

0

1

2

3

4

5

6

7

Table	of	Contents
ReadMe

About	this	Book

Introduction

PowerShell	Error	Handling	Basics

Controlling	Error	Reporting	Behavior	and	Intercepting	Errors

Analysis	of	Error	Handling	Test	Results

Putting	it	All	Together

Afterword

The	Big	Book	of	PowerShell	Error	Handling

2

Despite	the	title,	this	is	actually	a	very	small,	concise	book	designed	to	help	you	understand
how	PowerShell	generates	and	deals	with	errors.	It's	also	designed	to	help	you	build	the
best	possible	error	handling	for	your	own	scripts	and	functions,	in	just	a	few	short	lessons.

The	Big	Book	of	PowerShell	Error	Handling

3ReadMe

The	Big	Book	of	PowerShell	Error
Handling
by	Dave	Wyatt

Cover	design	by	Nathan	Vonnahme

Despite	the	title,	this	is	actually	a	very	small,	concise	book	designed	to	help	you	understand
how	PowerShell	generates	and	deals	with	errors.	It's	also	designed	to	help	you	build	the
best	possible	error	handling	for	your	own	scripts	and	functions,	in	just	a	few	short	lessons.

This	guide	is	released	under	the	Creative	Commons	Attribution-NoDerivs	3.0	Unported
License.	The	authors	encourage	you	to	redistribute	this	file	as	widely	as	possible,	but	ask
that	you	do	not	modify	the	document.

Getting	the	code	Sample	code,	along	with	a	spreadsheet	documenting	known	exception
class	names,	can	be	found	at	https://github.com/devops-collective-inc/big-book-of-
powershell-error-handling/tree/master/attachments.

Was	this	book	helpful?	The	author(s)	kindly	ask(s)	that	you	make	a	tax-deductible	(in	the
US;	check	your	laws	if	you	live	elsewhere)	donation	of	any	amount	to	The	DevOps
Collective	to	support	their	ongoing	work.

Check	for	Updates!	Our	ebooks	are	often	updated	with	new	and	corrected	content.	We
make	them	available	in	three	ways:

Our	main,	authoritative	GitHub	organization,	with	a	repo	for	each	book.	Visit
https://github.com/devops-collective-inc/
Our	GitBook	page,	where	you	can	browse	books	online,	or	download	as	PDF,	EPUB,	or
MOBI.	Using	the	online	reader,	you	can	link	to	specific	chapters.	Visit
https://www.gitbook.com/@devopscollective
On	LeanPub,	where	you	can	download	as	PDF,	EPUB,	or	MOBI	(login	required),	and
"purchase"	the	books	to	make	a	donation	to	DevOps	Collective.	Visit
https://leanpub.com/u/devopscollective

GitBook	and	LeanPub	have	slightly	different	PDF	formatting	output,	so	you	can	choose	the
one	you	prefer.	LeanPub	can	also	notify	you	when	we	push	updates.	Our	main	GitHub	repo
is	authoritative;	repositories	on	other	sites	are	usually	just	mirrors	used	for	the	publishing

The	Big	Book	of	PowerShell	Error	Handling

4About	this	Book

https://github.com/devops-collective-inc/big-book-of-powershell-error-handling/tree/master/attachments
https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://github.com/devops-collective-inc/
https://www.gitbook.com/@devopscollective
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://leanpub.com/u/devopscollective

process.	GitBook	will	usually	contain	our	latest	version,	including	not-yet-finished	bits;
LeanPub	always	contains	the	most	recent	"public	release"	of	any	book.

The	Big	Book	of	PowerShell	Error	Handling

5About	this	Book

Introduction
Error	handling	in	Windows	PowerShell	can	be	a	complex	topic.	The	goal	of	this	book	-	which
is	fortunately	not	as	"big"	as	the	name	implies	-	is	to	help	clarify	some	of	that	complexity,	and
help	you	do	a	better	and	more	concise	job	of	handling	errors	in	your	scripts.

What	is	error	handling?
When	we	say	that	a	script	"handles"	an	error,	this	means	it	reacts	to	the	error	by	doing
something	other	than	the	default	behavior.	In	many	programming	and	scripting	languages,
the	default	behavior	is	simply	to	output	an	error	message	and	immediately	crash.	In
PowerShell,	it	will	also	output	an	error	message,	but	will	often	continue	executing	code	after
the	error	occurred.

Handling	errors	requires	the	script's	author	to	anticipate	where	errors	might	occur,	and	to
write	code	to	intercept	and	analyze	those	errors	if	and	when	they	happen.	This	can	be	a
complex	and	sometimes	frustrating	topic,	particularly	in	PowerShell.	The	purpose	of	this
book	is	to	show	you	the	error	handling	tools	PowerShell	puts	at	your	disposal,	and	how	best
to	use	them.

How	this	book	is	organized
Following	this	introduction,	the	book	is	broken	up	into	four	sections.	The	first	two	sections
are	written	to	assume	that	you	know	nothing	about	PowerShell	error	handling,	and	to
provide	a	solid	background	on	the	topic.	However,	there's	nothing	new	in	these	sections	that
isn't	already	covered	by	the	PowerShell	help	files.	If	you're	already	fairly	familiar	with	the
ErrorRecord	object	and	the	various	parameters	/	variables	/	statements	that	are	related	to
reporting	and	handling	errors,	you	may	want	to	skip	straight	to	sections	3	and	4.

Section	3	is	an	objective	look	at	how	PowerShell's	error	handling	features	actually	behave,
based	on	the	results	of	some	test	code	I	wrote	to	put	it	through	its	paces.	The	idea	was	to
determine	whether	there	are	any	functional	differences	between	similar	approaches	to
handling	errors	($error	versus	ErrorVariable,	whether	to	use	$_	or	not	in	a	catch	block,	etc.),
all	of	which	generated	some	strong	opinions	during	and	after	the	2013	Scripting	Games.

These	tests	reveal	a	couple	of	tricky	bugs,	particularly	involving	the	use	of	ErrorVariable.

Section	4	wraps	things	up	by	giving	you	a	more	task-oriented	view	of	error	handling,	taking
the	findings	from	section	3	into	consideration.

The	Big	Book	of	PowerShell	Error	Handling

6Introduction

The	Big	Book	of	PowerShell	Error	Handling

7Introduction

Powershell	Error	Handling	Basics
Let's	start	by	getting	some	of	the	basics	out	of	the	way.

ErrorRecords	and	Exceptions
In	the	.NET	Framework,	on	which	PowerShell	is	built,	error	reporting	is	largely	done	by
throwing	exceptions.	Exceptions	are	.NET	Objects	which	have	a	base	type	of
System.Exception.aspx).	These	Exception	objects	contain	enough	information	to
communicate	all	the	details	of	the	error	to	a	.NET	Framework	application	(the	type	of	error
that	occurred,	a	stack	trace	of	method	calls	that	led	to	the	error,	etc.)	That	alone	isn't	enough
information	to	provide	to	a	PowerShell	script,	though;	PowerShell	has	its	own	stack	trace	of
scripts	and	function	calls	which	the	underlying	.NET	Framework	knows	nothing	about.	It's
also	important	to	know	which	objects	had	failures,	when	a	single	statement	or	pipeline	is
capable	of	producing	multiple	errors.

For	these	reasons,	PowerShell	gives	us	the	ErrorRecord	object.	ErrorRecords	contain	a
.NET	Exception,	along	with	several	other	pieces	of	PowerShell-specific	information.	For
example,	figure	1.1	shows	how	you	can	access	the	TargetObject,	CategoryInfo	and
InvocationInfo	properties	of	an	ErrorRecord	object;	any	one	of	these	might	provide
information	that	is	useful	to	your	script's	error	handling	logic.

The	Big	Book	of	PowerShell	Error	Handling

8PowerShell	Error	Handling	Basics

http://msdn.microsoft.com/en-us/library/system.exception(v=vs.110

Figure	1.1:	Some	of	the	ErrorRecord	object's	more	useful	properties.

Terminating	versus	Non-Terminating	Errors
PowerShell	is	an	extremely	expressive	language.	This	means	that	a	single	statement	or
pipeline	of	PowerShell	code	can	perform	the	work	of	hundreds,	or	even	thousands	of	raw
CPU	instructions.	For	example:

Get-Content	.\computers.txt	|	Restart-Computer

This	small,	46-character	PowerShell	pipeline	opens	a	file	on	disk,	automatically	detects	its
text	encoding,	reads	the	text	one	line	at	a	time,	connects	to	each	remote	computer	named	in
the	file,	authenticates	to	that	computer,	and	if	successful,	restarts	the	computer.	Several	of
these	steps	might	encounter	errors;	in	the	case	of	the	Restart-Computer	command,	it	may
succeed	for	some	computers	and	fail	for	others.

For	this	reason,	PowerShell	introduces	the	concept	of	a	Non-Terminating	error.	A	Non-
Terminating	error	is	one	that	does	not	prevent	the	command	from	moving	on	and	trying	the
next	item	on	a	list	of	inputs;	for	example,	if	one	of	the	computers	in	the	computers.txt	file	is
offline,	that	doesn't	stop	PowerShell	from	moving	on	and	rebooting	the	rest	of	the	computers
in	the	file.

The	Big	Book	of	PowerShell	Error	Handling

9PowerShell	Error	Handling	Basics

By	contrast,	a	Terminating	error	is	one	that	causes	the	entire	pipeline	to	fail.	For	example,
this	similar	command	fetches	the	email	addresses	associated	with	Active	Directory	user
accounts:

Get-Content	.\users.txt	|

Get-ADUser	-Properties	mail	|

Select-Object	-Property	SamAccountName,mail

In	this	pipeline,	if	the	Get-ADUser	command	can't	communicate	with	Active	Directory	at	all,
there's	no	reason	to	continue	reading	lines	from	the	text	file	or	attempting	to	process
additional	records,	so	it	will	produce	a	Terminating	error.	When	this	Terminating	error	is
encountered,	the	entire	pipeline	is	immediately	aborted;	Get-Content	will	stop	reading	lines,
and	close	the	file.

It's	important	to	know	the	distinction	between	these	types	of	errors,	because	your	scripts	will
use	different	techniques	to	intercept	them.	As	a	general	rule,	most	errors	produced	by
Cmdlets	are	non-terminating	(though	there	are	a	few	exceptions,	here	and	there.)

The	Big	Book	of	PowerShell	Error	Handling

10PowerShell	Error	Handling	Basics

Controlling	Error	Reporting	Behavior	and
Intercepting	Errors
This	section	briefly	demonstrates	how	to	use	each	of	PowerShell's	statements,	variables
and	parameters	that	are	related	to	the	reporting	or	handling	of	errors.

The	$Error	Variable
$Error	is	an	automatic	global	variable	in	PowerShell	which	always	contains	an	ArrayList	of
zero	or	more	ErrorRecord	objects.	As	new	errors	occur,	they	are	added	to	the	beginning	of
this	list,	so	you	can	always	get	information	about	the	most	recent	error	by	looking	at
$Error[0].	Both	Terminating	and	Non-Terminating	errors	will	be	contained	in	this	list.

Aside	from	accessing	the	objects	in	the	list	with	array	syntax,	there	are	two	other	common
tasks	that	are	performed	with	the	$Error	variable:	you	can	check	how	many	errors	are
currently	in	the	list	by	checking	the	$Error.Count	property,	and	you	can	remove	all	errors
from	the	list	with	the	$Error.Clear()	method.	For	example:

Figure	2.1:	Using	$Error	to	access	error	information,	check	the	count,	and	clear	the	list.

If	you're	planning	to	make	use	of	the	$Error	variable	in	your	scripts,	keep	in	mind	that	it	may
already	contain	information	about	errors	that	happened	in	the	current	PowerShell	session
before	your	script	was	even	started.	Also,	some	people	consider	it	a	bad	practice	to	clear	the
$Error	variable	inside	a	script;	since	it's	a	variable	global	to	the	PowerShell	session,	the
person	that	called	your	script	might	want	to	review	the	contents	of	$Error	after	it	completes.

ErrorVariable

The	Big	Book	of	PowerShell	Error	Handling

11Controlling	Error	Reporting	Behavior	and	Intercepting	Errors

The	ErrorVariable	common	parameter	provides	you	with	an	alternative	to	using	the	built-in
$Error	collection.	Unlike	$Error,	your	ErrorVariable	will	only	contain	errors	that	occurred	from
the	command	you're	calling,	instead	of	potentially	having	errors	from	elsewhere	in	the
current	PowerShell	session.	This	also	avoids	having	to	clear	the	$Error	list	(and	the	breach
of	etiquette	that	entails.)

When	using	ErrorVariable,	if	you	want	to	append	to	the	error	variable	instead	of	overwriting
it,	place	a	+	sign	in	front	of	the	variable's	name.	Note	that	you	do	not	use	a	dollar	sign	when
you	pass	a	variable	name	to	the	ErrorVariable	parameter,	but	you	do	use	the	dollar	sign	later
when	you	check	its	value.

The	variable	assigned	to	the	ErrorVariable	parameter	will	never	be	null;	if	no	errors	occurred,
it	will	contain	an	ArrayList	object	with	a	Count	of	0,	as	seen	in	figure	2.2:

Figure	2.2:	Demonstrating	the	use	of	the	ErrorVariable	parameter.

$MaximumErrorCount
By	default,	the	$Error	variable	can	only	contain	a	maximum	of	256	errors	before	it	starts	to
lose	the	oldest	ones	on	the	list.	You	can	adjust	this	behavior	by	modifying	the
$MaximumErrorCount	variable.

ErrorAction	and	$ErrorActionPreference
There	are	several	ways	you	can	control	PowerShell's	handling	/	reporting	behavior.	The
ones	you	will	probably	use	most	often	are	the	ErrorAction	common	parameter	and	the
$ErrorActionPreference	variable.

The	Big	Book	of	PowerShell	Error	Handling

12Controlling	Error	Reporting	Behavior	and	Intercepting	Errors

The	ErrorAction	parameter	can	be	passed	to	any	Cmdlet	or	Advanced	Function,	and	can
have	one	of	the	following	values:	Continue	(the	default),	SilentlyContinue,	Stop,	Inquire,
Ignore	(only	in	PowerShell	3.0	or	later),	and	Suspend	(only	for	workflows;	will	not	be
discussed	further	here.)	It	affects	how	the	Cmdlet	behaves	when	it	produces	a	non-
terminating	error.

The	default	value	of	Continue	causes	the	error	to	be	written	to	the	Error	stream	and
added	to	the	$Error	variable,	and	then	the	Cmdlet	continues	processing.
A	value	of	SilentlyContinue	only	adds	the	error	to	the	$Error	variable;	it	does	not	write
the	error	to	the	Error	stream	(so	it	will	not	be	displayed	at	the	console).
A	value	of	Ignore	both	suppresses	the	error	message	and	does	not	add	it	to	the	$Error
variable.	This	option	was	added	with	PowerShell	3.0.
A	value	of	Stop	causes	non-terminating	errors	to	be	treated	as	terminating	errors
instead,	immediately	halting	the	Cmdlet's	execution.	This	also	enables	you	to	intercept
those	errors	in	a	Try/Catch	or	Trap	statement,	as	described	later	in	this	section.
A	value	of	Inquire	causes	PowerShell	to	ask	the	user	whether	the	script	should	continue
or	not	when	an	error	occurs.

The	$ErrorActionPreference	variable	can	be	used	just	like	the	ErrorAction	parameter,	with	a
couple	of	exceptions:	you	cannot	set	$ErrorActionPreference	to	either	Ignore	or	Suspend.
Also,	$ErrorActionPreference	affects	your	current	scope	in	addition	to	any	child	commands
you	call;	this	subtle	difference	has	the	effect	of	allowing	you	to	control	the	behavior	of	errors
that	are	produced	by	.NET	methods,	or	other	causes	such	as	PowerShell	encountering	a
"command	not	found"	error.

Figure	2.3	demonstrates	the	effects	of	the	three	most	commonly	used
$ErrorActionPreference	settings.

The	Big	Book	of	PowerShell	Error	Handling

13Controlling	Error	Reporting	Behavior	and	Intercepting	Errors

Figure	2.3:	Behavior	of	$ErrorActionPreference

Try/Catch/Finally
The	Try/Catch/Finally	statements,	added	in	PowerShell	2.0,	are	the	preferred	way	of
handling	terminating	errors.	They	cannot	be	used	to	handle	non-terminating	errors,	unless
you	force	those	errors	to	become	terminating	errors	with	ErrorAction	or
$ErrorActionPreference	set	to	Stop.

To	use	Try/Catch/Finally,	you	start	with	the	"Try"	keyword	followed	by	a	single	PowerShell
script	block.	Following	the	Try	block	can	be	any	number	of	Catch	blocks,	and	either	zero	or
one	Finally	block.	There	must	be	a	minimum	of	either	one	Catch	block	or	one	Finally	block;	a
Try	block	cannot	be	used	by	itself.

The	code	inside	the	Try	block	is	executed	until	it	is	either	complete,	or	a	terminating	error
occurs.	If	a	terminating	error	does	occur,	execution	of	the	code	in	the	Try	block	stops.
PowerShell	writes	the	terminating	error	to	the	$Error	list,	and	looks	for	a	matching	Catch

The	Big	Book	of	PowerShell	Error	Handling

14Controlling	Error	Reporting	Behavior	and	Intercepting	Errors

block	(either	in	the	current	scope,	or	in	any	parent	scopes.)	If	no	Catch	block	exists	to
handle	the	error,	PowerShell	writes	the	error	to	the	Error	stream,	the	same	thing	it	would
have	done	if	the	error	had	occurred	outside	of	a	Try	block.

Catch	blocks	can	be	written	to	only	catch	specific	types	of	Exceptions,	or	to	catch	all
terminating	errors.	If	you	do	define	multiple	catch	blocks	for	different	exception	types,	be
sure	to	place	the	more	specific	blocks	at	the	top	of	the	list;	PowerShell	searches	catch
blocks	from	top	to	bottom,	and	stops	as	soon	as	it	finds	one	that	is	a	match.

If	a	Finally	block	is	included,	its	code	is	executed	after	both	the	Try	and	Catch	blocks	are
complete,	regardless	of	whether	an	error	occurred	or	not.	This	is	primarily	intended	to
perform	cleanup	of	resources	(freeing	up	memory,	calling	objects'	Close()	or	Dispose()
methods,	etc.)

Figure	2.4	demonstrates	the	use	of	a	Try/Catch/Finally	block:

Figure	2.4:	Example	of	using	try/catch/finally.

Notice	that	"Statement	after	the	error"	is	never	displayed,	because	a	terminating	error
occurred	on	the	previous	line.	Because	the	error	was	based	on	an	IOException,	that	Catch
block	was	executed,	instead	of	the	general	"catch-all"	block	below	it.	Afterward,	the	Finally
executes	and	changes	the	value	of	$testVariable.

The	Big	Book	of	PowerShell	Error	Handling

15Controlling	Error	Reporting	Behavior	and	Intercepting	Errors

Also	notice	that	while	the	Catch	block	specified	a	type	of	[System.IO.IOException],	the
actual	exception	type	was,	in	this	case,	[System.IO.DirectoryNotFoundException].	This
works	because	DirectoryNotFoundException	is	inherited	from	IOException,	the	same	way	all
exceptions	share	the	same	base	type	of	System.Exception.	You	can	see	this	in	figure	2.5:

Figure	2.5:	Showing	that	IOException	is	the	Base	type	for	DirectoryNotFoundException

Trap
Trap	statements	were	the	method	of	handling	terminating	errors	in	PowerShell	1.0.	As	with
Try/Catch/Finally,	the	Trap	statement	has	no	effect	on	non-terminating	errors.

Trap	is	a	bit	awkward	to	use,	as	it	applies	to	the	entire	scope	where	it	is	defined	(and	child
scopes	as	well),	rather	than	having	the	error	handling	logic	kept	close	to	the	code	that	might
produce	the	error	the	way	it	is	when	you	use	Try/Catch/Finally.	For	those	of	you	familiar	with
Visual	Basic,	Trap	is	a	lot	like	"On	Error	Goto".	For	that	reason,	Trap	statements	don't	see	a
lot	of	use	in	modern	PowerShell	scripts,	and	I	didn't	include	them	in	the	test	scripts	or
analysis	in	Section	3	of	this	ebook.

For	the	sake	of	completeness,	here's	an	example	of	how	to	use	Trap:

The	Big	Book	of	PowerShell	Error	Handling

16Controlling	Error	Reporting	Behavior	and	Intercepting	Errors

Figure	2.6:	Use	of	the	Trap	statement

As	you	can	see,	Trap	blocks	are	defined	much	the	same	way	as	Catch	blocks,	optionally
specifying	an	Exception	type.	Trap	blocks	may	optionally	end	with	either	a	Break	or
Continue	statement.	If	you	don't	use	either	of	those,	the	error	is	written	to	the	Error	stream,
and	the	current	script	block	continues	with	the	next	line	after	the	error.	If	you	use	Break,	as
seen	in	figure	2.5,	the	error	is	written	to	the	Error	stream,	and	the	rest	of	the	current	script
block	is	not	executed.	If	you	use	Continue,	the	error	is	not	written	to	the	error	stream,	and
the	script	block	continues	execution	with	the	next	statement.

The	$LASTEXITCODE	Variable
When	you	call	an	executable	program	instead	of	a	PowerShell	Cmdlet,	Script	or	Function,
the	$LASTEXITCODE	variable	automatically	contains	the	process's	exit	code.	Most
processes	use	the	convention	of	setting	an	exit	code	of	zero	when	the	code	finishes
successfully,	and	non-zero	if	an	error	occurred,	but	this	is	not	guaranteed.	It's	up	to	the
developer	of	the	executable	to	determine	what	its	exit	codes	mean.

Note	that	the	$LASTEXITCODE	variable	is	only	set	when	you	call	an	executable	directly,	or
via	PowerShell's	call	operator	(&)	or	the	Invoke-Expression	cmdlet.	If	you	use	another
method	such	as	Start-Process	or	WMI	to	launch	the	executable,	they	have	their	own	ways	of

The	Big	Book	of	PowerShell	Error	Handling

17Controlling	Error	Reporting	Behavior	and	Intercepting	Errors

communicating	the	exit	code	to	you,	and	will	not	affect	the	current	value	of
$LASTEXITCODE.

Figure	2.7:	Using	$LASTEXITCODE.

The	$?	Variable
The	$?	variable	is	a	Boolean	value	that	is	automatically	set	after	each	PowerShell	statement
or	pipeline	finishes	execution.	It	should	be	set	to	True	if	the	previous	command	was
successful,	and	False	if	there	was	an	error.	If	the	previous	command	was	a	call	to	a	native
exe,	$?	will	be	set	to	True	if	the	$LASTEXITCODE	variable	equals	zero,	and	False
otherwise.	When	the	previous	command	was	a	PowerShell	statement,	$?	will	be	set	to	False
if	any	errors	occurred	(even	if	ErrorAction	was	set	to	SilentlyContinue	or	Ignore.)

Just	be	aware	that	the	value	of	this	variable	is	reset	after	every	statement.	You	must	check
its	value	immediately	after	the	command	you're	interested	in,	or	it	will	be	overwritten
(probably	to	True).	Figure	2.8	demonstrates	this	behavior.	The	first	time	$?	is	checked,	it	is
set	to	False,	because	the	Get-Item	encountered	an	error.	The	second	time	$?	was	checked,
it	was	set	to	True,	because	the	previous	command	was	successful;	in	this	case,	the	previous
command	was	"$?"	from	the	first	time	the	variable's	value	was	displayed.

Figure	2.8:	Demonstrating	behavior	of	the	$?	variable.

The	$?	variable	doesn't	give	you	any	details	about	what	error	occurred;	it's	simply	a	flag	that
something	went	wrong.	In	the	case	of	calling	executable	programs,	you	need	to	be	sure	that
they	return	an	exit	code	of	0	to	indicate	success	and	non-zero	to	indicate	an	error	before	you

The	Big	Book	of	PowerShell	Error	Handling

18Controlling	Error	Reporting	Behavior	and	Intercepting	Errors

can	rely	on	the	contents	of	$?.

Summary
That	covers	all	of	the	techniques	you	can	use	to	either	control	error	reporting	or	intercept
and	handle	errors	in	a	PowerShell	script.	To	summarize:

To	intercept	and	react	to	non-terminating	errors,	you	check	the	contents	of	either	the
automatic	$Error	collection,	or	the	variable	you	specified	as	the	ErrorVariable.	This	is
done	after	the	command	completes;	you	cannot	react	to	a	non-terminating	error	before
the	Cmdlet	or	Function	finishes	its	work.
To	intercept	and	react	to	terminating	errors,	you	use	either	Try/Catch/Finally	(preferred),
or	Trap	(old	and	not	used	much	now.)	Both	of	these	constructs	allow	you	to	specify
different	script	blocks	to	react	to	different	types	of	Exceptions.
Using	the	ErrorAction	parameter,	you	can	change	how	PowerShell	cmdlets	and
functions	report	non-terminating	errors.	Setting	this	to	Stop	causes	them	to	become
terminating	errors	instead,	which	can	be	intercepted	with	Try/Catch/Finally	or	Trap.
$ErrorActionPreference	works	like	ErrorAction,	except	it	can	also	affect	PowerShell's
behavior	when	a	terminating	error	occurs,	even	if	those	errors	came	from	a	.NET
method	instead	of	a	cmdlet.
$LASTEXITCODE	contains	the	exit	code	of	external	executables.	An	exit	code	of	zero
usually	indicates	success,	but	that's	up	to	the	author	of	the	program.
$?	can	tell	you	whether	the	previous	command	was	successful,	though	you	have	to	be
careful	about	using	it	with	external	commands,	if	they	don't	follow	the	convention	of
using	an	exit	code	of	zero	as	an	indicator	of	success.	You	also	need	to	make	sure	you
check	the	contents	of	$?	immediately	after	the	command	you	are	interested	in.

The	Big	Book	of	PowerShell	Error	Handling

19Controlling	Error	Reporting	Behavior	and	Intercepting	Errors

Analysis	of	Error	Handling	Test	Results
As	mentioned	in	the	introduction,	the	test	code	and	its	output	files	are	available	for	download
from	the	same	location	where	you	got	this	ebook	(http://PowerShell.org/wp/ebooks	for	the
link).	It's	quite	a	bit	of	data,	and	doesn't	format	very	well	in	a	Word	document,	so	I	won't	be
including	the	contents	of	those	files	in	this	ebook.	If	you	question	any	of	the	analysis	or
conclusions	I've	presented	in	this	section,	I	encourage	you	to	download	and	review	both	the
code	and	results	files.

The	test	code	consists	of	two	files.	The	first	is	a	PowerShell	script	module
(ErrorHandlingTestCommands.psm1)	which	contains	a	Cmdlet,	a	.NET	class	and	several
Advanced	Functions	for	producing	terminating	and	non-terminating	errors	on	demand,	or	for
testing	PowerShell's	behavior	when	such	errors	are	produced.	The	second	file	is	the
ErrorTests.ps1	script,	which	imports	the	module,	calls	its	commands	with	various
parameters,	and	produces	output	that	was	redirected	(including	the	Error	stream)	to	the
three	results	files:	ErrorTests.v2.txt,	ErrorTests.v3.txt	and	ErrorTests.v4.txt.

There	are	three	main	sections	to	the	ErrorTests.ps1	script.	The	first	section	calls	commands
to	generate	terminating	and	non-terminating	errors,	and	outputs	information	about	the
contents	of	$_	(in	Catch	blocks	only),	$Error,	and	ErrorVariable.	These	tests	were	aimed	at
answering	the	following	questions:

When	dealing	only	with	non-terminating	errors,	are	there	differences	between	how
$Error	and	ErrorVariable	present	information	about	the	errors	that	occurred?	Does	it
make	any	difference	if	the	errors	came	from	a	Cmdlet	or	Advanced	Function?
When	using	a	Try/Catch	block,	are	there	any	differences	in	behavior	between	the	way
$Error,	ErrorVariable,	and	$_	give	information	about	the	terminating	error	that	occurred?
Does	it	make	any	difference	if	the	errors	came	from	a	Cmdlet,	Advanced	Function,	or
.NET	method?
When	non-terminating	errors	happened	in	addition	to	the	terminating	error,	are	there
differences	between	how	$Error	and	ErrorVariable	present	the	information?	Does	it
make	any	difference	if	the	errors	came	from	a	Cmdlet	or	Advanced	Function?
In	the	above	tests,	are	there	any	differences	between	a	terminating	error	that	was
produced	normally,	as	compared	to	a	non-terminating	error	that	occurred	when
ErrorAction	or	$ErrorActionPreference	was	set	to	Stop?

The	second	section	consists	of	a	few	tests	to	determine	whether	ErrorAction	or
$ErrorActionPreference	affect	terminating	errors,	or	only	non-terminating	errors.

The	Big	Book	of	PowerShell	Error	Handling

20Analysis	of	Error	Handling	Test	Results

http://PowerShell.org/wp/ebooks

The	final	section	tests	how	PowerShell	behaves	when	it	encounters	unhandled	terminating
errors	from	each	possible	source	(a	Cmdlet	that	uses	PSCmdlet.ThrowTerminatingError(),
an	Advanced	Function	that	uses	PowerShell's	Throw	statement,	a	.NET	method	that	throws
an	exception,	a	Cmdlet	or	Advanced	Function	that	produce	non-terminating	errors	when
ErrorAction	is	set	to	Stop,	and	an	unknown	command.)

The	results	of	all	tests	were	identical	in	PowerShell	3.0	and	4.0.	PowerShell	2.0	had	a
couple	of	differences,	which	will	be	called	out	in	the	analysis.

Intercepting	Non-Terminating	Errors
Let's	start	by	talking	about	non-terminating	errors.

ErrorVariable	versus	$Error

When	dealing	with	non-terminating	errors,	there	is	only	one	difference	between	$Error	and
ErrorVariable:	the	order	of	errors	in	the	lists	is	reversed.	The	most	recent	error	that	occurred
is	always	at	the	beginning	of	the	$Error	variable	(index	zero),	and	the	most	recent	error	is	at
the	end	of	the	ErrorVariable.

Intercepting	Terminating	Errors
This	is	the	real	meat	of	the	task:	working	with	terminating	errors,	or	exceptions.

$_

At	the	beginning	of	a	Catch	block,	the	$_	variable	always	refers	to	an	ErrorRecord	object	for
the	terminating	error,	regardless	of	how	that	error	was	produced.

$Error

At	the	beginning	of	a	Catch	block,	$Error[0]	always	refers	to	an	ErrorRecord	object	for	the
terminating	error,	regardless	of	how	that	error	was	produced.

ErrorVariable

Here,	things	start	to	get	screwy.	When	a	terminating	error	is	produced	by	a	cmdlet	or
function	and	you're	using	ErrorVariable,	the	variable	will	contain	some	unexpected	items,
and	the	results	are	quite	different	across	the	various	tests	performed:

The	Big	Book	of	PowerShell	Error	Handling

21Analysis	of	Error	Handling	Test	Results

When	calling	an	Advanced	Function	that	throws	a	terminating	error,	the	ErrorVariable
contains	two	identical	ErrorRecord	objects	for	the	terminating	error.In	addition,	if	you're
running	PowerShell	2.0,	these	ErrorRecords	are	followed	by	two	identical	objects	of
type	System.Management.Automation.RuntimeException.	These	RuntimeException
objects	contain	an	ErrorRecord	property,	which	refers	to	ErrorRecord	objects	identical	to
the	pair	that	was	also	contained	in	the	ErrorVariable	list.	The	extra	RuntimeException
objects	are	not	present	in	PowerShell	3.0	or	later.
When	calling	a	Cmdlet	that	throws	a	terminating	error,	the	ErrorVariable	contains	a
single	record,	but	is	not	an	ErrorRecord	object.	Instead,	it's	an	instance	of
System.Management.Automation.CmdletInvocationException.	Like	the
RuntimeException	objects	mentioned	in	the	last	point,	CmdletInvocationException
contains	an	ErrorRecord	property,	and	that	property	refers	to	the	ErrorRecord	object
that	you	would	have	expected	to	be	contained	in	the	ErrorVariable	list.
When	calling	an	Advanced	Function	with	ErrorAction	set	to	Stop,	the	ErrorVariable
contains	one	object	of	type
System.Management.Automation.ActionPreferenceStopException,	followed	by	two
identical	ErrorRecord	objects.	As	with	the	RuntimeException	and
CmdletInvocationException	types,	ActionPreferenceStopException	contains	an
ErrorRecord	property,	which	refers	to	an	ErrorRecord	object	that	is	identical	to	the	two
that	were	included	directly	in	the	ErrorVariable's	list.In	addition,	if	running	PowerShell
2.0,	there	are	then	two	more	identical	objects	of	type	ActionPreferenceStopException,
for	a	total	of	5	entries	all	related	to	the	same	terminating	error.
When	calling	a	Cmdlet	with	ErrorAction	set	to	Stop,	the	ErrorVariable	contains	a	single
object	of	type	System.Management.Automation.ActionPreferenceStopException.	The
ErrorRecord	property	of	this	ActionPreferenceStopException	object	contains	the
ErrorRecord	object	that	you	would	have	expected	to	be	directly	in	the	ErrorVariable's
list.

Effects	of	setting	ErrorAction	or
$ErrorActionPreference
When	you	execute	a	Cmdlet	or	Advanced	Function	and	set	the	ErrorAction	parameter,	it
affects	the	behavior	of	all	non-terminating	errors.	However,	it	also	appears	to	affect
terminating	errors	produced	by	the	Throw	statement	in	an	Advanced	Function	(though	not
terminating	errors	coming	from	Cmdlets	via	the	PSCmdlet.ThrowTerminatingError()	method.)

If	you	set	the	$ErrorActionPreference	variable	before	calling	the	command,	its	value	affects
both	terminating	and	non-terminating	errors.

The	Big	Book	of	PowerShell	Error	Handling

22Analysis	of	Error	Handling	Test	Results

This	is	undocumented	behavior;	PowerShell's	help	files	state	that	both	the	preference
variable	and	parameter	should	only	be	affecting	non-terminating	errors.

How	PowerShell	behaves	when	it	encounters
unhandled	terminating	errors
This	section	of	the	code	proved	to	be	a	bit	annoying	to	test,	because	if	the	parent	scope	(the
script)	handled	the	errors,	it	affected	the	behavior	of	the	code	inside	the	functions.	If	the
script	scope	didn't	have	any	error	handling,	then	in	many	cases,	the	unhandled	error	actually
aborted	the	script	as	well.	As	a	result,	the	ErrorTests.ps1	script	and	the	text	files	containing
its	output	are	written	to	only	show	you	the	cases	where	a	terminating	error	occurs,	but	the
function	still	moves	on	and	executes	the	next	command.

If	you	want	to	run	the	full	battery	of	tests	on	this	behavior,	import	the
ErrorHandlingTests.psm1	module	and	execute	the	following	commands	manually	at	a
PowerShell	console.	Because	you're	executing	them	one	at	a	time,	you	won't	run	into	an
issue	with	some	of	the	commands	failing	to	execute	because	of	a	previous	unhandled	error,
the	way	you	would	if	these	were	all	in	a	script.

Test-WithoutRethrow	-Cmdlet	-Terminating

Test-WithoutRethrow	-Function	-Terminating

Test-WithoutRethrow	-Cmdlet	-NonTerminating

Test-WithoutRethrow	-Function	-NonTerminating

Test-WithoutRethrow	-Method

Test-WithoutRethrow	-UnknownCommand

There	is	also	a	Test-WithRethrow	function	that	can	be	called	with	the	same	parameters,	to
demonstrate	that	the	results	are	consistent	across	all	6	cases	when	you	handle	each	error
and	choose	whether	to	abort	the	function.

PowerShell	continues	execution	after	a	terminating	error	is
produced	by:

Terminating	errors	from	Cmdlets.
.NET	Methods	that	throw	exceptions.
PowerShell	encountering	an	unknown	command.

The	Big	Book	of	PowerShell	Error	Handling

23Analysis	of	Error	Handling	Test	Results

PowerShell	aborts	execution	when	a	terminating	error	is
produced	by:

Functions	that	use	the	Throw	statement.
Any	non-terminating	error	in	conjunction	with	ErrorAction	Stop.
Any	time	$ErrorActionPreference	is	set	to	Stop	in	the	caller's	scope.

In	order	to	achieve	consistent	behavior	between	these	different	sources	of	terminating
errors,	you	can	put	commands	that	might	potentially	produce	a	terminating	error	into	a	Try
block.	In	the	Catch	block,	you	can	decide	whether	to	abort	execution	of	the	current	script
block	or	not.	Figure	3.1	shows	an	example	of	forcing	a	function	to	abort	when	it	hits	a
terminating	exception	from	a	Cmdlet	(a	situation	where	PowerShell	would	normally	just
continue	and	execute	the	"After	terminating	error."	statement),	by	re-throwing	the	error	from
the	Catch	block.	When	Throw	is	used	with	no	arguments	inside	of	a	Catch	block,	it	passes
the	same	error	up	to	the	parent	scope.

Figure	3.1:	Re-throwing	a	terminating	error	to	force	a	function	to	stop	execution.

Conclusions
For	non-terminating	errors,	you	can	use	either	$Error	or	ErrorVariable	without	any	real
headaches.	While	the	order	of	the	ErrorRecords	is	reversed	between	these	options,	you	can
easily	deal	with	that	in	your	code,	assuming	you	consider	that	to	be	a	problem	at	all.	As	soon
as	terminating	errors	enter	the	picture,	however,	ErrorVariable	has	some	very	annoying
behavior:	it	sometimes	contains	Exception	objects	instead	of	ErrorRecords,	and	in	many
cases,	has	one	or	more	duplicate	objects	all	relating	to	the	terminating	error.	While	it	is
possible	to	code	around	these	quirks,	it	really	doesn't	seem	to	be	worth	the	effort	when	you
can	easily	use	$_	or	$Error[0].

The	Big	Book	of	PowerShell	Error	Handling

24Analysis	of	Error	Handling	Test	Results

When	you're	calling	a	command	that	might	produce	a	terminating	error	and	you	do	not
handle	that	error	with	a	Try/Catch	or	Trap	statement,	PowerShell's	behavior	is	inconsistent,
depending	on	how	the	terminating	error	was	generated.	In	order	to	achieve	consistent
results	regardless	of	what	commands	you're	calling,	place	such	commands	into	a	Try	block,
and	choose	whether	or	not	to	re-throw	the	error	in	the	Catch	block.

The	Big	Book	of	PowerShell	Error	Handling

25Analysis	of	Error	Handling	Test	Results

Putting	It	All	Together
Now	that	we've	looked	at	all	of	the	error	handling	tools	and	identified	some	potential
"gotcha"	scenarios,	here	are	some	tips	and	examples	of	how	I	approach	error	handling	in	my
own	scripts.

Suppressing	errors	(Mostly,	don't	do	this)
There	are	occasions	where	you	might	suppress	an	error	without	the	intention	of	handling	it,
but	the	valid	situations	for	this	are	few	and	far	between.	For	the	most	part,	don't	set
ErrorAction	or	$ErrorActionPreference	to	SilentlyContinue	unless	you	intend	to	examine	and
respond	to	the	errors	yourself	later	in	the	code.	Using	Try/Catch	with	an	empty	catch	block
amounts	to	the	same	thing	for	terminating	errors;	it's	usually	the	wrong	thing	to	do.

It's	better	to	at	least	give	the	user	the	default	error	output	in	the	console	than	it	is	to	have	a
command	fail	with	no	indication	whatsoever	that	something	went	wrong.

The	$?	variable	(Use	it	at	your	own	risk)
The	$?	variable	seems	like	a	good	idea	on	paper,	but	there	are	enough	ways	for	it	to	give
you	bad	data	that	I	just	don't	trust	it	in	a	production	script.	For	example,	if	the	error	is
generated	by	a	command	that	is	in	parentheses	or	a	sub-expression,	the	$?	variable	will	be
set	to	True	instead	of	False:

The	Big	Book	of	PowerShell	Error	Handling

26Putting	it	All	Together

Figure	4.1:	Annoying	false	positives	from	$?

Determining	what	types	of	errors	can	be
produced	by	a	command
Before	you	can	decide	how	best	to	handle	the	error(s)	from	a	particular	command,	you'll
often	need	to	know	what	kind	of	errors	it	might	produce.	Are	they	terminating	or	non-
terminating?	What	are	the	Exception	types?	Unfortunately,	PowerShell's	cmdlet
documentation	doesn't	give	you	this	information,	so	you	need	to	resort	to	some	trial	and
error.	Here's	an	example	of	how	you	can	figure	out	whether	errors	from	a	cmdlet	are
Terminating	or	Non-Terminating:

The	Big	Book	of	PowerShell	Error	Handling

27Putting	it	All	Together

Figure	4.2:	Identifying	Terminating	errors.

Ironically,	this	was	a	handy	place	both	to	use	the	Trap	statement	and	to	set
$ErrorActionPreference	to	SilentlyContinue,	both	things	that	I	would	almost	never	do	in	an
enterprise	script.	As	you	can	see	in	figure	4.1,	Get-Acl	produces	terminating	exceptions
when	the	file	exists,	but	the	cmdlet	cannot	read	the	ACL.	Get-Item	and	Get-Acl	both	produce
non-terminating	errors	if	the	file	doesn't	exist.

Going	through	this	sort	of	trial	and	error	can	be	a	time-consuming	process,	though.	You
need	to	come	up	with	the	different	ways	a	command	might	fail,	and	then	reproduce	those
conditions	to	see	if	the	resulting	error	was	terminating	or	non-terminating.	As	a	result	of	how
annoying	this	can	be,	in	addition	to	this	ebook,	the	GitHub	repository	will	contain	a
spreadsheet	with	a	list	of	known	Terminating	errors	from	cmdlets.	That	will	be	a	living
document,	possibly	converted	to	a	wiki	at	some	point.	While	it	will	likely	never	be	a	complete
reference,	due	to	the	massive	number	of	PowerShell	cmdlets	out	there,	it's	a	lot	better	than
nothing.

In	addition	to	knowing	whether	errors	are	terminating	or	non-terminating,	you	may	also	want
to	know	what	types	of	Exceptions	are	being	produced.	Figure	4.3	demonstrates	how	you	can
list	the	exception	types	that	are	associated	with	different	types	of	errors.	Each	Exception
object	may	optionally	contain	an	InnerException,	and	you	can	use	any	of	them	in	a	Catch	or
Trap	block:

The	Big	Book	of	PowerShell	Error	Handling

28Putting	it	All	Together

Figure	4.3:	Displaying	the	types	of	Exceptions	and	any	InnerExceptions.

Dealing	with	Terminating	Errors
This	is	the	easy	part.	Just	use	Try/Catch,	and	refer	to	either	$_	or	$error[0]	in	your	Catch
blocks	to	get	information	about	the	terminating	error.

Dealing	with	Non-Terminating	Errors
I	tend	to	categorize	commands	that	can	produce	Non-Terminating	errors	(Cmdlets,	functions
and	scripts)	in	one	of	three	ways:	Commands	that	only	need	to	process	a	single	input	object,
commands	that	can	only	produce	Non-Terminating	errors,	and	commands	that	could
produce	a	Terminating	or	Non-Terminating	error.	I	handle	each	of	these	categories	in	the
following	ways:

The	Big	Book	of	PowerShell	Error	Handling

29Putting	it	All	Together

If	the	command	only	needs	to	process	a	single	input	object,	as	in	figure	4.4,	I	use
ErrorAction	Stop	and	handle	errors	with	Try/Catch.	Because	the	cmdlet	is	only	dealing	with	a
single	input	object,	the	concept	of	a	Non-Terminating	error	is	not	terribly	useful	anyway.

Figure	4.4:	Using	Try/Catch	and	ErrorAction	Stop	when	dealing	with	a	single	object.

If	the	command	should	only	ever	produce	Non-Terminating	errors,	I	use	ErrorVariable.	This
category	is	larger	than	you'd	think;	most	PowerShell	cmdlet	errors	are	Non-Terminating:

Figure	4.5:	Using	ErrorVariable	when	you	won't	be	annoyed	by	its	behavior	arising	from
Terminating	errors.

When	you're	examining	the	contents	of	your	ErrorVariable,	remember	that	you	can	usually
get	useful	information	about	what	failed	by	looking	at	an	ErrorRecord's	CategoryInfo.Activity
property	(which	cmdlet	produced	the	error)	and	TargetObject	property	(which	object	was	it
processing	when	the	error	occurred).	However,	not	all	cmdlets	populate	the	ErrorRecord
with	a	TargetObject,	so	you'll	want	to	do	some	testing	ahead	of	time	to	determine	how	useful
this	technique	will	be.	If	you	find	a	situation	where	a	cmdlet	should	be	telling	you	about	the
TargetObject,	but	doesn't,	consider	changing	your	code	structure	to	process	one	object	at	a
time,	as	in	figure	4.4.	That	way,	you'll	already	know	what	object	is	being	processed.

A	trickier	scenario	arises	if	a	particular	command	might	produce	either	Terminating	or	Non-
Terminating	errors.	In	those	situations,	if	it's	practical,	I	try	to	change	my	code	to	call	the
command	on	one	object	at	a	time.	If	you	find	yourself	in	a	situation	where	this	is	not

The	Big	Book	of	PowerShell	Error	Handling

30Putting	it	All	Together

desirable	(though	I'm	hard	pressed	to	come	up	with	an	example),	I	recommend	the	following
approach	to	avoid	ErrorVariable's	quirky	behavior	and	also	avoid	calling	$error.Clear():

Figure	4.6:	Using	$error	without	calling	Clear()	and	ignoring	previously-existing	error
records.

As	you	can	see,	the	structure	of	this	code	is	almost	the	same	as	when	using	the
ErrorVariable	parameter,	with	the	addition	of	a	Try	block	around	the	offending	code,	and	the
use	of	the	$previousError	variable	to	make	sure	we're	only	reacting	to	new	errors	in	the
$error	collection.	In	this	case,	I	have	an	empty	Catch	block,	because	the	terminating	error	(if
one	occurs)	is	going	to	be	also	added	to	$error	and	handled	in	the	foreach	loop	anyway.	You
may	prefer	to	handle	the	terminating	error	in	the	Catch	block	and	non-terminating	errors	in
the	loop;	either	way	works.

Calling	external	programs
When	you	need	to	call	an	external	executable,	most	of	the	time	you'll	get	the	best	results	by
checking	$LASTEXITCODE	for	status	information;	however,	you'll	need	do	your	homework
on	the	program	to	make	sure	it	returns	useful	information	via	its	exit	code.	There	are	some
odd	executables	out	there	that	always	return	0,	regardless	of	whether	they	encountered
errors.

If	an	external	executable	writes	anything	to	the	StdErr	stream,	PowerShell	sometimes	sees
this	and	wraps	the	text	in	an	ErrorRecord,	but	this	behavior	doesn't	seem	to	be	consistent.
I'm	not	sure	yet	under	what	conditions	these	errors	will	be	produced,	so	I	tend	to	stick	with
$LASTEXITCODE	when	I	need	to	tell	whether	an	external	command	worked	or	not.

The	Big	Book	of	PowerShell	Error	Handling

31Putting	it	All	Together

Afterword
We	hope	you've	found	this	guide	to	be	useful!	This	is	always	going	to	be	a	work	in	progress;
as	people	bring	material	and	suggestions,	we'll	incorporate	that	as	best	we	can	and	publish
a	new	edition.

The	Big	Book	of	PowerShell	Error	Handling

32Afterword

	ReadMe
	About this Book
	Introduction
	PowerShell Error Handling Basics
	Controlling Error Reporting Behavior and Intercepting Errors
	Analysis of Error Handling Test Results
	Putting it All Together
	Afterword

