Selecting	the	newly-issued	SSL	certificate	file

As	shown	in	figure	2.12,	ensure	that	the	certificate	will	be	placed	into	the	Personal	store.

Secrets	of	PowerShell	Remoting

27Accessing	Remote	Computers

Figure	2.11:	Selecting	the	newly-issued	SSL	certificate	file

As	shown	in	figure	2.12,	ensure	that	the	certificate	will	be	placed	into	the	Personal	store.

Secrets	of	PowerShell	Remoting

28Accessing	Remote	Computers

Figure	2.13:	Double-click	the	certificate,	or	right-click	and	select	Open

Finally,	as	shown	in	figure	2.14,	select	the	certificate's	thumbprint.	You'll	need	to	either	write
this	down,	or	copy	it	to	your	Clipboard.	This	is	how	WinRM	will	identify	the	certificate	you
want	to	use.

Note:	It's	possible	to	list	your	certificate	in	PowerShell's	CERT:	drive,	which	will	make	the
thumbprint	a	bit	easier	to	copy	to	the	Clipboard.	In	PowerShell,	run	Dir
CERT:\LocalMachine\My	and	read	carefully	to	make	sure	you	select	the	right	certificate.	If
the	entire	thumbprint	isn't	displayed,	run	Dir	CERT:\LocalMachine\My	|	FL	*	instead.

Secrets	of	PowerShell	Remoting

29Accessing	Remote	Computers

Figure	2.14:	Obtaining	the	certificate's	thumbprint

Setting	up	the	HTTPS	Listener

These	next	steps	will	be	accomplished	in	the	Cmd.exe	shell,	not	in	PowerShell.	The
command-line	utility's	syntax	requires	significant	tweaking	and	escaping	in	PowerShell,	and
it's	a	lot	easier	to	type	and	understand	in	the	older	Cmd.exe	shell	(which	is	where	the	utility
has	to	run	anyway;	running	it	in	PowerShell	would	just	launch	Cmd.exe	behind	the	scenes).

As	shown	in	figure	2.15,	run	the	following	command:

Secrets	of	PowerShell	Remoting

30Accessing	Remote	Computers

Figure	2.15:	Setting	up	the	HTTPS	WinRM	listener

Winrm	create	winrm/config/Listener?Address=*+Transport=HTTPS	@{Hostname="xxx";CertificateThumbprint="yyy"}

There	are	two	or	three	pieces	of	information	you'll	need	to	place	into	this	command:

In	place	of	*,	you	can	put	an	individual	IP	address.	Using	*	will	have	the	listener	listen	to
all	local	IP	addresses.
In	place	of	xxx,	put	the	exact	computer	name	that	the	certificate	was	issued	to.	If	that
includes	a	domain	name	(such	as	dc01.ad2008r2.loc),	put	that.	Whatever's	in	the
certificate	must	go	here,	or	you'll	get	a	CN	mismatch	error.	Our	certificate	was	issued	to
"dca,"	so	I	put	"dca."
In	place	of	yyy,	put	the	exact	certificate	thumbprint	that	you	copied	earlier.	It's	okay	if
this	contains	spaces.

That's	all	you	should	need	to	do	in	order	to	get	the	listener	working.

Note:	We	had	the	Windows	Firewall	disabled	on	this	server,	so	we	didn't	need	to	create	an
exception.	The	exception	isn't	created	automatically,	so	if	you	have	any	firewall	enabled	on
your	computer,	you'll	need	to	manually	create	the	exception	for	port	5986.

You	can	also	run	an	equivalent	PowerShell	command	to	accomplish	this	task:

New-WSManInstance	winrm/config/Listener	-SelectorSet	@{Address='*';

Transport='HTTPS'}	-ValueSet	@{HostName='xxx';CertificateThumbprint='yyy'}

In	that	example,	"xxx"	and	"yyy"	get	replaced	just	as	they	did	in	the	previous	example.

Secrets	of	PowerShell	Remoting

31Accessing	Remote	Computers

Testing	the	HTTPS	Listener

I	tested	this	from	the	standalone	C3925954503	computer,	attempting	to	reach	the	DCA
domain	controller	in	COMPANY.loc.	I	configured	C3925954503	with	a	HOSTS	file,	so	that	it
could	resolve	the	hostname	DCA	to	the	correct	IP	address	without	needing	DNS.	I	was	sure
to	run:

Ipconfig	/flushdns

This	ensured	that	the	HOSTS	file	was	read	into	the	DNS	name	cache.	The	results	are	in
figure	2.16.	Note	that	I	can't	access	DCA	by	using	its	IP	address	directly,	because	the	SSL
certificate	doesn't	contain	an	IP	address.	The	SSL	certificate	was	issued	to	"dca,"	so	we
need	to	be	able	to	access	the	computer	by	typing	"dca"	as	the	computer	name.	Using	the
HOSTS	file	will	let	Windows	resolve	that	to	an	IP	address.

Note:	Remember,	there	are	two	things	going	on	here:	Windows	needs	to	be	able	to	resolve
the	name	to	an	IP	address,	which	is	what	the	HOSTS	file	accomplishes,	in	order	to	make	a
physical	connection.	But	WinRM	needs	mutual	authentication,	which	means	whatever	we
typed	into	the	-ComputerName	parameter	needs	to	match	what's	in	the	SSL	certificate.
That's	why	we	couldn't	just	provide	an	IP	address	to	the	command	-	it	would	have	worked	for
the	connection,	but	not	the	authentication.

Secrets	of	PowerShell	Remoting

32Accessing	Remote	Computers

Figure	2.16:	Testing	the	HTTPS	listener

We	started	with	this:

Enter-PSSession	-computerName	DCA

It	didn't	work	-	which	I	expected.	Then	we	tried	this:

Enter-PSSession	-computerName	DCA	-credential	COMPANY\Administrator

We	provided	a	valid	password	for	the	Administrator	account,	but	as	expected	the	command
didn't	work.	Finally:

Enter-PSSession	-computerName	DCA	-credential	COMPANY\Administrator	-UseSSL

Again	providing	a	valid	password,	we	were	rewarded	with	the	remote	prompt	we	expected.	It
worked!	This	fulfills	the	two	conditions	we	specified	earlier:	We're	using	an	HTTPS-secured
connection	and	providing	a	credential.	Both	conditions	are	required	because	the	computer
isn't	in	my	domain	(since	in	this	case	the	source	computer	isn't	even	in	a	domain).	As	a
refresher,	figure	2.17	shows,	in	green,	the	connection	we	created	and	used.

Secrets	of	PowerShell	Remoting

33Accessing	Remote	Computers

Figure	2.17:	The	connection	used	for	the	HTTPS	listener	test

Modifications

There	are	two	modifications	you	can	make	to	a	connection,	whether	using	Invoke-
Command,	Enter-PSSession,	or	some	other	Remoting	command,	which	relate	to	HTTPS
listeners.	These	are	created	as	part	of	a	session	option	object.

-SkipCACheck	causes	WinRM	to	not	worry	about	whether	the	SSL	certificate	was
issued	by	a	trusted	CA	or	not.	However,	untrusted	CAs	may	in	fact	be	untrustworthy!	A
poor	CA	might	issue	a	certificate	to	a	bogus	computer,	leading	you	to	believe	you're
connecting	to	the	right	machine	when	in	fact	you're	connecting	to	an	imposter.	This	is
risky,	so	use	it	with	caution.
-SkipCNCheck	causes	WinRM	to	not	worry	about	whether	the	SSL	certificate	on	the
remote	machine	was	actually	issued	for	that	machine	or	not.	Again,	this	is	a	great	way

Secrets	of	PowerShell	Remoting

34Accessing	Remote	Computers

to	find	yourself	connected	to	an	imposter.	Half	the	point	of	SSL	is	mutual	authentication,
and	this	parameter	disables	that	half.

Using	either	or	both	of	these	options	will	still	enable	SSL	encryption	on	the	connection	-	but
you'll	have	defeated	the	other	essential	purpose	of	SSL,	which	is	mutual	authentication	by
means	of	a	trusted	intermediate	authority.

To	create	and	use	a	session	object	that	includes	both	of	these	parameters:

$option	=	New-PSSessionOption	-SkipCACheck	-SkipCNCheck

Enter-PSSession	-computerName	DCA	-sessionOption	$option

								-credential	COMPANY\Administrator	-useSSL

Caution:	Yes,	this	is	an	easy	way	to	make	annoying	error	messages	go	away.	But	those
errors	are	trying	to	warn	you	of	a	potential	problem	and	protect	you	from	potential	security
risks	that	are	very	real,	and	which	are	very	much	in	use	by	modern	attackers.

Certificate	Authentication
Once	you	have	an	HTTPS	listener	set	up,	you	have	the	option	of	authenticating	with
Certificates.	This	allows	you	to	connect	to	remote	computers,	even	those	in	an	untrusted
domain	or	workgroup,	without	requiring	either	user	input	or	a	saved	password.	This	may
come	in	handy	when	scheduling	a	task	to	run	a	PowerShell	script,	for	example.

In	Certificate	Authentication,	the	client	holds	a	certificate	with	a	private	key,	and	the	remote
computer	maps	that	certificate's	public	key	to	a	local	Windows	account.	WinRM	requires	a
certificate	which	has	"Client	Authentication	(1.3.6.1.5.5.7.3.2)"	listed	in	the	Enhanced	Key
Usage	attribute,	and	which	has	a	User	Principal	Name	listed	in	the	Subject	Alternative	Name
attribute.	If	you're	using	a	Microsoft	Enterprise	Certification	Authority,	the	"User"	certificate
template	meets	these	requirements.

Obtaining	a	certificate	for	client	authentication

These	instructions	assume	that	you	have	a	Microsoft	Enterprise	CA.	If	you	are	using	a
different	method	of	certificate	enrollment,	follow	the	instructions	provided	by	your	vendor	or
CA	administrator.

On	your	client	computer,	perform	the	following	steps:

Run	certmgr.msc	to	open	the	"Certificates	-	Current	User"	console.
Right	click	on	the	"Personal"	node,	and	select	All	Tasks	->	Request	New	Certificate&
In	the	Certificate	Enrollment	dialog,	click	Next.	Highlight	"Active	Directory	Enrollment

Secrets	of	PowerShell	Remoting

35Accessing	Remote	Computers

Policy",	and	click	Next	again.	Select	the	User	template,	and	click	Enroll.

Figure	2.18:	Requesting	a	User	certificate.

After	the	Enrollment	process	is	complete	and	you're	back	at	the	Certificates	console,	you
should	now	see	the	new	certificate	in	the	Personal\Certificates	folder:

Figure	2.19:	The	user's	installed	Client	Authentication	certificate.

Before	closing	the	Certificates	console,	right-click	on	the	new	certificate,	and	choose	All
Tasks	->	Export.	In	the	screens	that	follow,	choose	"do	not	export	the	private	key",	and	save
the	certificate	to	a	file	on	disk.	Copy	the	exported	certificate	to	the	remote	computer,	for	use
in	the	next	steps.

Configuring	the	remote	computer	to	allow	Certificate
Authentication

On	the	remote	computer,	run	the	PowerShell	console	as	Administrator,	and	enter	the
following	command	to	enable	Certificate	authentication:

Secrets	of	PowerShell	Remoting

36Accessing	Remote	Computers

Set-Item	-Path	WSMan:\localhost\Service\Auth\Certificate	-Value	$true

Importing	the	client's	certificate	on	the	remote	computer

The	client's	certificate	must	be	added	to	the	machine	"Trusted	People"	certificate	store.	To
do	this,	perform	the	following	steps	to	open	the	"Certificates	(Local	Computer)"	console:

Run	"mmc".
From	the	File	menu,	choose	"Add/Remove	Snap-in."
Highlight	"Certificates",	and	click	the	Add	button.
Select	the	"Computer	Account"	option,	and	click	Next.
Select	"Local	Computer",	and	click	Finish,	then	click	OK.

Note:	This	is	the	same	process	you	followed	in	the	"Installing	the	Certificate"	section	under
Setting	up	and	HTTPS	Listener.	Refer	to	figures	2.7,	2.8	and	2.9	if	needed.

In	the	Certificates	(Local	Computer)	console,	right-click	the	"Trusted	People"	store,	and
select	All	Tasks	->	Import.

Figure	2.20:	Starting	the	Certificate	Import	process.

Click	Next,	and	Browse	to	the	location	where	you	copied	the	user's	certificate	file.

Secrets	of	PowerShell	Remoting

37Accessing	Remote	Computers

Figure	2.21:	Selecting	the	user's	certificate.

Ensure	that	the	certificate	is	placed	into	the	Trusted	People	store:

Secrets	of	PowerShell	Remoting

38Accessing	Remote	Computers

Figure	2.22:	Placing	the	certificate	into	the	Trusted	People	store.

Creating	a	Client	Certificate	mapping	on	the	remote
computer

Open	a	PowerShell	console	as	Administrator	on	the	remote	computer.	For	this	next	step,
you	will	require	the	Certificate	Thumbprint	of	the	CA	that	issued	the	client's	certificate.	You
should	be	able	to	find	this	by	issuing	one	of	the	following	two	commands	(depending	on
whether	the	CA's	certificate	is	located	in	the	"Trusted	Root	Certification	Authorities"	or	the
"Intermediate	Certification	Authorities"	store):

Get-ChildItem	-Path	cert:\LocalMachine\Root		

Get-ChildItem	-Path	cert:\LocalMachine\CA

Figure	2.23:	Obtaining	the	CA	certificate	thumbprint.

Once	you	have	the	thumbprint,	issue	the	following	command	to	create	the	certificate
mapping:

New-Item	-Path	WSMan:\localhost\ClientCertificate	-Credential	(Get-Credential)	-Subject	<userPrincipalName>	-URI	*	-Issuer	<CA	Thumbprint>	-Force

When	prompted	for	credentials,	enter	the	username	and	password	of	a	local	account	with
Administrator	rights.

Note:	It	is	not	possible	to	specify	the	credentials	of	a	domain	account	for	certificate	mapping,
even	if	the	remote	computer	is	a	member	of	a	domain.	You	must	use	a	local	account,	and
the	account	must	be	a	member	of	the	Administrators	group.

Secrets	of	PowerShell	Remoting

39Accessing	Remote	Computers

Figure	2.24:	Setting	up	the	client	certificate	mapping.

Connecting	to	the	remote	computer	using	Certificate
Authentication

Now,	you	should	be	all	set	to	authenticate	to	the	remote	computer	using	your	certificate.	For
this	step,	you	will	need	the	thumbprint	of	the	client	authentication	certificate.	To	obtain	this,
you	can	run	the	following	command	on	the	client	computer:

Get-ChildItem	-Path	Cert:\CurrentUser\My

Once	you	have	this	thumbprint,	you	can	authenticate	to	the	remote	computer	by	using	either
the	Invoke-Command	or	New-PSSession	cmdlets	with	the	-CertificateThumbprint	parameter,
as	shown	in	figure	2.25.

Note:	The	Enter-PSSession	cmdlet	does	not	appear	to	work	with	the	-CertificateThumbprint
parameter.	If	you	want	to	enter	an	interactive	remoting	session	with	certificate
authentication,	use	New-PSSession	first,	and	then	Enter-PSSession.

Note:	The	-UseSSL	switch	is	implied	when	you	use	-CertificateThumbprint	in	either	of	these
commands.	Even	if	you	don't	type	-UseSSL,	you're	still	connecting	to	the	remote	computer
over	HTTPS	(port	5986,	by	default,	on	Windows	7	/	2008	R2	or	later).	Figure	2.26
demonstrates	this.

Secrets	of	PowerShell	Remoting

40Accessing	Remote	Computers

Figure	2.25:	Using	a	certificate	to	authenticate	with	PowerShell	Remoting.

Figure	2.26:	Demonstrating	that	the	connection	is	over	SSL	port	5986,	even	without	the	-
UseSSL	switch.

Modifying	the	TrustedHosts	List
As	I	mentioned	earlier,	using	SSL	is	only	one	option	for	connecting	to	a	computer	for	which
mutual	authentication	isn't	possible.	The	other	option	is	to	selectively	disable	the	need	for
mutual	authentication	by	providing	your	computer	with	a	list	of	"trusted	hosts."	In	other
words,	you're	telling	your	computer,	"If	I	try	to	access	SERVER1	[for	example],	don't	bother
mutually	authenticating.	I	know	that	SERVER1	can't	possibly	be	spoofed	or	impersonated,
so	I'm	taking	that	burden	off	of	your	shoulders."

Figure	2.27	illustrates	the	connection	we'll	be	attempting.

Secrets	of	PowerShell	Remoting

41Accessing	Remote	Computers

Figure	2.27:	The	TrustedHosts	connection	test

Beginning	on	CLIENTA,	with	a	completely	default	Remoting	configuration,	we'll	attempt	to
connect	to	C3925954503,	which	also	has	a	completely	default	Remoting	configuration.
Figure	2.28	shows	the	result.	Note	that	I'm	connecting	via	IP	address,	rather	than	hostname;
our	client	has	no	way	of	resolving	the	computer's	name	to	an	IP	address,	and	for	this	test
we'd	rather	not	modify	my	local	HOSTS	file.

Secrets	of	PowerShell	Remoting

42Accessing	Remote	Computers

Figure	2.28:	Attempting	to	connect	to	the	remote	computer

This	is	what	we	expected:	The	error	message	is	clear	that	we	can't	use	an	IP	address	(or	a
host	name	for	a	non-domain	computer,	although	the	error	doesn't	say	so)	unless	we	either
use	HTTPS	and	a	credential,	or	add	the	computer	to	my	TrustedHosts	list	and	use	a
credential.	We'll	choose	the	latter	this	time;	figure	2.29	shows	the	command	we	need	to	run.
If	we'd	wanted	to	connect	via	the	computer's	name	(C3925954503)	instead	of	its	IP	address,
we'd	have	added	that	computer	name	to	the	TrustedHosts	list	(It'd	be	our	responsibility	to
ensure	my	computer	could	somehow	resolve	that	computer	name	to	an	IP	address	to	make
the	physical	connection).

Secrets	of	PowerShell	Remoting

43Accessing	Remote	Computers

Figure	2.29:	Adding	the	remote	machine	to	our	TrustedHosts	list

This	is	another	case	where	many	blogs	will	advise	just	putting	"*"	in	the	TrustedHosts	list.
Really?	There's	no	chance	any	computer,	ever,	anywhere,	could	be	impersonated	or
spoofed?	We	prefer	adding	a	limited,	controlled	set	of	host	names	or	IP	addresses.	Use	a
comma-separated	list;	it's	okay	to	use	wildcards	along	with	some	other	characters	(like	a
domain	name,	such	as	*.COMPANY.loc),	to	allow	a	wide,	but	not	unlimited,	range	of	hosts.
Figure	2.30	shows	the	successful	connection.

Tip:	Use	the	-Concatenate	parameter	of	Set-Item	to	add	your	new	value	to	any	existing
ones,	rather	than	overwriting	them.

Secrets	of	PowerShell	Remoting

44Accessing	Remote	Computers

Figure	2.30:	Connecting	to	the	remote	computer

Managing	the	TrustedHosts	list	is	probably	the	easiest	way	to	connect	to	a	computer	that
can't	offer	mutual	authentication,	provided	you're	absolutely	certain	that	spoofing	or
impersonation	isn't	a	possibility.	On	an	intranet,	for	example,	where	you	already	exercise
good	security	practices,	impersonation	may	be	a	remote	chance,	and	you	can	add	an	IP
address	range	or	host	name	range	using	wildcards.

Connecting	Across	Domains
Figure	2.31	illustrates	the	next	connection	we'll	try	to	make,	which	is	between	two	computers
in	different,	trusted	and	trusting,	forests.

Secrets	of	PowerShell	Remoting

45Accessing	Remote	Computers

Figure	2.31:	Connection	for	the	cross-domain	test

Our	first	test	is	in	figure	2.32.	Notice	that	we're	creating	a	reusable	credential	in	the	variable
$cred,	so	that	we	don't	keep	having	to	re-type	the	password	as	we	try	this.	However,	the
results	of	the	Remoting	test	still	aren't	successful.

Secrets	of	PowerShell	Remoting

46Accessing	Remote	Computers

Figure	2.32:	Attempting	to	connect	to	the	remote	computer

The	problem?	We're	using	a	CNAME	alias	(MEMBER1),	not	the	computer's	real	host	name
(C2108222963).	While	WinRM	can	use	a	CNAME	to	resolve	a	name	to	an	IP	address	for	the
physical	connection,	it	can't	use	the	CNAME	alias	to	look	the	computer	up	in	AD,	because
AD	doesn't	use	the	CNAME	record	(even	in	an	AD-integrated	DNS	zone).	As	shown	in
figure	2.33,	the	solution	is	to	use	the	computer's	real	host	name.

Secrets	of	PowerShell	Remoting

47Accessing	Remote	Computers

Figure	2.33:	Successfully	connecting	across	domains

What	if	you	need	to	use	an	IP	address	or	CNAME	alias	to	connect?	Then	you'll	have	to	fall
back	to	the	TrustedHosts	list	or	an	HTTPS	listener,	exactly	as	if	you	were	connecting	to	a
non-domain	computer.	Essentially,	if	you	can't	use	the	computer's	real	host	name,	as	listed
in	AD,	then	you	can't	rely	on	the	domain	to	shortcut	the	whole	authentication	process.

Administrators	from	Other	Domains
There's	a	quirk	in	Windows	that	tends	to	strip	the	Administrator	account	token	for
administrator	accounts	coming	in	from	other	domains,	meaning	they	end	up	running	under
standard	user	privileges	-	which	often	isn't	sufficient.	In	the	target	domain,	you	need	to
change	that	behavior.

To	do	so,	run	this	on	the	target	computer	(type	this	all	in	one	line	and	then	hit	Enter):

New-ItemProperty	-Name	LocalAccountTokenFilterPolicy

-Path	HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\

Policies\System	-PropertyType	Dword	-Value	1

That	should	fix	the	problem.	Note	that	this	does	disable	User	Account	Control	(UAC)	on	the
machine	where	you	ran	it,	so	make	sure	that's	okay	with	you	before	doing	so.

The	Second	Hop
One	default	limitation	with	Remoting	is	often	referred	to	as	the	second	hop.	Figure	2.25
illustrates	the	basic	problem:	You	can	make	a	Remoting	connection	from	one	host	to	another
(the	green	line),	but	going	from	that	second	host	to	a	third	(the	red	line)	is	simply	disallowed.
This	"second	hop"	doesn't	work	because,	by	default,	Remoting	can't	delegate	your
credential	a	second	time.	This	is	even	a	problem	if	you	make	the	first	hop	and	subsequently
try	to	access	any	network	resource	that	requires	authentication.	For	example,	if	you	remote
into	another	computer,	and	then	ask	that	computer	to	access	something	on	an	authenticated
file	share,	the	operation	fails.

The	following	configuration	changes	are	needed	to	enable	the	second	hop:

Note:	This	only	works	on	Windows	Vista,	Windows	Server	2008,	and	later	versions	of
Windows.	It	won't	work	on	Windows	XP	or	Windows	Server	2003	or	earlier	versions.

CredSSP	must	be	enabled	on	your	originating	computer	and	the	intermediate	server
you	connect	to.	In	PowerShell,	on	your	originating	computer,	run:

Secrets	of	PowerShell	Remoting

48Accessing	Remote	Computers

Set-Item	WSMAN:\localhost\client\auth\credssp	-value	$true

On	your	intermediate	server(s),	you	make	a	similar	change	to	the	above,	but	in	a
different	section	of	the	configuration:

Set-Item	WSMAN:\localhost\service\auth\credssp	-value	$true

Your	domain	policy	must	permit	delegation	of	fresh	credentials.	In	a	Group	Policy	object
(GPO),	this	is	found	in	Computer	Configuration	>	Policies	>	Administrative	Templates	>
System	>	Credential	Delegation	>	Allow	Delegation	of	Fresh	Credentials.	You	must
provide	the	names	of	the	machines	to	which	credentials	may	be	delegated,	or	specify	a
wildcard	like	"*.ad2008r2.loc"	to	allow	an	entire	domain.	Be	sure	to	allow	time	for	the
updated	GPO	to	apply,	or	run	Gpupdate	on	the	originating	computer	(or	reboot	it).

Note:	Once	again,	the	name	you	provide	here	is	important.	Whatever	you'll	actually	be
typing	for	the	-computerName	parameter	is	what	must	appear	here.	This	makes	it	really
tough	to	delegate	credentials	to,	say,	IP	addresses,	without	just	adding	"*"	as	an	allowed
delegate.	Adding	"*,"	of	course,	means	you	can	delegate	to	ANY	computer,	which	is
potentially	dangerous,	as	it	makes	it	easier	for	an	attacker	to	impersonate	a	machine	and	get
hold	of	your	super-privileged	Domain	Admin	account!

When	running	a	Remoting	command,	you	must	specify	the	"-Authentication	CredSSP"
parameter.	You	must	also	use	the	-Credential	parameter	and	supply	a	valid
DOMAIN\Username	(you'll	be	prompted	for	the	password)	-	even	if	it's	the	same
username	that	you	used	to	open	PowerShell	in	the	first	place.

After	setting	the	above,	we	were	able	to	use	Enter-PSSession	to	go	from	our	domain
controller	to	my	member	server,	and	then	use	Invoke-Command	to	run	a	command	on	a
client	computer	-	the	connection	illustrated	in	figure	2.34.

Secrets	of	PowerShell	Remoting

49Accessing	Remote	Computers

Figure	2.34:	The	connections	for	the	second-hop	test

Seem	tedious	and	time-consuming	to	make	all	of	those	changes?	There's	a	faster	way.	On
the	originating	computer,	run	this:

Enable-WSManCredSSP	-Role	Client	-Delegate	name

Where	"name"	is	the	name	of	the	computers	that	you	plan	to	remote	to	next.	This	can	be	a
wildcard,	like	*,	or	a	partial	wildcard,	like	*.AD2008R2.loc.	Then,	on	the	intermediate
computer	(the	one	to	which	you	will	delegate	your	credentials),	run	this:

Enable-WSManCredSSP	-Role	Server

Secrets	of	PowerShell	Remoting

50Accessing	Remote	Computers

Between	them,	these	two	commands	will	accomplish	almost	all	of	the	configuration	points
we	listed	earlier.	The	only	exception	is	that	they	will	modify	your	local	policy	to	permit	fresh
credential	delegation,	rather	than	modifying	domain	policy	via	a	GPO.	You	can	choose	to
modify	the	domain	policy	yourself,	using	the	GPMC,	to	make	that	particular	setting	more
universal.

Secrets	of	PowerShell	Remoting

51Accessing	Remote	Computers

Working	with	Endpoints	(aka	Session
Configurations)
As	you	learned	at	the	beginning	of	this	guide,	Remoting	is	designed	to	work	with	multiple
different	endpoints	on	a	computer.	In	PowerShell	terminology,	each	endpoint	is	a	session
configuration,	or	just	a	configuration.	Each	can	be	configured	to	offer	specific	services	and
capabilities,	as	well	as	having	specific	restrictions	and	limitations.

Connecting	to	a	Different	Endpoint
When	you	use	a	command	like	Invoke-Command	or	Enter-PSSession,	you	normally	connect
to	a	remote	computer's	default	endpoint.	That's	what	we've	done	up	to	now.	But	you	can	see
the	other	enabled	endpoints	by	running	Get-PSSessionConfiguration,	as	shown	in	figure	3.1.

Figure	3.1:	Listing	the	installed	endpoints

Note:	As	we	pointed	out	in	an	earlier	chapter,	every	computer	will	show	different	defaults
endpoints.	Our	output	was	from	a	Windows	Server	2008	R2	computer,	which	has	fewer
default	endpoints	than,	say,	a	Windows	2012	computer.

Secrets	of	PowerShell	Remoting

52Working	with	Endpoints,	AKA	Session	Configurations

Each	endpoint	has	a	name,	such	as	"Microsoft.PowerShell"	or	"Microsoft.PowerShell32."	To
connect	to	a	specific	endpoint,	add	the	-ConfigurationName	parameter	to	your	Remoting
command,	as	shown	in	Figure	3.2.

Figure	3.2:	Connecting	to	a	specific	configuration	(endpoint)	by	name

Creating	a	Custom	Endpoint
There	are	a	number	of	reasons	to	create	a	custom	endpoint	(or	configuration):

You	can	have	scripts	and	modules	auto-load	whenever	someone	connects.
You	can	specify	a	security	descriptor	(SDDL)	that	determines	who	is	allowed	to	connect.
You	can	specify	an	alternate	account	that	will	be	used	to	run	all	commands	within	the
endpoint	-	as	opposed	to	using	the	credentials	of	the	connected	users.
You	can	limit	the	commands	that	are	available	to	connected	users,	thus	restricting	their
capabilities.

There	are	two	steps	in	setting	up	an	endpoint:	Creating	a	session	configuration	file	which	will
define	the	endpoints	capabilities,	and	then	registering	that	file,	which	enables	the	endpoint
and	defines	its	configurations.	Figure	3.3	shows	the	help	for	the	New-
PSSessionConfigurationFile	command,	which	accomplishes	the	first	of	these	two	steps.

Secrets	of	PowerShell	Remoting

53Working	with	Endpoints,	AKA	Session	Configurations

Figure	3.3:	The	New-PSSessionConfigurationFile	command

Here's	some	of	what	the	command	allows	you	to	specify	(review	the	help	file	yourself	for	the
other	parameters):

-Path:	The	only	mandatory	parameter,	this	is	the	path	and	filename	for	the	configuration
file	you'll	create.	Name	it	whatever	you	like,	and	use	a	.PSSC	filename	extension.
-AliasDefinitions:	This	is	a	hash	table	of	aliases	and	their	definitions.	For	example,
@{Name='d';Definition='Get-ChildItem';Options='ReadOnly'}	would	define	the	alias	d.
Use	a	comma-separated	list	of	these	hash	tables	to	define	multiple	aliases.
-EnvironmentVariables:	A	single	hash	table	of	environment	variables	to	load	into	the
endpoint:	@{'MyVar'='\SERVER\Share';'MyOtherVar'='SomethingElse'}
-ExecutionPolicy:	Defaults	to	Restricted	if	you	don't	specify	something	else;	use
Unrestricted,	AllSigned,	or	RemoteSigned.	This	sets	the	script	execution	policy	for	the
endpoint.
-FormatsToProcess	and	-TypesToProcess:	Each	of	these	is	a	comma-separated	list	of
path	and	filenames	to	load.	The	first	specifies	.format.ps1xml	files	that	contain	view
definitions,	while	the	second	specifies	a	.ps1xml	file	for	PowerShell's	Extensible	Type
System	(ETS).
-FunctionDefinitions:	A	comma-separated	list	of	hash	tables,	each	of	which	defines	a
function	to	appear	within	the	endpoint.	For	example,
@{Name='MoreDir';Options='ReadOnly';Value={	Dir	|	more	}}
-LanguageMode:	The	mode	for	PowerShell's	script	language.	"FullLanguage"	and

Secrets	of	PowerShell	Remoting

54Working	with	Endpoints,	AKA	Session	Configurations

"NoLanguage"	are	options;	the	latter	permits	only	functions	and	cmdlets	to	run.	There's
also	"RestrictedLanguage"	which	allows	a	very	small	subset	of	the	scripting	language	to
work	-	see	the	help	for	details.
-ModulesToImport:	A	comma-separated	list	of	module	names	to	load	into	the	endpoint.
You	can	also	use	hash	tables	to	specify	specific	module	versions;	read	the	command's
full	help	for	details.
-PowerShellVersion:	'2.0'	or	'3.0,'	specifying	the	version	of	PowerShell	you	want	the
endpoint	to	use.	2.0	can	only	be	specified	if	PowerShell	v2	is	independently	installed	on
the	computer	hosting	the	endpoint	(installing	v3	"on	top	of"	v2	allows	v2	to	continue	to
exist).
-ScriptsToProcess:	A	comma-separated	list	of	path	and	file	names	of	scripts	to	run	when
a	user	connects	to	the	endpoint.	You	can	use	this	to	customize	the	endpoint's	runspace,
define	functions,	load	modules,	or	do	anything	else	a	script	can	do.	However,	in	order	to
run,	the	script	execution	policy	must	permit	the	script.
-SessionType:	"Empty"	loads	nothing	by	default,	leaving	it	up	to	you	to	load	whatever
you	like	via	script	or	the	parameters	of	this	command.	"Default"	loads	the	normal
PowerShell	core	extensions,	plus	whatever	else	you've	specified	via	parameter.
"RestrictedRemoteServer"	adds	a	fixed	list	of	seven	commands,	plus	whatever	you've
specified;	see	the	help	for	details	on	what's	loaded.

Caution:	Some	commands	are	important	-	like	Exit-PSSession,	which	enables	someone	to
cleanly	exit	an	interactive	Remoting	session.	RestrictedRemoteServer	loads	these,	but
Empty	does	not.

-VisibleAliases,	-VisibleCmdlets,	-VisibleFunctions,	and	-VisibleProviders:	These
comma-separated	lists	define	which	of	the	aliases,	cmdlets,	functions,	and	PSProviders
you've	loaded	will	actually	be	visible	to	the	endpoint	user.	These	enable	you	to	load	an
entire	module,	but	then	only	expose	one	or	two	commands,	if	desired.

Note:	You	can't	use	a	custom	endpoint	alone	to	control	which	parameters	a	user	will	have
access	to.	If	you	need	that	level	of	control,	one	option	is	to	dive	into	.NET	Framework
programming,	which	does	allow	you	to	create	a	more	fine-grained	remote	configuration.
That's	beyond	the	scope	of	this	guide.	You	could	also	create	a	custom	endpoint	that	only
included	proxy	functions,	another	way	of	"wrapping"	built-in	commands	and	adding	or
removing	parameters	-	but	that's	also	beyond	the	scope	of	this	guide.

Once	you've	created	the	configuration	file,	you're	ready	to	register	it.	This	is	done	with	the
Register-PSSessionConfiguration	command,	as	shown	in	figure	3.4.

Secrets	of	PowerShell	Remoting

55Working	with	Endpoints,	AKA	Session	Configurations

Figure	3.4:	The	Register-PSSessionConfiguration	command

As	you	can	see,	there's	a	lot	going	on	with	this	command.	Some	of	the	more	interesting
parameters	include:

-RunAsCredential:	This	lets	you	specify	a	credential	that	will	be	used	to	run	all
commands	within	the	endpoint.	Providing	this	credential	enables	users	to	connect	and
run	commands	that	they	normally	wouldn't	have	permission	to	run;	by	limiting	the
available	commands	(via	the	session	configuration	file),	you	can	restrict	what	users	can
do	with	this	elevated	privilege.
-SecurityDescriptorSddl:	This	lets	you	specify	who	can	connect	to	the	endpoint.	The
specifier	language	is	complex;	consider	using	-ShowSecurityDescriptorUI	instead,
which	shows	a	graphical	dialog	box	to	set	the	endpoint	permissions.
-StartupScript:	This	specifies	a	script	to	run	each	time	the	endpoint	starts.

You	can	explore	the	other	options	on	your	own	in	the	help	file.	Let's	take	a	look	at	actually
creating	and	using	one	of	these	custom	endpoints.	As	shown	in	figure	3.5,	we've	created	a
new	AD	user	account	for	SallyS	of	the	Sales	department.	Sally,	for	some	reason,	needs	to
be	able	to	list	the	users	in	our	AD	domain	-	but	that's	all	she	must	be	able	to	do.	As-is,	her
account	doesn't	actually	have	permission	to	do	so.

Secrets	of	PowerShell	Remoting

56Working	with	Endpoints,	AKA	Session	Configurations

Figure	3.5:	Creating	a	new	AD	user	account	to	test

Figure	3.6	shows	the	creation	of	the	new	session	configuration	file,	and	the	registration	of
the	session.	Notice	that	the	session	will	auto-import	the	ActiveDirectory	module,	but	only
make	the	Get-ADUser	cmdlet	visible	to	Sally.	We've	specified	a	restricted	remote	session
type,	which	will	provide	a	few	other	key	commands	to	Sally.	We	also	disabled	PowerShell's
scripting	language.	When	registering	the	configuration,	we	specified	a	"Run	As"	credential
(we	were	prompted	for	the	password),	which	is	the	account	all	commands	will	actually
execute	as.

Secrets	of	PowerShell	Remoting

57Working	with	Endpoints,	AKA	Session	Configurations

Figure	3.6:	Creating	and	registering	the	new	endpoint

Because	we	used	the	-ShowSecurityDescriptorUI,	we	got	a	dialog	box	like	the	one	shown	in
figure	3.7.	This	is	an	easier	way	of	setting	the	permissions	for	who	can	use	this	new
endpoint.	Keep	in	mind	that	the	endpoint	will	be	running	commands	under	a	Domain	Admin
account,	so	we	want	to	be	very	careful	who	we	actually	let	in!	Sally	needs,	at	minimum,
Execute	and	Read	permission,	which	we've	given	her.

Secrets	of	PowerShell	Remoting

58Working	with	Endpoints,	AKA	Session	Configurations

Figure	3.7:	Setting	the	permissions	on	the	endpoint

We	then	set	a	password	for	Sally	and	enabled	her	user	account.	Everything	up	to	this	point
has	been	done	on	the	DC01.AD2008R2.loc	computer;	figure	3.8	moves	to	that	domain's
Windows	7	client	computer,	where	we	logged	in	using	Sally's	account.	As	you	can	see,	she
was	unable	to	enter	the	default	session	on	the	domain	controller.	But	when	she	attempted	to
enter	the	special	new	session	we	set	up	just	for	her,	she	was	successful.	She	was	able	to
run	Get-ADUser	as	well.

Figure	3.8:	Testing	the	new	endpoint	by	logging	in	as	Sally

Figure	3.9	confirms	that	Sally	has	a	very	limited	number	of	commands	to	play	with.	Some	of
these	commands	-	like	Get-Help	and	Exit-PSSession	-	are	pretty	crucial	for	using	the
endpoint.	Others,	like	Select-Object,	give	Sally	a	minimal	amount	of	non-destructive
convenience	for	getting	her	command	output	to	look	like	she	needs.	This	command	list
(aside	from	Get-ADUser)	is	automatically	set	when	you	specify	the	"restricted	remote"
session	type	in	the	session	configuration	file.

Secrets	of	PowerShell	Remoting

59Working	with	Endpoints,	AKA	Session	Configurations

Figure	3.9:	Only	eight	commands,	including	the	Get-ADUser	one	we	added,	are	available
within	the	endpoint.

In	reality,	it's	unlikely	that	a	Sales	user	like	Sally	would	be	running	commands	in	the
PowerShell	console.	More	likely,	she'd	use	some	GUI-based	application	that	ran	the
commands	"behind	the	scenes."	Either	way,	we've	ensured	that	she	has	exactly	the
functionality	she	needs	to	do	her	job,	and	nothing	more.

Security	Precautions	with	Custom	Endpoints
When	you	create	a	custom	session	configuration	file,	as	you've	seen,	you	can	set	its
language	mode.	The	language	mode	determines	what	elements	of	the	PowerShell	scripting
language	are	available	in	the	endpoint	-	and	the	language	mode	can	be	a	bit	of	a	loophole.
With	the	"Full"	language	mode,	you	get	the	entire	scripting	language,	including	script	blocks.
A	script	block	is	any	executable	hunk	of	PowerShell	code	contained	within	{curly	brackets}.
They're	the	loophole.	Anytime	you	allow	the	use	of	script	blocks,	they	can	run	any	legal
command	-	even	if	your	endpoint	used	-VisibleCmdlets	or	-VisibleFunctions	or	another
parameter	to	limit	the	commands	in	the	endpoint.

In	other	words,	if	you	register	an	endpoint	that	uses	-VisibleCmdlets	to	only	expose	Get-
ChildItem,	but	you	create	the	endpoint's	session	configuration	file	to	have	the	full	language
mode,	then	any	script	blocks	inside	the	endpoint	can	use	any	command.	Someone	could

Secrets	of	PowerShell	Remoting

60Working	with	Endpoints,	AKA	Session	Configurations

run:

PS	C:\>	&	{	Import-Module	ActiveDirectory;	Get-ADUser	-filter	*	|	Remove-ADObject	}

Eek!	This	can	be	especially	dangerous	if	you	configured	the	endpoint	to	use	a	RunAs
credential	to	run	commands	under	elevated	privileges.	It's	also	somewhat	easy	to	let	this
happen	by	mistake,	because	you	set	the	language	mode	when	you	create	the	new	session
configuration	file	(New-PSSessionConfigurationFile),	not	when	you	register	the	session
(Register-PSSessionConfiguration).	So	if	you're	using	a	session	configuration	file	created	by
someone	else,	pop	it	open	and	confirm	its	language	mode	before	you	use	it!

You	can	avoid	this	problem	by	setting	the	language	mode	to	NoLanguage,	which	shuts	off
script	blocks	and	the	rest	of	the	scripting	language.	Or,	go	for	RestrictedLanguage,	which
blocks	script	blocks	while	still	allowing	some	basic	operators	if	you	want	users	of	the
endpoint	to	be	able	to	do	basic	filtering	and	comparisons.

Understand	that	this	isn't	a	bug	-	the	behavior	we're	describing	here	is	by	design.	It	can	just
be	a	problem	if	you	don't	know	about	it	and	understand	what	it's	doing.

Note:	Much	thanks	to	fellow	MVP	Aleksandar	Nikolic	for	helping	me	understand	the	logic	of
this	loophole!

Secrets	of	PowerShell	Remoting

61Working	with	Endpoints,	AKA	Session	Configurations

Diagnostics	and	Troubleshooting
Troubleshooting	and	diagnosing	Remoting	can	be	one	of	the	most	difficult	tasks	an
administrator	has	to	deal	with.	When	Remoting	works,	it	works;	when	it	doesn't,	it's	often
hard	to	tell	why.	Fortunately,	PowerShell	v3	and	its	accompanying	implementation	of
Remoting	have	much	clearer	and	more	prescriptive	error	messages	than	prior	versions	did.
However,	even	v2	included	an	undocumented	and	little-appreciated	module	named
PSDiagnostics,	which	is	designed	specifically	to	facilitate	Remoting	troubleshooting.
Essentially,	the	module	lets	you	turn	on	detailed	trace	log	information	before	you	attempt	to
initiate	a	Remoting	connection.	You	can	then	utilize	that	detailed	log	information	to	get	a
better	idea	of	where	Remoting	is	failing.

Diagnostics	Examples
For	the	following	scenarios,	we	started	by	importing	the	PSDiagnostics	module	(note	that
this	is	implemented	as	a	script	module,	and	requires	an	execution	policy	that	permits	it	to
run,	such	as	RemoteSigned	or	Unrestricted).	Figure	4.1	also	shows	that	we	ran	the	Enable-
PSWSManCombinedTrace	command,	which	starts	the	extended	diagnostics	logging.

Secrets	of	PowerShell	Remoting

62Diagnostics	and	Troubleshooting

Figure	4.1:	Loading	the	diagnostics	module	and	starting	a	trace

For	each	scenario,	we	then	ran	one	or	more	commands	that	involved	Remoting,	as
demonstrated	in	figure	4.2.	We	then	disabled	the	trace	by	running	Disable-
PSWSManCombinedTrace,	so	that	the	log	would	only	contain	the	details	from	that	particular
attempt	(we	cleared	the	log	between	attempts,	so	that	each	scenario	provided	a	fresh
diagnostics	log).

Figure	4.2:	Entering	a	session	and	running	a	command

Finally,	as	shown	in	figure	4.3,	we	retrieved	the	messages	from	the	log.	In	the	scenarios	that
follow,	we'll	provide	an	annotated	version	of	these.	Note	that	we'll	typically	truncate	much	of
this	output	so	that	we	can	focus	on	the	most	meaningful	pieces.	Also	note	that	there's	a	bit
of	a	difference	in	reading	the	information	from	the	event	log	architecture,	as	we're	doing	in
figure	4.3,	and	reading	the	.EVT	trace	file	directly,	as	we'll	do	in	some	of	our	scenarios.	The
latter	will	provide	combined	information	from	different	logs,	which	can	sometimes	be	more
useful.

Secrets	of	PowerShell	Remoting

63Diagnostics	and	Troubleshooting

Figure	4.3:	Examining	the	logged	diagnostic	information

We're	also	going	to	be	making	use	of	the	Microsoft-Windows-WinRM/analytic	log,	which
does	not	normally	contain	human-readable	information.	In	order	to	utilize	the	log's	contents,
we'll	use	an	internal	Microsoft	utility	(which	we've	been	given	permission	to	distribute;	you'll
find	it	on	the	Downloads	page	at	http://ConcentratedTech.com)	to	translate	the	log's	contents
into	something	we	can	read.

Trace	information	is	stored	in	PowerShell's	installation	folder	(run	cd	$pshome	to	get	there,
then	change	to	the	Traces	folder).	The	filename	extension	is	.ETL,	and	you	can	use	Get-
WinEvent	-path	filename.etl	to	read	a	particular	file.	The	Construct-PSRemoteDataObject
command,	included	in	the	ZIP	file	we	referenced,	can	translate	portions	of	the	Analytic	log's
Message	property	into	human-readable	text.	A	demo	script	included	in	the	ZIP	file	shows
how	to	use	it.	As	shown	in	figure	4.4,	we	dot-sourced	the	Construct-
PSRemoteDataObject.ps1	file	into	our	shell	in	order	to	gain	access	to	the	commands	it
contains.

Secrets	of	PowerShell	Remoting

64Diagnostics	and	Troubleshooting

http://ConcentratedTech.com

Figure	4.4	Dot-sourcing	the	Construct-PSRemoteDataObject.ps1	script

We	also	deleted	the	contents	of	C:\Windows\System32\WindowsPowerShell\v1.0\Traces
prior	to	starting	each	of	the	following	examples.

A	Perfect	Remoting	Connection

For	this	connection,	we	went	from	the	Windows	7	client	computer	in	the	AD2008R2	domain
to	the	DC01	domain	controller.	On	the	DC,	we	changed	to	the	C:\	folder,	ran	a	directory,	and
then	ended	the	session.	Figure	4.5	shows	the	entire	scenario.

Secrets	of	PowerShell	Remoting

65Diagnostics	and	Troubleshooting

Figure	4.5:	The	example	for	this	scenario

We	then	read	the	log	in	chronological	order.	You	need	to	be	a	bit	careful;	running	Enable-
PSWSManCombinedTrace	and	Disable-PSWSManCombined	trace	actually	create	log
events	themselves.	We'll	often	run	the	Enable	command,	and	then	wait	a	few	minutes	to
actually	do	anything	with	Remoting.	That	way,	we	can	tell	by	the	timestamp	in	the	log	when
the	"real"	traffic	began.	We'll	wait	a	few	more	minutes	before	running	the	Disable	command,
again	so	that	we	can	easily	tell	when	the	"real"	log	traffic	ended.	Also	note	that	we'll	be
getting	information	from	two	logs,	WinRM	and	PowerShell,	although	reading	the	.ETL	file
with	Get-WinEvent	will	grab	everything	in	sequence.

Note:	We've	experienced	problems	using	Get-WinEvent	in	PowerShell	v3	on	non-US
English	machines.	If	you	run	into	problems,	consider	running	the	command	from	PowerShell
v2,	or	use	the	GUI	Event	Viewer	application	to	view	the	event	log.

The	connection	begins	with	(in	this	example)	Enter-PSSession	and	name	resolution,	as
shown	in	figure	4.6.

Secrets	of	PowerShell	Remoting

66Diagnostics	and	Troubleshooting

Figure	4.6:	Starting	the	Remoting	connection

WinRM	has	to	spin	up	a	runspace	(essentially,	a	PowerShell	process)	on	the	remote
computer.	That	includes	setting	several	options	for	locale,	timing,	and	so	on,	as	shown	in
figure	4.7.

Figure	4.7:	Starting	the	remote	runspace

This	will	go	on	for	a	while.	Eventually,	you'll	see	WinRM	beginning	to	send	"chunks,"	which
are	packetized	communications.	These	are	sent	via	the	Simple	Object	Access	Protocol,	so
expect	to	see	"SOAP"	referenced	a	lot	(WS-MAN	is	a	Web	service,	remember,	and	SOAP	is

Secrets	of	PowerShell	Remoting

67Diagnostics	and	Troubleshooting

the	communications	language	of	Web	services).	Figure	4.8	shows	a	couple	of	these	1500-
byte	chunks.	Notice	that	the	actual	payload	is	pretty	much	gibberish.

Figure	4.8:	Data	begins	to	transfer	over	the	connection

This	gibberish	is	what	the	Construct-PSRemoteDataObject	command	can	translate.	For
example,	those	"sending"	messages	have	an	event	ID	of	32868;	by	looking	for	just	those
events	we	can	see	what's	being	sent,	as	shown	in	figure	4.9.

Secrets	of	PowerShell	Remoting

68Diagnostics	and	Troubleshooting

Figure	4.9:	Translating	the	data	that	was	sent

In	this	case,	the	client	was	asking	the	server	(which	is	listed	as	the	destination)	about	its
capabilities,	and	for	some	metadata	on	the	Exit-PSSession	command	(that's	the	second
message).	This	is	how	the	client	figures	out	what	kind	of	server	it's	talking	to,	and	other
important,	preliminary	information.	Now,	the	client	knows	what	version	of	the	serialization
protocol	will	be	used	to	send	data	back	and	forth,	what	time	zone	the	server	is	in,	and	other
details.

Note:	Event	ID	32868	is	client-to-server	traffic;	ID	32867	represents	server-to-client	traffic.
Using	those	two	IDs	along	with	Construct-PSRemoteDataObject	can	reveal	the	majority	of
the	session	transcript	once	the	connection	is	established.

Moving	on.	As	shown	in	figure	4.10,	you'll	then	see	some	authentication	back-and-forth,
during	which	some	errors	can	be	expected.	The	system	will	eventually	get	over	it	and,	as
shown,	start	receiving	chunks	of	data	from	the	server.

Secrets	of	PowerShell	Remoting

69Diagnostics	and	Troubleshooting

Figure	4.10:	Getting	authentication	taken	care	of

A	rather	surprising	amount	of	back-and-forth	can	ensue	as	the	two	computers	exchange
pleasantries,	share	information	about	each	other	and	how	they	work,	and	so	on.	We're	going
to	switch	our	event	log	output,	now,	to	include	event	ID	numbers,	because	those	can	be
pretty	useful	when	trying	to	grab	specific	pieces	of	data.	At	this	point,	the	log	will	mainly
consist	of	the	client	sending	commands	and	the	server	sending	back	the	results.	This	is
more	readable	when	you	use	Construct-PSRemoteDataObject,	so	here's	the	complete	back-
and-forth	from	that	perspective:	First	up	is	the	client's	statement	of	its	session	capabilities:

destination	:	Server

messageType	:	SessionCapability

pipelineId	:	00000000-0000-0000-0000-000000000000

runspaceId	:	4358d585-0eab-47ef-a0e6-4b98e71f34ab

data				:	<Obj	RefId="0"><MS><Version

							N="protocolversion">2.2</Version><Version

							N="PSVersion">2.0</Version><Version

							N="SerializationVersion">1.1.0.1</Version><BA	N="TimeZon

							e">AAEAAAD/////AQAAAAAAAAAEAQAAABxTeXN0ZW0uQ3VycmVudFN5c

							3RlbVRpbWVab25lBAAAABdtX0NhY2hlZERheWxpZ2h0Q2hhbmdlcw1tX

							3RpY2tzT2Zmc2V0Dm1fc3RhbmRhcmROYW1lDm1fZGF5bGlnaHROYW1lA

							wABARxTeXN0ZW0uQ29sbGVjdGlvbnMuSGFzaHRhYmxlCQkCAAAAAPgpF

							9b///8KCgQCAAAAHFN5c3RlbS5Db2xsZWN0aW9ucy5IYXNodGFibGUHA

							AAACkxvYWRGYWN0b3IHVmVyc2lvbghDb21wYXJlchBIYXNoQ29kZVByb

							3ZpZGVyCEhhc2hTaXplBEtleXMGVmFsdWVzAAADAwAFBQsIHFN5c3Rlb

							S5Db2xsZWN0aW9ucy5JQ29tcGFyZXIkU3lzdGVtLkNvbGxlY3Rpb25zL

							klIYXNoQ29kZVByb3ZpZGVyCOxROD8AAAAACgoDAAAACQMAAAAJBAAAA

							BADAAAAAAAAABAEAAAAAAAAAAs=</BA></MS></Obj>

Then	the	server's:

Secrets	of	PowerShell	Remoting

70Diagnostics	and	Troubleshooting

destination	:	Client

messageType	:	SessionCapability

pipelineId	:	00000000-0000-0000-0000-000000000000

runspaceId	:	00000000-0000-0000-0000-000000000000

data				:	<Obj	RefId="0"><MS><Version

							N="protocolversion">2.2</Version><Version

							N="PSVersion">2.0</Version><Version

							N="SerializationVersion">1.1.0.1</Version></MS></Obj>

Next	is	the	server's	$PSVersionTable	object,	which	lists	various	versioning	information:

destination	:	Client

messageType	:	ApplicationPrivateData

pipelineId	:	00000000-0000-0000-0000-000000000000

runspaceId	:	4358d585-0eab-47ef-a0e6-4b98e71f34ab

data				:	<Obj	RefId="0"><MS><Obj	N="ApplicationPrivateData"

							RefId="1"><TN	RefId="0"><T>System.Management.Automation.

							PSPrimitiveDictionary</T><T>System.Collections.Hashtable

							</T><T>System.Object</T></TN><DCT><En><S

							N="Key">PSVersionTable</S><Obj	N="Value"

							RefId="2"><TNRef	RefId="0"	/><DCT><En><S

							N="Key">PSVersion</S><Version

							N="Value">2.0</Version></En><En><S

							N="Key">PSCompatibleVersions</S><Obj	N="Value"

							RefId="3"><TN	RefId="1"><T>System.Version[]</T><T>System

							.Array</T><T>System.Object</T></TN><LST><Version>1.0</Ve

							rsion><Version>2.0</Version><Version>3.0</Version></LST>

							</Obj></En><En><S	N="Key">BuildVersion</S><Version

							N="Value">6.2.8314.0</Version></En><En><S

							N="Key">PSRemotingProtocolVersion</S><Version

							N="Value">2.2</Version></En><En><S

							N="Key">WSManStackVersion</S><Version

							N="Value">3.0</Version></En><En><S

							N="Key">CLRVersion</S><Version

							N="Value">4.0.30319.261</Version></En><En><S

							N="Key">SerializationVersion</S><Version	N="Value">1.1.0

							.1</Version></En></DCT></Obj></En></DCT></Obj></MS></Obj

							>

Next	the	server	sends	information	about	the	runspace	that	will	be	used:

destination	:	Client

messageType	:	RunspacePoolStateInfo

pipelineId	:	00000000-0000-0000-0000-000000000000

runspaceId	:	4358d585-0eab-47ef-a0e6-4b98e71f34ab

data				:	<Obj	RefId="0"><MS><I32

							N="RunspaceState">2</I32></MS></Obj>

Secrets	of	PowerShell	Remoting

71Diagnostics	and	Troubleshooting

The	client	sends	information	about	its	Exit-PSSession	command:

destination	:	Server

messageType	:	GetCommandMetadata

pipelineId	:	03460806-3011-42a6-9843-c54f39ee6fb8

runspaceId	:	4358d585-0eab-47ef-a0e6-4b98e71f34ab

data				:	<Obj	RefId="0"><MS><Obj	N="Name"	RefId="1"><TN	RefId="0"

							><T>System.String[]</T><T>System.Array</T><T>System.Obje

							ct</T></TN><LST><S>Out-Default</S><S>Exit-PSSession</S><

							/LST></Obj><Obj	N="CommandType"	RefId="2"><TN	RefId="1">

							<T>System.Management.Automation.CommandTypes</T><T>Syste

							m.Enum</T><T>System.ValueType</T><T>System.Object</T></T

							N><ToString>Alias,	Function,	Filter,

							Cmdlet</ToString><I32>15</I32></Obj><Nil	N="Namespace"

							/><Nil	N="ArgumentList"	/></MS></Obj>

A	bit	later	we'll	see	the	result	of	the	CD	C:\	command,	which	is	the	new	PowerShell	prompt
reflecting	the	new	folder	location:

destination	:	Client

messageType	:	PowerShellOutput

pipelineId	:	c913b8ae-2802-4454-9d9b-926ca6032018

runspaceId	:	4358d585-0eab-47ef-a0e6-4b98e71f34ab

data				:	<S>PS	C:\>	</S>

Next	we'll	look	at	the	output	of	the	Dir	command.	This	first	bit	is	writing	the	column	headers
for	Mode,	LastWriteTime,	Length,	Name,	and	so	forth.	This	is	all	being	sent	to	our	client	-
we'll	just	include	the	first	few	lines,	each	of	which	comes	across	in	its	own	block:

destination	:	Client

messageType	:	RemoteHostCallUsingPowerShellHost

pipelineId	:	c259c891-516a-46a7-b287-27c96ff86d5b

runspaceId	:	4358d585-0eab-47ef-a0e6-4b98e71f34ab

data				:	<Obj	RefId="0"><MS><I64	N="ci">-100</I64><Obj	N="mi"

							RefId="1"><TN	RefId="0"><T>System.Management.Automation.

							Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst

							em.ValueType</T><T>System.Object</T></TN><ToString>Write

							Line2</ToString><I32>16</I32></Obj><Obj	N="mp"

							RefId="2"><TN	RefId="1"><T>System.Collections.ArrayList<

							/T><T>System.Object</T></TN><LST><S>Mode								

							LastWriteTime			Length	Name													

																		</S></LST></Obj></MS></Obj>

destination	:	Client

messageType	:	RemoteHostCallUsingPowerShellHost

pipelineId	:	c259c891-516a-46a7-b287-27c96ff86d5b

runspaceId	:	4358d585-0eab-47ef-a0e6-4b98e71f34ab

data				:	<Obj	RefId="0"><MS><I64	N="ci">-100</I64><Obj	N="mi"

							RefId="1"><TN	RefId="0"><T>System.Management.Automation.

Secrets	of	PowerShell	Remoting

72Diagnostics	and	Troubleshooting

							Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst

							em.ValueType</T><T>System.Object</T></TN><ToString>Write

							Line2</ToString><I32>16</I32></Obj><Obj	N="mp"

							RefId="2"><TN	RefId="1"><T>System.Collections.ArrayList<

							/T><T>System.Object</T></TN><LST><S>----								

							-------------			------	----													

																		</S></LST></Obj></MS></Obj>

destination	:	Client

messageType	:	RemoteHostCallUsingPowerShellHost

pipelineId	:	c259c891-516a-46a7-b287-27c96ff86d5b

runspaceId	:	4358d585-0eab-47ef-a0e6-4b98e71f34ab

data				:	<Obj	RefId="0"><MS><I64	N="ci">-100</I64><Obj	N="mi"

							RefId="1"><TN	RefId="0"><T>System.Management.Automation.

							Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst

							em.ValueType</T><T>System.Object</T></TN><ToString>Write

							Line2</ToString><I32>16</I32></Obj><Obj	N="mp"

							RefId="2"><TN	RefId="1"><T>System.Collections.ArrayList<

							/T><T>System.Object</T></TN><LST><S>d----				

							8/25/2010		8:11	AM						IT	Structures						

																					</S></LST></Obj></MS></Obj>

destination	:	Client

messageType	:	RemoteHostCallUsingPowerShellHost

pipelineId	:	c259c891-516a-46a7-b287-27c96ff86d5b

runspaceId	:	4358d585-0eab-47ef-a0e6-4b98e71f34ab

data				:	<Obj	RefId="0"><MS><I64	N="ci">-100</I64><Obj	N="mi"

							RefId="1"><TN	RefId="0"><T>System.Management.Automation.

							Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst

							em.ValueType</T><T>System.Object</T></TN><ToString>Write

							Line2</ToString><I32>16</I32></Obj><Obj	N="mp"

							RefId="2"><TN	RefId="1"><T>System.Collections.ArrayList<

							/T><T>System.Object</T></TN><LST><S>d----				

							7/13/2009	11:20	PM						PerfLogs								

																					</S></LST></Obj></MS></Obj>

Eventually	the	command	finishes	and	we	get	the	prompt	again:

destination	:	Client

messageType	:	PowerShellOutput

pipelineId	:	f5c8bc7a-ec54-4180-b2d4-86479f9ea4b9

runspaceId	:	4358d585-0eab-47ef-a0e6-4b98e71f34ab

data				:	<S>PS	C:\>	</S>

You'll	also	see	periodic	exchanges	about	the	state	of	the	pipeline	-	this	indicates	that	the
command	is	done:

Secrets	of	PowerShell	Remoting

73Diagnostics	and	Troubleshooting

destination	:	Client

messageType	:	PowerShellStateInfo

pipelineId	:	f5c8bc7a-ec54-4180-b2d4-86479f9ea4b9

runspaceId	:	4358d585-0eab-47ef-a0e6-4b98e71f34ab

data				:	<Obj	RefId="0"><MS><I32

							N="PipelineState">4</I32></MS></Obj>

There's	definitely	a	lot	of	data	passing	back	and	forth	-	but	it's	possible	to	make	sense	of	it
using	these	tools.	Frankly,	most	Remoting	problems	take	place	during	the	connection	phase,
meaning	once	that's	completed	successfully	you	have	no	further	problems.	So	in	the	next
scenarios,	we'll	focus	on	specific	connection	errors.

Note:	To	clear	the	log	and	prepare	for	a	new	trace,	we	usually	delete	the	.ETL	files	and	go
into	Event	Viewer	to	clear	the	Applications	and	Services	Logs	>	Microsoft	>	Windows	>
Windows	Remote	Management	log.	If	you're	getting	errors	when	running	Enable-
PSWSManCombinedTrace,	one	of	those	two	tasks	probably	hasn't	been	completed.

Connection	Problem:	Blocked	Port

Figure	4.11	shows	what	happens	when	you	try	to	connect	to	a	computer	and	the	necessary
port	-	5985	by	default	-	isn't	open	all	the	way	through.	We're	going	to	look	at	how	this
appears	in	the	log.	Note	that	we're	assuming	you've	already	checked	the	computer	name,
made	sure	it	resolves	to	the	proper	IP	address,	and	so	forth;	what	you're	looking	at	is
definitely	a	blocked	port	(because	we	set	it	up	that	way)	in	this	example.

Secrets	of	PowerShell	Remoting

74Diagnostics	and	Troubleshooting

Figure	4.11:	Connection	failure	due	to	a	firewall	or	other	port-blocking	problem.

Figure	4.12	shows	that	we	successfully	resolved	the	computer	name.	We	find	that	testing
with	Enter-PSSession	is	easiest,	because	it's	really	easy	to	spot	that	command	in	the	log
and	see	when	the	"real"	log	data	begins.

Secrets	of	PowerShell	Remoting

75Diagnostics	and	Troubleshooting

Figure	4.12:	Starting	the	connection	attempt

Note	that	a	lot	of	the	initial	log	traffic	is	still	WinRM	talking	to	itself,	getting	set	up	for	the
actual	connection	attempt.	Just	keep	scrolling	through	that	until	you	start	to	see	problem
indications.	Figure	4.13	shows	a	timeout	-	never	a	good	sign	-	and	the	error	message
generated	by	WinRM.	As	you	can	see,	this	is	exactly	what	we	got	on-screen,	so	PowerShell
isn't	hiding	anything	from	us.

Secrets	of	PowerShell	Remoting

76Diagnostics	and	Troubleshooting

Figure	4.13:	The	timeout	error	in	the	diagnostics	log

This	is	actually	one	of	the	trickiest	bits	of	Remoting:	It	can't	tell	why	the	server	didn't
respond.	It	doesn't	realize	that	the	port	isn't	open.	For	all	WinRM	knows,	we	could	have
specified	a	computer	name	that	doesn't	exist.	All	it	knows	is	that	it	sent	a	message	out	to	the
network,	and	nobody	replied.	In	the	end,	nearly	all	of	the	possible	"low	level"	problems	-	bad
IP	address,	bad	computer	name,	blocked	port,	and	so	forth	all	look	the	same	from	WinRM's
point	of	view.	You're	on	your	own	to	troubleshoot	these	problems.

We've	found	that	one	useful	technique	can	be	to	use	the	old	command-line	Telnet	client.
Keep	in	mind	that	WS-MAN	is	just	HTTP,	and	HTTP	-	like	many	Internet	protocols	-	is	just
sending	text	back	and	forth,	more	or	less	exactly	like	Telnet.	HTTP	has	specific	text	it	sends
and	looks	for,	but	the	actual	transmission	is	old-school	Telnet.	So	we'll	run	something	like
telnet	dc01	5985	just	to	see	if	we	can	connect.	A	blank	screen	is	normal:	Hit	Ctrl+C	to	break
out,	and	you'll	see	an	HTTP	"Bad	Request"	error.	That's	fine	-	it	means	you	got	through.
That	confirms	the	computer	name,	the	IP	address,	the	port,	and	everything	else	"low-level."

Connection	Problem:	No	Permissions

This	can	be	a	bit	of	a	tricky	problem,	because	you	need	to	be	an	Administrator	to	enable	a
diagnostics	trace.	On	the	other	hand,	WinRM	is	usually	quite	clear	when	you	can't	connect
because	your	account	doesn't	have	permission	to	the	endpoint:	"Access	Denied"	is	the	error
message,	and	that's	pretty	straightforward.

Secrets	of	PowerShell	Remoting

77Diagnostics	and	Troubleshooting

But	you	can	also	log	on	as	an	Administrator	(or	open	a	shell	under	Administrator
credentials),	enable	a	trace,	and	then	have	the	other	user	(or	your	other	user	account)	try
whatever	it	is	they're	trying.	Go	back	in	as	Administrator	and	disable	the	trace,	then	examine
the	log.	Figure	4.14	shows	what	you're	looking	for.

Figure	4.14:	"Access	Denied"	in	the	diagnostics	log

The	log	data	just	after	that	will	show	you	the	user	account	that	was	used	to	try	and	create
the	connection	(AD2008R2\SallyS,	in	our	example,	which	is	why	the	command	failed	-	she's
not	an	Administrator).	A	quick	check	with	Get-PSSessionConfiguration	on	the	remote
machine	will	confirm	the	permissions	on	whatever	Remoting	endpoint	you're	attempting	to
connect	to.	Also,	as	shown	in	figure	4.15,	we've	found	that	running	Set-
PSSessionConfiguration	can	be	useful.	Provide	the	-Name	of	the	endpoint	you're	checking,
and	add	-ShowSecurityDescriptorUI.	That	will	let	you	confirm	the	endpoint's	permissions	in	a
friendlier	GUI	form	-	and	you	can	modify	it	right	there	if	need	be.

Secrets	of	PowerShell	Remoting

78Diagnostics	and	Troubleshooting

Figure	4.15:	Checking	an	endpoint's	permissions	using	Set-PSSessionConfiguration

Connection	Problem:	Untrusted	Host

Figure	4-16	shows	the	connection	we're	trying	to	make:	From	the	client	in	the	AD2008R2
domain	to	a	standalone	computer	that	isn't	part	of	a	domain.

Secrets	of	PowerShell	Remoting

79Diagnostics	and	Troubleshooting

Figure	4.16:	Attempted	connection	for	this	scenario

As	shown	in	figure	4.17,	the	error	comes	quickly,	even	though	we've	provided	a	valid
credential.	The	problem	is	that	we're	in	a	situation	where	WinRM	can't	get	the	mutual
authentication	it	wants;	part	2	of	this	guide	covers	solutions	for	fixing	the	problem.	But	what
does	the	problem	look	like	in	the	diagnostics	log?

Secrets	of	PowerShell	Remoting

80Diagnostics	and	Troubleshooting

Figure	4.17:	The	error	message	gives	good	clues	as	to	how	to	solve	this	problem

Figure	4.18	shows	that	WinRM	still	sends	its	initial	salvo	of	traffic	to	the	server.	It's	when	the
reply	comes	back	that	the	client	realizes	it	can't	authenticate	this	server,	and	the	error	is
generated.	What	you	see	in	the	log	is	pretty	much	what	shows	up	in	the	shell,	verbatim.

Secrets	of	PowerShell	Remoting

81Diagnostics	and	Troubleshooting

Figure	4.18:	The	diagnostic	log	content	when	attempting	to	connect	to	an	untrusted	host

Figure	4.19	shows	a	good	second	step	to	take:	Run	Test-WSMan.	Provide	the	same
computer	name	or	IP	address,	but	leave	off	the	-Credential	parameter.	The	cmdlet	can	at
least	tell	you	that	WS-MAN	and	WinRM	are	up	and	running	on	the	remote	computer,	and
what	version	they're	running.	That	at	least	narrows	the	problem	down	to	one	of
authentication:	Either	your	permissions	(which	would	have	resulted	in	an	"Access	Denied")
or	the	mutual	authentication	component	of	Remoting.

Secrets	of	PowerShell	Remoting

82Diagnostics	and	Troubleshooting

Figure	4.19:	Test-WSMan	is	kind	of	like	a	"ping"	for	Remoting

Note:	You'll	see	substantially	the	same	behavior	when	you	attempt	to	connect	using	HTTPS
(the	-UseSSL	switch	on	the	various	Remoting	commands),	and	the	remote	machine's	SSL
certificate	name	doesn't	match	the	name	you	used	in	your	command.	The	error	message	is
unambiguous	both	on-screen	and	in	the	log,	and	we	discuss	solutions	in	part	2	of	the	guide.

Standard	Troubleshooting	Methodology
Troubleshooting	can	be	difficult,	especially	with	Remoting	since	there	are	so	many	layers	in
which	something	can	go	wrong.	Following	a	straightforward,	standardized	approach	can
help	pinpoint	problems.

1.	 Test	Remoting	with	its	default	configuration.	If	you've	tinkered	with	that,	undo	your
changes	and	start	from	scratch.

2.	 Start	by	attempting	to	connect	from	the	initiating	machine	to	the	target	machine	by	using
something	other	than	Remoting,	but	which	is	still	security-sensitive.	For	example,	use
Windows	Explorer	to	open	the	remote	machine's	C$	shared	folder.	If	that	doesn't	work,
you	have	broader	security	issues.	Make	a	note	of	whether	or	not	you	need	to	provide
alternate	credentials	-	if	you	do,	Remoting	will	need	them	as	well.

3.	 Install	a	Telnet	client	on	the	initiating	machine	(a	simple	command-line	client,	like	the
Windows	native	one,	will	do).	Attempt	to	connect	to	the	HTTP	WinRM	listener	by

Secrets	of	PowerShell	Remoting

83Diagnostics	and	Troubleshooting

running	telnet	machine_name:5985.	You	should	get	a	blank	screen,	and	Ctrl+C	will	end
the	session.	If	this	doesn't	work,	there's	a	basic	connectivity	problem	(such	as	a	blocked
port)	you	need	to	resolve.

4.	 Use	Test-WSMan	as	described	earlier,	using	an	alternate	credential	if	necessary.	Make
sure	you're	either	using	the	machine's	real	name	as	it	appears	in	Active	Directory,	or
that	you've	taken	one	of	the	other	approaches	(TrustedHosts	plus	a	credential,	or	SSL
plus	a	credential)	that	we	outlined	in	Section	2	of	this	guide.	If	that	doesn't	work,	you
have	a	problem	in	the	WS-MAN	configuration.

Simply	walking	through	these	four	steps,	in	this	order,	can	help	you	pinpoint	at	least	the
general	cause	of	most	problems.

Summary
So	why	did	we	bother	going	through	the	logs	when,	in	most	of	our	examples,	the	logs	simply
echoed	what	was	on	the	screen?	Simple:	As	PowerShell	becomes	embedded	in	more	and
more	GUI	applications,	you	might	not	always	have	a	console,	with	its	nice	error	messages,
to	rely	upon.	What	you	can	do,	however,	is	use	the	console	to	start	a	trace,	run	whatever
GUI	app	is	failing,	and	then	dig	into	the	log	to	see	if	you	find	some	of	the	signs	we've	shown
you	here.

Secrets	of	PowerShell	Remoting

84Diagnostics	and	Troubleshooting

Session	Management
When	you	create	a	Remoting	connection	between	two	machines,	you're	creating	-	in
PowerShell	terminology	-	a	session.	There	are	an	incredible	number	of	options	that	can	be
applied	to	these	sessions,	and	in	this	portion	of	the	guide	we'll	walk	you	through	them.

Ad-Hoc	vs.	Persistent	Sessions
When	you	use	a	Remoting	command	-	primarily	Invoke-Command	or	Enter-PSSession	-	and
specify	a	computer	name	by	using	their	-ComputerName	parameter,	you're	creating	an	ad-
hoc	session.	Basically,	PowerShell	just	brings	up	a	session,	utilizes	it,	and	then	tears	it
down,	all	automatically.

Alternately,	you	can	use	New-PSSession	to	explicitly	create	a	new	session,	which	can	then
be	utilized	by	passing	the	session	to	the	-Session	parameter	of	Invoke-Command,	Enter-
PSSession,	and	numerous	other	Remoting-aware	commands.	When	you	manually	create	a
session,	it's	up	to	you	to	get	rid	of	it	when	you're	done	with	it.	However,	if	you	have	a	session
open	and	close	your	copy	of	PowerShell,	that	session	is	automatically	removed	for	you	-	so
you're	not	leaving	anything	hanging	around	that	needs	to	be	cleaned	up.

Disconnecting	and	Reconnecting	Sessions
In	PowerShell	v3,	you	can	disconnect	and	reconnect	sessions	by	using	Disconnect-
PSSession	and	Connect-PSSession.	These	commands	each	accept	a	session	object,	which
you'd	usually	create	with	New-PSSession.

A	disconnected	session	leaves	a	copy	of	PowerShell	up	and	running	on	the	remote
computer.	This	is	a	good	way	to	get	it	to	run	some	long-running	task,	disconnect,	and	then
reconnect	later	to	check	up	on	it.	You	can	even	disconnect	a	session	on	one	computer,
move	to	another	computer,	and	reconnect	to	that	session	(although	you	can't	connect	to
someone	else's	disconnect	session;	you're	limited	to	reconnecting	to	your	own).

For	example,	figure	5.1	shows	a	session	being	created	from	a	client	to	a	server.	The	session
is	then	given	a	task	to	perform	as	a	background	job,	and	then	the	session	is	disconnected.
It's	important	to	note	that	the	command,	and	the	background	job,	are	on	the	server	(DC01),
not	the	client.

Secrets	of	PowerShell	Remoting

85Session	Management

Figure	5.1:	Creating,	using,	and	disconnecting	a	session

In	figure	5.2,	we've	moved	to	a	different	machine.	We're	logged	on,	and	running	PowerShell,
as	the	same	user	that	we	were	on	the	previous	client	computer.	We	retrieve	the	session
from	the	remote	computer,	and	then	reconnect	it.	We	then	enter	the	newly	reconnected
session,	display	that	background	job,	and	receive	some	results	from	it.	Finally,	we	exit	the
remote	session	and	shut	it	down	via	Remove-PSSession.

Secrets	of	PowerShell	Remoting

86Session	Management

Figure	5.2:	Reconnecting	to,	utilizing,	and	removing	a	session

Obviously,	disconnected	sessions	can	present	something	of	a	management	concern,
because	you're	leaving	a	copy	of	PowerShell	up	and	running	on	a	remote	machine	-	and
you're	doing	so	in	a	way	that	makes	it	difficult	for	someone	else	to	even	see	you've	done	it!
That's	where	session	options	come	into	play.

Session	Options
Whenever	you	run	a	Remoting	command	that	creates	a	session	-	whether	persistent	or	ad-
hoc	-	you	have	the	option	of	specifying	a	-SessionOption	parameter,	which	accepts	a
PSSessionOption	object.	The	default	option	object	is	used	if	you	don't	specify	one,	and	that
object	can	be	found	in	the	built-in	$PSSessionOption	variable.	It's	shown	in	figure	5.3.

Secrets	of	PowerShell	Remoting

87Session	Management

Figure	5.3:	The	default	PSSessionOption	object	stored	in	$PSSessionOption

As	you	can	see,	this	specifies	a	number	of	defaults,	including	the	operation	timeout,	idle
timeout,	and	other	options.	You	can	change	these	by	simply	creating	a	new	session	option
object	and	assigning	it	to	$PSSessionOption;	note	that	you	need	to	do	this	in	a	profile	script
if	you	want	your	changes	to	become	the	new	default	every	time	you	open	a	new	copy	of
PowerShell.	Figure	5.4	shows	an	example.

Secrets	of	PowerShell	Remoting

88Session	Management

Figure	5.4:	Creating	a	new	default	PSSessionOption	object

Of	course,	a	2-second	idle	timeout	probably	isn't	very	practical	(and	in	fact	won't	work	-	you
must	specify	at	least	a	60-second	timeout	in	order	to	use	the	session	object	at	all),	but	you'll
note	that	you	only	need	to	specify	the	option	parameters	that	you	want	to	change	-
everything	else	will	go	to	the	built-in	defaults.	You	can	also	specify	a	unique	session	option
for	any	given	session	you	create.	Figure	5.5	shows	one	way	to	do	so.

Secrets	of	PowerShell	Remoting

89Session	Management

Figure	5.5:	Creating	a	new	PSSessionOption	object	to	use	with	a	1-to-1	connection

By	specifying	intelligent	values	for	these	various	options,	you	can	help	ensure	that
disconnected	sessions	don't	hang	around	and	run	forever	and	ever.	A	reasonable	idle
timeout,	for	example,	ensures	that	the	session	will	eventually	close	itself,	even	if	an
administrator	disconnects	from	it	and	subsequently	forgets	about	it.	Note	that,	when	a
session	closes	itself,	any	data	within	that	session	-	including	background	job	results	-	will	be
lost.	It's	probably	a	good	idea	to	get	in	the	practice	of	having	data	saved	into	a	file	(by	using
Export-CliXML,	for	example),	so	that	an	idle	session	doesn't	close	itself	and	lose	all	of	your
work.

Secrets	of	PowerShell	Remoting

90Session	Management

PowerShell,	Remoting,	and	Security
Although	PowerShell	Remoting	has	been	around	since	roughly	2010,	many	administrators
and	organizations	are	unable	to	take	advantage	of	it,	due	in	large	part	to	outdated	or
uninformed	security	and	risk	avoidance	policies.	This	chapter	is	designed	to	help	address
some	of	those	by	providing	some	honest	technical	detail	about	how	these	technologies
work.	In	fact,	they	present	significantly	less	risk	than	many	of	the	management	and
communications	protocols	already	in	widespread	use	-	those	older	protocols	benefit	primarily
from	being	"grandfathered"	into	policies	and	never	closely	examined.

Neither	PowerShell	nor	Remoting	are	a	"Back
Door"	for	Malware
This	is	a	major	misconception.	Keep	in	mind	that,	by	default,	PowerShell	does	not	execute
scripts.	When	it	does	so,	it	can	only	execute	commands	that	the	executing	user	has
permission	to	run	-	it	does	not	execute	anything	under	a	super-privileged	account,	and	it
bypasses	neither	existing	permissions	nor	security.	In	fact,	because	PowerShell	is	based
upon	.NET,	it's	unlikely	any	malware	author	would	even	bother	to	utilize	PowerShell.	Such
an	attacker	could	simply	call	on	.NET	Framework	functionality	directly,	and	much	more
easily.

By	default,	PowerShell	Remoting	enables	only	Administrators	to	even	connect,	and	once
connected	they	can	only	run	commands	they	have	permission	to	run	-	with	no	ability	to
bypass	permissions	or	underlying	security.	Unlike	past	tools	which	ran	under	a	highly-
privileged	account	(such	as	LocalSystem),	PowerShell	Remoting	executes	commands	by
impersonating	the	user	who	submitted	the	commands.

Bottom	line:	Because	of	the	way	it	works,	PowerShell	Remoting	does	not	allow	any	user,
authorized	or	not,	to	do	anything	that	they	could	not	do	through	a	dozen	other	means	-
including	logging	onto	the	console.	Whatever	protections	you	have	in	place	to	prevent	those
kinds	of	attacks	(such	as	appropriate	authorization	and	authentication	mechanisms)	will	also
protect	PowerShell	and	Remoting.	If	you	allow	Administrators	to	log	on	to	server	consoles	-
either	physically	or	via	Remote	Desktop	-	you	have	far	greater	security	exposure	than	you
do	through	PowerShell	Remoting.

Further,	PowerShell	offers	a	better	opportunity	to	restrict	even	Administrators.	A	Remoting
endpoint	(or	session	configuration)	can	be	modified	to	allow	only	specified	users	to	connect
to	it.	Once	connected,	the	endpoint	can	further	restrict	the	commands	that	those	users	can

Secrets	of	PowerShell	Remoting

91PowerShell	Remoting	and	Security

execute.	This	provides	a	much	better	opportunity	for	delegated	administration.	Rather	than
having	Administrators	log	onto	consoles	and	do	whatever	they	please,	you	can	have	them
connect	to	restricted,	secured	endpoints	and	only	complete	those	specific	tasks	that	the
endpoint	permits.

PowerShell	Remoting	is	Not	Optional
As	of	Windows	Server	2012,	PowerShell	Remoting	is	enabled	by	default	and	is	mandatory
for	server	management.	Even	when	running	a	graphical	management	console	locally	on	a
server,	the	console	still	"goes	out"	and	"back	in"	via	Remoting	to	accomplish	its	tasks.
Without	Remoting,	server	administration	is	impossible.	Organizations	are	therefore	well-
advised	to	start	immediately	finding	a	way	to	include	Remoting	in	their	permitted	protocols.
Otherwise,	critical	services	will	not	be	able	to	be	managed,	even	through	Remote	Desktop	or
directly	on	the	server	console.

This	approach	actually	helps	better	secure	the	data	center.	Because	local	administration	is
exactly	the	same	as	remote	administration	(via	Remoting),	there's	no	longer	any	reason	to
physically	or	remotely	access	server	consoles.	The	consoles	can	thus	remain	more	locked
down	and	secured,	and	Administrators	can	stay	out	of	the	data	center	entirely.

Remoting	Does	Not	Transmit	or	Store
Credentials
By	default,	Remoting	uses	Kerberos,	an	authentication	protocol	that	does	not	transmit
passwords	across	the	network.	Instead,	Kerberos	relies	on	passwords	as	an	encryption	key,
ensuring	that	passwords	remain	safe.	Remoting	can	be	configured	to	use	less-secure
authentication	protocols	(such	as	Basic),	but	can	also	be	configured	to	require	certificate-
based	encryption	for	the	connection.

Further,	Remoting	never	stores	credentials	in	any	persistent	storage	by	default.	A	Remote
machine	never	has	access	to	a	user's	credentials;	it	has	access	only	to	a	delegated	security
token	(a	Kerberos	"ticket").	That	is	stored	in	volatile	memory	which	cannot,	by	OS	design,	be
written	to	disk	-	even	to	the	OS	page	file.	The	server	presents	that	token	to	the	OS	when
executing	commands,	causing	the	command	to	be	executed	with	the	original	invoking	user's
authority	-	and	nothing	more.

Remoting	Uses	Encryption

Secrets	of	PowerShell	Remoting

92PowerShell	Remoting	and	Security

Most	Remoting-enabled	applications	apply	their	own	encryption	to	their	application-level
traffic	sent	over	Remoting.	However,	Remoting	can	also	be	configured	to	use	HTTPS
(certificate-encrypted	connections),	and	can	be	configured	to	make	HTTPS	mandatory.	This
encrypts	the	entire	channel	using	high-level	encryption,	while	also	ensuring	mutual
authentication	of	both	client	and	server.

Remoting	is	Security-Transparent
As	stated,	Remoting	neither	adds	anything	to,	nor	takes	anything	away	from,	your	existing
security	configuration.	Remote	commands	are	executed	using	the	delegated	credentials	of
whatever	user	invoked	the	commands,	meaning	they	can	only	do	what	they	have	permission
to	do	-	and	what	they	could	presumably	do	through	a	half-dozen	other	tools	anyway.
Whatever	auditing	you	have	in	place	in	your	environment	cannot	be	bypassed	by	Remoting.
Unlike	many	past	"remote	execution"	solutions,	Remoting	does	not	operate	under	a	single
"super-privileged"	account	unless	you	expressly	configure	it	that	way	(which	requires	several
steps	and	cannot	possibly	by	accomplished	accidentally,	as	it	requires	the	creation	of
custom	endpoints).

Remember:	Anything	someone	can	do	via	Remoting,	they	can	already	do	in	a	half-dozen
other	ways.	Remoting	simply	provides	a	more	consistent,	controllable,	and	scalable	means
of	doing	so.

Remoting	is	Lower	Overhead
Unlike	Remote	Desktop	Connection	(RDC,	which	many	Administrators	currently	use	to
manage	remote	servers),	Remoting	is	very	low-overhead.	It	does	not	require	the	server	to
spin	up	an	entire	graphical	operating	environment,	impacting	server	performance	and
memory	management.	Remoting	is	also	more	scalable,	enabling	authorized	users	(mainly
Administrators	in	most	cases)	to	execute	commands	against	multiple	servers	at	once	-	which
improves	consistency	and	reduces	error,	while	also	speeding	up	response	times	and
lowering	administrative	overhead.

Remoting	is	Microsoft's	way	forward.	To	not	use	Remoting	is	to	deliberately	attempt	to	use
Windows	in	a	way	that	it	was	explicitly	designed	not	to	do.	You	will	reduce,	not	improve	your
security,	while	also	increasing	operational	overhead,	enabling	greater	instance	of	human
error,	and	reducing	server	performance.	Microsoft	Administrators	have	for	decades	been
toiling	under	an	operational	paradigm	that	was	wrong-headed	and	short-sighted;	Remoting
is	finally	delivering	to	Windows	the	administrative	model	that	every	other	network	operating
system	has	used	for	years,	if	not	decades.

Secrets	of	PowerShell	Remoting

93PowerShell	Remoting	and	Security

Remoting	Uses	Mutual	Authentication
Unlike	nearly	every	other	remote	management	technique	out	there	-	including	tools	like
PSExec	and	even,	under	some	circumstances,	Remote	Desktop,	PowerShell	Remoting	by
default	requires	mutual	authentication.	The	user	attempting	to	connect	to	a	server	is
authenticated	and	known;	the	system	also	ensures	that	the	server	connected	to	is	the
intended	server	and	not	an	imposter.	This	provides	far	better	security	than	past	techniques,
while	also	helping	to	reduce	error	-	you	can't	"accidentally	log	on	to	the	wrong	console"	as
you	could	if	you	just	walked	into	the	data	center.

Summary
At	this	point,	denying	PowerShell	Remoting	is	like	denying	Ethernet:	It's	ridiculous	to	think
you'll	successfully	operate	your	environment	without	it.	For	the	first	time,	Microsoft	has
provided	a	supported,	official,	baked-in	technology	for	remote	server	administration	that
does	not	use	elevated	credentials,	does	not	store	credentials	in	any	way,	that	supports
mutual	authentication,	and	that	is	complete	security-transparent.	This	is	the	administration
technology	we	should	have	had	all	along;	moving	to	it	will	only	make	your	environment	more
manageable	and	more	secure,	not	less.

Secrets	of	PowerShell	Remoting

94PowerShell	Remoting	and	Security

Configuring	Remoting	via	GPO
PowerShell's	about_remote_troubleshooting	provides	a	good	set	of	steps	for	configuring
basic	Remoting	functionality	via	Group	Policy	objects	(GPOs).	Running	Enable-PSRemoting
also	reveals	some	useful	details,	such	as	the	four	main	configuration.	In	this	section,	we'll
cover	these	main	configuration	steps.

Note:	None	of	this	is	necessary	on	Windows	Server	2012	and	later	versions	of	the	server
OS.	Remoting	is	enabled	by	default	on	those,	and	shouldn't	be	turned	off,	as	many	of	the
native	management	tools	(including	GUI	consoles	like	Server	Manager)	depend	upon
Remoting.

GPO	Caveats
One	thing	to	keep	in	mind	is	that	GPOs	can	only	create	configuration	changes;	they	can't
necessarily	change	the	active	state	of	the	computer.	In	other	words,	while	a	GPO	can
configure	a	service's	start	mode	to	"Automatic,"	it	can't	start	the	service.	That'll	happen
automatically	when	the	computer	is	restarted.	It	isn't	so	much	that	a	restart	is	needed,	just
that	the	computer	only	starts	services	after	booting.	So	in	many	cases,	the	changes	you
make	with	a	GPO	(with	regard	to	Remoting)	won't	actually	take	effect	until	the	next	time	the
affected	computers	are	restarted,	because	in	most	cases	the	computer	only	looks	at	the
configuration	at	boot	time.	Just	be	aware	of	that.

Also,	everything	in	this	section	assumes	that	PowerShell	is	already	installed	on	the	target
computers	-	something	that	can	also	be	accomplished	with	a	GPO	or	other	software
deployment	mechanism,	but	not	something	we're	going	to	cover	here.	Note	that	most	of	this
section	should	apply	to	either	PowerShell	v2	or	v3;	we're	going	to	run	through	the	examples
using	v2	on	a	Windows	7	client	computer	belonging	to	a	Windows	Server	2008	R2	domain.

Note:	Some	of	the	GPO	settings	we'll	be	reviewing	became	available	in	Windows	2008	and
Windows	2008	R2,	but	you	should	be	able	to	install	the	necessary	administrative	templates
into	any	domain	controller.	The	Windows	7	(and	later	versions)	Remote	Server
Administration	Toolkit	(RSAT)	contains	the	necessary	templates.

We	don't	know	for	sure	that	the	GPO	configuration	steps	need	to	be	accomplished	in	the
order	we	present	them;	in	most	cases,	we	expect	you'll	do	them	all	at	once	in	a	single	GPO,
so	it	won't	matter.	We're	taking	them	step-by-step	in	this	order	so	that	we	can	check	the
individual	results	along	the	way.

Secrets	of	PowerShell	Remoting

95Configuring	Remoting	via	GPO

Allowing	Automatic	Configuration	of	WinRM
Listeners
As	explained	earlier	in	this	guide,	the	WinRM	service	sets	up	one	or	more	listeners	to	accept
incoming	traffic.	Running	Enable-PSRemoting,	for	example,	sets	up	an	HTTP	listener,	and
we've	covered	how	to	set	up	an	HTTPS	listener	in	addition	to,	or	instead	of,	that	default	one.

You'll	find	this	setting	under:	Computer	Configuration\Administrative	Templates\Windows
Components\Windows	Remote	Management	(WinRM)\WinRM	Service.	Enable	the	policy,
and	specify	the	IPv4	and	IPv6	filters,	which	determine	which	IP	addresses	listeners	will	be
configured	on.	You	can	use	the	*	wildcard	to	designate	all	IP	addresses,	which	is	what	we've
done	in	Figure	7.1.

Figure	7.1:	Enabling	automatic	configuration	of	WinRM	listeners

Setting	the	WinRM	Service	to	Start
Automatically

Secrets	of	PowerShell	Remoting

96Configuring	Remoting	via	GPO

This	service	is	set	to	start	automatically	on	newer	server	operating	systems	(Windows
Server	2003	and	later),	but	not	on	clients.	So	this	step	will	only	be	required	for	client
computers.	Again,	this	won't	start	the	service,	but	the	next	time	the	computer	restarts,	the
service	will	start	automatically.

Microsoft	suggests	accomplishing	this	task	by	running	a	PowerShell	command	-	which	does
not	require	that	Remoting	be	enabled	in	order	to	work:

Set-Service	WinRM	-computername	$servers	-startup	Automatic

You	can	populate	$servers	any	way	you	like,	so	long	as	it	contains	strings	that	are	computer
names,	and	so	long	as	you	have	Administrator	credentials	on	those	computers.	For
example,	to	grab	every	computer	in	your	domain,	you'd	run	the	following	(this	assumes
PowerShell	v2	or	v3,	on	a	Windows	7	computer	with	the	RSAT	installed):

Import-Module	ActiveDirectory

$servers	=	Get-ADComputer	-filter	*	|	Select	-expand	name

Practically	speaking,	you'll	probably	want	to	limit	the	number	of	computers	you	do	at	once	by
either	specifying	a	-Filter	other	than	"*"	or	by	specifying	-SearchBase	and	limiting	the	search
to	a	specific	OU.	Read	the	help	for	Get-ADComputer	to	learn	more	about	those	parameters.

Note	that	Set-Service	will	return	an	error	for	any	computers	it	couldn't	contact,	or	for	which
the	change	didn't	work,	and	then	continue	on	with	the	next	computer.

Alternately,	you	could	configure	this	with	a	GPO.	Under	Computer	Configuration\Windows
Settings\Security	Settings\System	Services,	look	for	"Windows	Remote	Management."
Right-click	it	and	set	a	startup	mode	of	Automatic.	That's	what	we	did	in	figure	7.2.

Secrets	of	PowerShell	Remoting

97Configuring	Remoting	via	GPO

Figure	7.2:	Setting	the	WinRM	service	start	mode

Creating	a	Windows	Firewall	Exception
This	step	will	be	necessary	on	all	computers	where	the	Windows	Firewall	is	enabled.	We're
assuming	that	you	only	want	Remoting	enabled	in	your	Domain	firewall	profile,	so	that's	all
we're	doing	in	our	example.	Obviously,	you	can	manage	whatever	other	exceptions	you
want	in	whatever	profiles	are	appropriate	for	your	environment.

You'll	find	one	setting	under	Computer	Configuration\Administrative
Templates\Network\Network	Connections\Windows	Firewall\Domain	Profile.	Note	that	the
"Windows	Firewall:	Allow	Local	Port	Exceptions"	policy	simply	allows	local	Administrators	to
configure	Firewall	exceptions	using	the	Control	Panel;	it	doesn't	actually	create	any
exceptions.	That	may	be	exactly	what	you	want	in	some	cases.

Instead,	we	went	to	the	"Define	inbound	port	exceptions"	policy,	and	Enabled	it,	as	shown	in
figure	7.3.

Secrets	of	PowerShell	Remoting

98Configuring	Remoting	via	GPO

Figure	7.3:	Enabling	Firewall	exceptions

We	then	clicked	"Show,"	and	added	"5985:TCP:*:enabled:WinRM"	as	a	new	exception,	as
shown	in	figure	7.4.

Secrets	of	PowerShell	Remoting

99Configuring	Remoting	via	GPO

Figure	7.4:	Creating	the	Firewall	exception

Give	it	a	Try!
After	applying	the	above	GPO	changes,	we	restarted	our	client	computer.	When	the	WinRM
service	starts,	it	checks	to	see	if	it	has	any	configured	listeners.	When	it	finds	that	it	doesn't,
it	should	try	and	automatically	configure	one	-	which	we've	now	allowed	it	to	do	via	GPO.
The	Firewall	exception	should	allow	the	incoming	traffic	to	reach	the	listener.

As	shown	in	figure	7.5,	it	seems	to	work.	We've	found	the	newly	created	listener!

Secrets	of	PowerShell	Remoting

100Configuring	Remoting	via	GPO

Figure	7.5:	Checking	the	newly	created	WinRM	listener

Of	course,	the	proof	-	as	they	say	-	is	in	the	pudding.	So	we	ran	to	another	computer	and,	as
shown	in	figure	7.6,	were	able	to	initiate	an	interactive	Remoting	session	to	our	original	client
computer.	We	didn't	configure	anything	except	via	GPO,	and	it's	all	working.

Secrets	of	PowerShell	Remoting

101Configuring	Remoting	via	GPO

Figure	7-6:	Initiating	a	1-to-1	Remoting	session	with	the	GPO-configured	client	computer

What	You	Cant	Do	with	a	GPO
You	can't	use	a	GPO	to	start	the	WinRM	service,	as	we've	already	stated.	You	also	can't
create	custom	listeners	via	GPO,	nor	can	you	create	custom	PowerShell	endpoints	(session
configurations).	However,	once	basic	Remoting	is	enabled	via	GPO,	you	can	use
PowerShell's	Invoke-Command	cmdlet	to	remotely	perform	those	other	tasks.	You	could
even	use	Invoke-Command	to	remotely	disable	the	default	HTTP	listener,	if	that's	what	you
wanted.

Also	keep	in	mind	that	PowerShell's	WSMAN	PSProvider	can	map	remote	computers'
WinRM	configuration	into	your	local	WSMAN:	drive.	That's	why,	by	default,	the	top-level
"folder"	in	that	drive	is	"localhost;"	so	that	there's	a	spot	to	add	other	computers,	if	desired.
That	offers	another	way	to	configure	listeners	and	other	Remoting-related	settings.

The	real	key	is	to	use	GPO	to	get	Remoting	up	and	running	in	this	basic	form,	which	is	what
we've	shown	you	how	to	do.	From	there,	you	can	use	Remoting	itself	to	tweak,	reconfigure,
and	modify	the	configuration.

Secrets	of	PowerShell	Remoting

102Configuring	Remoting	via	GPO

	ReadMe
	About this Book
	Remoting Basics
	Accessing Remote Computers
	Working with Endpoints, AKA Session Configurations
	Diagnostics and Troubleshooting
	Session Management
	PowerShell Remoting and Security
	Configuring Remoting via GPO

