

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

1.25

1.26

Table	of	Contents
ReadMe

About	this	Book

Format	Right

Where	is	the	__	command?

PowerShell.exe	isn't	PowerShell

Accumulating	Output	in	a	Function

ForEach	vs	ForEach	vs	ForEach

Tab	Complete!

-Contains	isn't	-Like

You	Can't	Have	What	You	Don't	Have

Filter	Values	Diversity

Not	Everything	Produces	Output

One	HTML	Page	at	a	Time,	Please

Bloody.	Awful.	Punctuation.

Don't	Concatenate	Strings

$	Isn't	Part	of	the	Variable	Name

Use	the	Pipeline,	Not	an	Array

Backtick,	Grave	Accent,	Escape

These	Aren't	Your	Father's	Commands

A	Crowd	isn't	an	Individual

Commands'	Default	Output	Can	Lie

Properties	vs.	Values

Remote	Variables

New-Object	PSObject	vs.	PSCustomObject

Running	Something	as	the	"Currently	Logged-in	User"

Commands	that	Need	a	User	Profile	May	Fail	When	Run	Remotely

2

PowerShell	is	full	of	"gotchas"	-	little	things	that	just	get	in	your	way	and	are	hard	to	figure
out	on	your	own.	This	short	book	is	intended	to	help	you	figure	them	out	and	avoid	them.

ReadMe

3

The	Big	Book	of	PowerShell	Gotchas
by	(mostly)	Don	Jones

PowerShell	is	full	of	"gotchas"	-	little	things	that	just	get	in	your	way	and	are	hard	to	figure
out	on	your	own.	This	short	book	is	intended	to	help	you	figure	them	out	and	avoid	them.

This	guide	is	released	under	the	Creative	Commons	Attribution-NoDerivs	3.0	Unported
License.	The	authors	encourage	you	to	redistribute	this	file	as	widely	as	possible,	but	ask
that	you	do	not	modify	the	document.

Getting	the	Code	The	EnhancedHTML2	module	mentioned	in	this	book	can	be	found	in	the
https://www.powershellgallery.com/packages/EnhancedHTML2/.	That	page	includes
download	instructions.	PowerShellGet	is	requires,	and	can	be	obtained	from
PowerShellGallery.com

Was	this	book	helpful?	The	author(s)	kindly	ask(s)	that	you	make	a	tax-deductible	(in	the
US;	check	your	laws	if	you	live	elsewhere)	donation	of	any	amount	to	The	DevOps
Collective	to	support	their	ongoing	work.

Check	for	Updates!	Our	ebooks	are	often	updated	with	new	and	corrected	content.	We
make	them	available	in	three	ways:

Our	main,	authoritative	GitHub	organization,	with	a	repo	for	each	book.	Visit
https://github.com/devops-collective-inc/
Our	GitBook	page,	where	you	can	browse	books	online,	or	download	as	PDF,	EPUB,	or
MOBI.	Using	the	online	reader,	you	can	link	to	specific	chapters.	Visit
https://www.gitbook.com/@devopscollective
On	LeanPub,	where	you	can	download	as	PDF,	EPUB,	or	MOBI	(login	required),	and
"purchase"	the	books	to	make	a	donation	to	DevOps	Collective.	You	can	also	choose	to
be	notified	of	updates.	Visit	https://leanpub.com/u/devopscollective

GitBook	and	LeanPub	have	slightly	different	PDF	formatting	output,	so	you	can	choose	the
one	you	prefer.	LeanPub	can	also	notify	you	when	we	push	updates.	Our	main	GitHub	repo
is	authoritative;	repositories	on	other	sites	are	usually	just	mirrors	used	for	the	publishing
process.	GitBook	will	usually	contain	our	latest	version,	including	not-yet-finished	bits;
LeanPub	always	contains	the	most	recent	"public	release"	of	any	book.

About	this	Book

4

https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://github.com/devops-collective-inc/
https://www.gitbook.com/@devopscollective
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://leanpub.com/u/devopscollective

About	this	Book

5

Format	right
Everyone	runs	into	this	one.	Here's	how	it	goes:	you	start	by	writing	a	truly	awesome
command.

And	you	think,	"wow,	that'd	go	great	in	an	HTML	file."

Format	Right

6

Wait...	what?!?!?

This	happens	all	the	time.	If	you	want	an	easy	way	to	remember	what	not	to	do,	it's	this:
Never	pipe	a	Format	command	to	anything	else.	That	isn't	the	whole	truth,	and	we'll	get	to
the	whole	truth	in	a	sec,	but	if	you	just	want	a	quick	answer,	that's	it.	In	the	community,	we
call	it	the	"Format	Right"	rule,	because	you	have	to	move	your	Format	command	to	the	right-
most	end	of	the	command	line.	That	is,	the	Format	command	comes	last,	and	nothing	else
comes	after	it.

The	reason	is	that	the	Format	commands	all	produce	special	internal	formatting	codes,	that
are	really	just	intended	to	create	an	on-screen	display.	Piping	those	codes	to	anything	else	-
ConvertTo-HTML,	Export-CSV,	whatever	-	just	gets	you	gibberish	output.

In	fact,	there	are	actually	a	few	commands	that	can	come	after	a	Format	command	in	the
pipeline:

1.	 Out-Default.	This	is	technically	always	at	the	end	of	the	pipeline,	although	it's	invisible.	It
redirects	to	Out-Host.

2.	 Out-Host	also	understands	the	output	of	Format	commands,	because	Out-Host	is	how
those	formatting	codes	get	on	the	screen	in	the	first	place.

3.	 Out-Printer	understands	the	formatting	codes	too,	and	constructs	a	printed	page	that
would	look	exactly	like	the	normal	on-screen	output.

4.	 Out-File,	like	Out-Printer,	redirects	the	on-screen	output,	but	this	time	to	a	text	file	on
disk.

5.	 Out-String	consumes	the	formatting	codes	and	just	outputs	a	plain	string	containing	the

Format	Right

7

text	that	would	otherwise	have	appeared	on-screen.

Apart	from	those	exceptions	-	and	of	them,	you'll	mainly	only	ever	use	Out-File	-	you	can't
pipe	the	output	of	a	Format	command	to	much	else	and	get	anything	that	looks	useful.

Format	Right

8

Where	is	the	__	Command?	I’ve	Installed
the	Latest	Version	of	PowerShell	and	Can’t
Find	it!
One	tricky	thing	is	understanding	that	there	are	a	certain	number	of	commands	that	come
with	PowerShell,	_while	_most	commands	do	not.

Every	new	version	of	PowerShell	includes	at	least	a	few	new	commands.	For	example,
Start-Job	appeared	for	the	first	time	in	PowerShell	v2,	while	Invoke-AdWorkflow	was
introduced	in	PowerShell	v3.

What	confuses	people	is	that	a	new	version	of	PowerShell	also	tends	to	correspond	with	a
new	version	of	the	Windows	operating	system?	and	the	OS	itself	comes	with	hundreds	of
commands.	For	example,	you	may	have	used	Get-SmbShare	for	the	first	time	in	Windows
Server	2012,	which	included	PowerShell	v3.	But	Get-SmbShare	is	part	of	the	operating
system,	not	part	of	PowerShell.	That	is,	you	won't	have	Get-SmbShare	on	every	system	that
has	PowerShell	v3	or	later,	because	the	command	isn't	a	"feature	of	PowerShell,"	it's	a
"feature	of	Windows."

So?	where	do	you	get	commands?

Usually,	with	whatever	product	those	commands	are	a	part	of.	Want	the	Exchange	Server
commands?	Install	the	Exchange	Server	admin	tools.	Want	the	Windows	Server	2012
commands?	Install	the	Remote	Server	Administration	Toolkit	(RSAT),	which	contains	the
server	admin	tools.

Where	is	the	__	command?

9

PowerShell.exe	isn’t	PowerShell
It’s	important	to	understand	that	Windows	PowerShell	is	actually	an	untouchable,	behind-
the-scenes	engine.	You	as	a	mere	human	being	cannot	easily	interact	directly	with
PowerShell.

Instead,	you	need	a	host	application.	A	host	embeds	the	engine	internally,	and	then	gives
you	a	way	to	interact	with	it.	For	example,	PowerShell.exe	is	a	host	application.	It	is	built
around	the	same	Windows	console	host	(ConHost.exe)	as	the	old	Cmd.exe	command-line
shell,	but	it	embeds	the	PowerShell	engine.	You	type	commands,	and	the	host	hands	those
to	the	engine	for	execution.	The	host	is	also	responsible	for	displaying	any	results	?	in	this
case,	on-screen.

Why	is	this	distinction	important?

Because	different	hosts	can	behave	in	different	ways.	For	example,	the	PowerShell	ISE
behaves	a	bit	differently	than	the	console	host,	and	both	of	them	behave	very	differently
from	Active	Directory	Administration	Center	?	another	PowerShell	host.

PowerShell.exe	isn't	PowerShell

10

Accumulating	Output	in	a	Function
This	is	a	bit	of	an	"advanced"	gotcha,	but	it's	one	that	many	experienced	developers	will	run
into.	Here's	a	very	trimmed-down	example,	just	to	make	the	point	(it	isn't	functional,	as	the
command	used	is	fictional):

The	problem	here	is	that	the	function	can	generate	multiple	output	objects,	and	the
programmer	is	accumulating	those	into	the	$output	variable.	That	means	this	function	won't
output	anything	until	it's	completely	finished	running.	That	isn't	how	PowerShell	commands
(and	functions	are	commands)	are	usually	meant	to	work.

PowerShell	commands	should	usually	output	each	object	to	the	pipeline,	one	at	a	time,	as
those	objects	are	ready.	That	allows	the	pipeline	to	accumulate	the	output,	and	to
immediately	pass	it	along	to	whatever	is	next	in	the	pipeline.	That's	how	PowerShell
commands	are	intended	to	work.	Now,	there	are	always	exceptions.	Sort-Object,	for
example,	has	to	accumulate	its	output,	because	it	can't	actually	sort	anything	until	it	has	all
of	them.	So	it's	called	a	_blocking	command,	_because	it	"blocks"	the	pipeline	from	doing
anything	else	until	it	produces	its	output.	But	that's	an	exception.

It's	usually	easy	to	fix	this,	by	simply	outputting	to	the	pipeline	instead	of	accumulating:

Accumulating	Output	in	a	Function

11

Accumulating	Output	in	a	Function

12

ForEach	vs	ForEach	vs	ForEach
PowerShell's	three	lookalike	friends	can	confusing,	especially	for	newcomers.	Basically,
you've	got	two	entities:

The	ForEach-Object	cmdlet,	which	has	an	alias	ForEach	(it	also	has	the	alias	%).	This
is	meant	to	operate	in	the	pipeline,	and	it	uses	a	?Process	parameter	that	accepts	a
scriptblock.
The	ForEach	scripting	construct.	This	has	a	specific	syntax,	is	not	intended	to	be	used
in	the	pipeline,	and	does	not	have	an	alias.

Here's	all	three	in	action,	in	a	very	simplistic	example:

The	big	difference	is	that,	in	the	pipeline,	ForEach-Object	_processes	one	object	at	a	time.
_That	means	it	can	be	slower,	since	that	scriptblock	must	be	interpreted	on	each	iteration.	It
also	tends	to	use	less	memory,	since	objects	streaming	down	the	pipeline	one	at	a	time	don't
all	have	to	be	bunched	up	in	a	variable	first.

The	scripting	construct	tends	to	be	faster,	but	it	often	has	more	memory	overhead,	because
you	have	to	give	it	the	entire	collection	of	objects	at	once,	instead	of	streaming	objects	into	it
one	at	a	time.

Both	use	vaguely	similar	syntax,	but	there	are	differences.	It's	important	to	understand	that
they	are	not	the	same,	and	that	they	execute	differently.	It's	confusing	because	"ForEach"
is	both	an	alias	and	a	scripting	construct;	the	shell	determines	which	you're	using	by	looking

ForEach	vs	ForEach	vs	ForEach

13

at	the	context	in	which	you're	using	it.

ForEach	vs	ForEach	vs	ForEach

14

Tab	Completion
It's	sad	and	amazing	how	few	people	rely	on	tab	completion,	both	in	the	PowerShell	ISE	and
in	the	console	window.

When	you	tab	complete,	you'll	never	spell	commands	or	parameter	names	wrong

For	many	parameter	values	that	are	static	lists,	or	easily-queried	lists,	tab	completion
(especially	in	v3	and	later)	can	fill-in	legal	parameter	values	for	you

Tab	completion	makes	long	cmdlet	names	a	lot	easier	to	type,	without	the	need	for
difficult-to-remember	aliases.

Get	into	the	habit	of	using	tab	completion	all	the	time,	and	you're	guaranteed	to	make	fewer
mistakes.

Tab	Complete!

15

-Contains	isn’t	-Like
Oh,	if	I	had	a	nickel	for	every	time	I've	seen	this:

I	get	how	this	happens.	The	-contains	operator	seems	like	it	should	be	checking	to	see	if	a
process'	name	contains	the	letters	"notepad."	But	that	isn't	what	it	does.

The	correct	approach	is	to	use	the	-like	operator,	which	in	fact	does	do	a	wildcard	string
comparison:

-Contains	isn't	-Like

16

I'll	let	pass	the	thought	that	the	really	correct	answer	is	to	just	run	Stop-Process	-name
notepad,	because	I	was	aiming	for	a	simple	example	here.	But...	don't	overthink	things.
Sometimes	a	script	and	a	ForEach	loop	isn't	the	best	approach.

So	anyway,	what	does	-contains	(and	its	friend,	-notcontains)	actually	do?	They're	similar	to
the	-in	and	-notin	operators	introduced	in	PowerShell	v3,	and	those	operators	cause	more
than	a	bit	of	confusion,	too.	What	they	do	is	check	to	see	if	a	collection	of	objects	contains	a
given	single	object.	For	example:

-Contains	isn't	-Like

17

In	fact,	that	example	is	probably	the	best	way	to	see	it	work.	The	trick	is	that,	when	you	use
a	complex	object	instead	of	a	simple	value	(as	I	did	in	that	example),	-contains	and	-in	look
at	every	property	of	the	object	to	make	a	match.	If	you	think	about	something	like	a	process,
they're	always	changing.	From	moment	to	moment,	a	process'	CPU	and	memory,	for
example,	are	different.

-Contains	isn't	-Like

18

In	this	example,	I've	started	Notepad.	I've	put	its	process	object	into	$single_proc,	and	you
can	see	that	I	verified	it	was	there.	But	when	I	run	Get-Process	and	check	to	see	if	its
collection	contained	my	Notepad,	I	got	False.	That's	because	the	object	in	$single_proc	is
out	of	date.	Notepad	is	running,	but	it	now	looks	different,	so	-contains	can't	find	the	match.

The	-in	and	-contains	operators	are	best	with	simple	values,	or	with	objects	that	don't	have
constantly-changing	property	values.	But	they're	not	wild	card	string	matching	operators.
Use	-like	(or	-notlike)	for	that.

-Contains	isn't	-Like

19

You	Can’t	Have	What	You	Don’t	Have
Can	you	see	what's	wrong	with	this	approach?

I	mean,	I'm	pretty	sure	I	have	some	running	services,	which	is	what	this	was	supposed	to
display.

If	you	don't	see	the	answer	right	away	-	or	frankly,	even	if	you	do	-	this	is	a	good	time	to	talk
about	how	to	troubleshoot	long	command	lines.	Start,	as	I	always	say,	by	backing	off	a	step.
Delete	the	last	command,	and	see	if	that	does	anything	different.

You	Can't	Have	What	You	Don't	Have

20

In	this	case,	I	removed	the	Sort-Object	(Sort)	command,	and	nothing	different	happened.	So
that	wasn't	causing	the	problem.	Next,	I	removed	the	Where-Object	(Where,	using	v3	short
syntax)	command,	and	ah-ha!	I	got	output.	So	something	broke	with	Where-Object.	Let's
take	what	did	work	and	pipe	it	to	Get-Member,	to	see	what's	in	the	pipeline	after	Select-
Object	runs.

You	Can't	Have	What	You	Don't	Have

21

OK,	I	have	an	object	that	has	a	DisplayName	property	and	a	Name	property.

And	my	Where-Object	command	was	checking	the	Status	property.	Do	you	see	a	Status
property?	No,	you	do	not.	My	error	is	that	I	removed	the	Status	property	when	I	didn't
include	it	in	the	property	list	of	Select-Object.	So	Where-Object	had	nothing	to	work	with,	so
it	returned	nothing.

(Yeah,	it'd	be	cooler	if	it	threw	an	error	-	"Hey,	you	said	to	filter	on	the	Status	property,	and
there	ain't	one!"	-	but	that	isn't	how	it	works.)

Moral	of	the	story:	Pay	attention	to	what's	in	the	pipeline.	You	can't	work	with	something	you
don't	have,	and	you	might	have	taken	it	away	yourself.	You	won't	always	get	a	helpful	error
message,	so	sometimes	you'll	need	to	dig	in	and	figure	it	out	another	way	-	such	as	backing
off	a	step.

You	Can't	Have	What	You	Don't	Have

22

-Filter	Values	Diversity
Here's	one	of	the	toughest	things	to	get	used	to	in	PowerShell:

Here	you	see	three	commands,	each	using	a	-Filter	parameter.	Every	one	of	those	filters	is
different.

1.	 With	Get-ChildItem,	-Filter	accepts	file	system	wildcards	like	*.
2.	 With	Get-WmiObject,	-Filter	requires	a	string,	and	uses	programming-style	operators

(like	=	for	equality).
3.	 With	Get-ADUser,	-Filter	wanted	a	script	block,	and	accepted	PowerShell-style

comparison	operators	(like	-eq	for	equality).

Here's	how	I	think	of	it:	When	you	use	a	-Filter	parameter,	PowerShell	isn't	processing	the
filtering.	Instead,	the	filtration	criteria	is	being	handed	down	to	the	underlying	technology,	like
the	file	system,	or	WMI,	or	Active	Directory.	That	technology	gets	to	decide	what	kind	of	filter
criteria	it	will	accept.	PowerShell	is	just	the	middleman.	So	you	have	to	carefully	read	the
help,	and	maybe	look	for	examples,	to	understand	how	the	underlying	technology	needs	you
to	specify	its	filter.

Yeah,	it'd	be	nice	if	PowerShell	just	translated	for	you	(that's	actually	what	Get-ADUser	does
-	the	command	translates	that	into	an	LDAP	filter	under	the	hood).	But,	usually,	it	doesn't.

Filter	Values	Diversity

23

Filter	Values	Diversity

24

Not	Everything	Produces	Output
I	see	this	one	a	lot	in	classes:

If	you	expected	anything	on	the	screen	in	terms	of	output,	you'd	be	disappointed.	The	trick
here	is	to	keep	track	of	what	each	command	produces	as	output,	and	right	there	is	a
possible	point	of	confusion.

In	PowerShell's	world,	output	is	what	would	show	up	on	the	screen	if	you	ran	the	command
and	didn't	pipe	it	to	anything	else.	Yes,	Export-CSV	does	do	something	-	it	creates	a	file	on
disk	-	but	in	PowerShell's	world	that	file	isn't	output.	What	Export-CSV	does	not	do	is
produce	any	output	-	that	is,	something	which	would	show	up	on	the	screen.	For	example:

Not	Everything	Produces	Output

25

See?	Nothing.	Since	there's	nothing	on	the	screen,	there's	nothing	in	the	pipeline.	You	can't
pipe	Export-CSV	to	another	command,	because	there's	nothing	to	pipe.

Some	commands	will	include	a	-PassThru	parameter.	When	they	have	one,	and	when	you
use	it,	they'll	do	whatever	they	normally	do	but	also	pass	their	input	objects	through	to	the
pipeline,	so	that	you	can	then	pipe	them	on	to	something	else.	Export-CSV	isn't	one	of	those
commands,	though	-	it	never	produces	output,	so	it	will	never	make	sense	to	pipe	it	to
something	else.

Not	Everything	Produces	Output

26

One	HTML	Page	at	a	Time,	Please
This	drives	me	batty:

What's	happening	is	that	someone	ran	two	command,	piping	the	output	of	each	to
ConvertTo-HTML,	and	essentially	sticking	both	HTML	pages	into	a	single	file.	What	drives
me	really	nuts	is	that	Internet	Explorer	is	okay	with	that	nonsense.

HTML	files	are	allowed	to	start	with	one	top-level	tag,	but	if	you	check	out	that	file	you'll	see
that	it	contains	two.	Here's	the	middle	bit:

One	HTML	Page	at	a	Time,	Please

27

I've	highlighted	the	lines	that	end	one	HTML	page	and	start	the	next	one.	This	is	technically
a	malformed	HTML	file.	It	becomes	tough	to	use	this	with	some	Web	browsers	(Firefox	20	is
choking	it	down,	but	my	current	Webkit	browsers	aren't),	tough	to	parse	if	you	ever	need	to
manipulate	it	programmatically,	and...	well,	it's	just	a	bad	thing.	It's	like	incest	or	something.
Gross.

If	you	need	to	combine	multiple	elements	into	a	single	HTML	file,	you	use	the	-Fragment
switch	of	ConvertTo-HTML.	That	produces	just	a	portion	of	the	HTML,	and	you	can	produce
several	such	portions	and	then	combine	them	into	a	single,	complete	page.	Ahhh,	nice.	That
whole	process	is	covered	in	Creating	HTML	Reports	in	PowerShell,	another	free	ebook	that
came	with	this	one

One	HTML	Page	at	a	Time,	Please

28

[Bloody]	{Awful}	(Punctuation)
This	isn't	so	much	a	"gotcha"	as	it	is	just	plain	confusing.	PowerShell's	nuts	with	the
punctuation.

(Parentheses)	are	used	to	enclose	expressions,	such	as	the	ForEach()	construct's
expression,	and	in	certain	cases	to	contain	declarative	syntax.	You	see	that	in	the	Param()
block,	and	in	the	[Parameter()]	attribute.

[Square	brackets]	are	used	around	some	attributes,	like	[CmdletBinding()],	and	around	data
types	like	[string],	and	to	indicate	arrays	-	as	in	[string[]].	They	pop	up	a	few	other	places,
too.

{Curly	brackets}	nearly	always	contain	executable	code,	as	in	the	Try{}	block,	the	BEGIN{}
block,	and	the	function	itself.	It's	also	used	to	express	hash	table	literals	(like	@{}).

Bloody.	Awful.	Punctuation.

29

If	your	keyboard	had	a	few	dozen	more	buttons,	PowerShell	probably	wouldn't	have	had	to
have	all	these	overlapping	uses	of	punctuation.	But	it	does.	At	this	point,	they're	pretty	much
just	part	of	the	shell's	"cost	of	entry,"	and	you'll	have	to	get	used	to	them.

Bloody.	Awful.	Punctuation.

30

Don’t+Concatenate+Strings
I	really	dislike	string	concatenation.	It's	like	forcing	someone	to	cuddle	with	someone	they
don't	even	know.	Rude.

And	completely	unnecessary,	when	you	use	double	quotes.

Same	end	effect.	In	double	quotes,	PowerShell	will	look	for	the	$	character.	When	it	finds	it:

1.	 If	the	next	character	is	a	{	then	PowerShell	will	take	everything	to	the	matching	}	as	a
variable	name,	and	replace	the	whole	thing	with	that	variable's	contents.	For	example,
putting	${my	variable}	inside	double	quotes	will	replace	that	with	the	contents	of	${my
variable}.

2.	 If	the	next	character	is	a	(then	PowerShell	will	take	everything	to	the	matching)	and
execute	it	as	code.	So,	I	executed	$wmi.serialnumber	to	access	the	serialnumber
property	of	whatever	object	was	in	the	$wmi	variable.

3.	 Otherwise,	PowerShell	will	take	every	character	that	is	legal	for	a	variable	name,	up
until	the	first	illegal	variable	name	character,	and	replace	it	with	that	variable.	That's	how
$computer	works	in	my	example.	The	space	after	r	isn't	legal	for	a	variable	name,	so
PowerShell	knows	the	variable	name	stops	at	r.

There's	a	sub-gotcha	here:

Don't	Concatenate	Strings

31

This	won't	work	as	expected.	In	most	cases,	$wmi	will	be	replaced	by	an	object	type	name,
and	.serialnumber	will	still	be	in	there.	That's	because	.	isn't	a	legal	variable	name	character,
so	PowerShell	stops	looking	at	the	variable	with	the	letter	i.	It	replaces	$wmi	with	its
contents.	You	see,	in	the	previous	example,	I'd	put	$($wmi.serialnumber),	which	is	a
subexpression,	and	which	works.	The	parentheses	make	their	contents	execute	as	code.

Don't	Concatenate	Strings

32

$	isn’t	Part	of	the	Variable	Name
Big	gotcha.

Can	you	predict	what	happened?

You	see,	the	$	is	not	part	of	the	variable's	name.	If	you	have	a	variable	named	example,
that's	like	having	a	box	with	"example"	written	on	the	side.	Referring	to	example	means
you're	talking	about	the	box	itself.	Referring	to	$example	means	you're	messing	with	the
contents	of	the	box.

So	in	my	example,	I	used	$example=5	to	put	5	into	the	box.	I	then	created	a	new	variable.
The	new	variable's	name	was	$example	-	that	isn't	naming	it	"example,"	it's	naming	it	the
contents	of	the	"example"	box,	which	is	5.	So	I	create	a	variable	named	5,	that	contains	6,
which	you	can	see	by	referring	to	$5.

Tricky,	right?	Comes	up	all	the	time:

$	Isn't	Part	of	the	Variable	Name

33

In	that	example,	I	used	the	-ErrorVariable	parameter	to	specify	a	variable	in	which	I	would
store	any	error	that	would	occur.	Problem	is,	I	used	$x.	I	should	have	used	x	by	itself:

That	will	store	any	error	in	a	variable	named	x,	which	I	can	later	access	by	using	$x	to	get	its
contents	-	meaning,	whatever	error	was	stored	in	there.

$	Isn't	Part	of	the	Variable	Name

34

Use	the	Pipeline,	not	an	Array
A	very	common	mistake	made	by	traditional	programmers	who	come	to	PowerShell	-	which
is	not	a	programming	language:

This	person	has	created	an	empty	array	in	$output,	and	as	they	run	through	their	computer
list	and	query	WMI,	they're	adding	new	output	objects	to	the	array.	Finally,	at	the	end,	they
output	the	array	to	the	pipeline.

Poor	practice.	You	see,	this	forces	PowerShell	to	wait	while	this	entire	command	completes.
Any	subsequent	commands	in	the	pipeline	will	sit	their	twiddling	their	thumbs.	A	better
approach?	Use	the	pipeline.	Its	whole	purpose	is	to	accumulate	output	for	you	-	there's	no
need	to	accumulate	it	yourself	in	an	array.

Use	the	Pipeline,	Not	an	Array

35

Now,	subsequent	commands	will	receive	output	as	its	being	created,	letting	several
commands	run	more	or	less	simultaneously	in	the	pipeline.

Use	the	Pipeline,	Not	an	Array

36

Backtick,	Grave	Accent,	Escape
You'll	see	folks	do	this	a	lot:

That	isn't	a	dead	pixel	on	your	monitor	or	a	stray	piece	of	toner	on	the	page,	it's	the	grave
accent	mark	or	backtick.	`	is	PowerShell's	escape	character.	In	this	example,	it's	"escaping"
the	invisible	carriage	return	at	the	end	of	the	line,	removing	its	special	purpose	as	a	logical
line-end,	and	simply	making	it	a	literal	carriage	return.

I	don't	like	the	backtick	used	this	way.

First,	it's	hard	to	see.	Second,	if	you	get	any	extra	whitespace	after	it,	it'll	no	longer	escape
the	carriage	return,	and	your	script	will	break.	The	ISE	even	figures	this	out:

Backtick,	Grave	Accent,	Escape

37

Carefully	compare	the	-ComputerName	parameter	-	in	this	second	example,	it's	the	wrong
color	for	a	parameter	name,	because	I	added	a	space	after	the	backtick	on	the	preceding
line.	IMPOSSIBLE	to	track	these	down.

And	the	backtick	is	unnecessary	as	a	line	continuation	character.	Let	me	explain	why:

PowerShell	already	allows	you	to	hit	Enter	in	certain	situations.	You	just	have	to	learn	what
those	situations	are,	and	learn	to	take	advantage	of	them.	I	totally	understand	the	desire	to
have	neatly-formatted	code	-	I	preach	about	that	all	the	time,	myself	-	but	you	don't	have	to
rely	on	a	little	three-pixel	character	to	get	nicely	formatted	code.

You	just	have	to	be	clever.

Backtick,	Grave	Accent,	Escape

38

To	begin,	I've	put	my	Get-WmiObject	commands	in	a	hash	table,	so	I	can	format	them	all
nice	and	pretty.	Each	line	ends	on	a	semicolon,	and	PowerShell	lets	me	line-break	after
each	semicolon.	Even	if	I	get	an	extra	space	or	tab	after	the	semicolon,	it'll	work	fine.	I	then
splat	those	parameters	to	the	Get-WmiObject	command.

After	Get-WmiObject,	I	have	a	pipe	character	-	and	you	can	legally	line-break	after	that,	too.

You'll	notice	on	Select-Object	that	breaking	after	a	comma	as	well.

So	I	end	up	with	formatting	that	looks	at	least	as	good,	if	not	better,	because	it	doesn't	have
that	little	`	floating	all	over	the	place.

Backtick,	Grave	Accent,	Escape

39

These	aren’t	Your	Father’s	Commands
Always	keep	in	mind	that	while	PowerShell	has	things	called	Dir	and	Cd,	they	aren't	the	old
MS-DOS	commands.	They're	simply	aliases,	or	nicknames,	to	PowerShell	commands.	That
means	they	have	different	syntax.

You	can	run	help	dir	(or	ask	for	help	on	any	other	alias)	to	see	the	actual	command	name,
and	its	proper	syntax.

These	Aren't	Your	Father's	Commands

40

A	Crowd	isn’t	an	Individual
A	very	common	newcomer	mistake:

Here,	the	person	is	treating	everything	like	it	contains	only	one	value.	But	$computername
might	contain	multiple	computer	names	(that's	what	[string[]]	means),	meaning	$bios	and
$os	will	contain	multiple	items	too.	You'll	often	have	to	enumerate	those	to	get	this	working
right:

Folks	will	run	into	this	even	in	simple	situations.	For	example:

A	Crowd	isn't	an	Individual

41

PowerShell	v2	won't	react	so	nicely;	in	v3,	the	variable	inside	double	quotes	is	$procs,	and
since	that	variable	contains	multiple	objects,	PowerShell	implicitly	enumerates	them	and
looks	for	a	Name	property.	You'll	notice	".name"	from	the	original	string	appended	to	the	end
-	PowerShell	didn't	do	anything	with	that.

You'd	probably	want	to	enumerate	these:

A	Crowd	isn't	an	Individual

42

Commands'	Default	Output	Can	Lie
Well,	perhaps	not	“lie,”	but	certainly	“mislead.”

Try	running	Get-EventLog	-LogName	Security	on	your	computer.	Notice	the	column	headers
in	the	output?

The	output	doesn’t	include	all	of	the	properties	that	are	available	behind	the	scenes.
Some	of	the	column	headers	don’t	actually	list	the	correct	name	for	that	property.

This	can	be	really	frustrating,	because	if	you	try	to	use	Select-Object	with	an	incorrect	name,
it’ll	just	spit	out	blanks.	The	confusion	arises	because	many	commands’	output	are	pre-
formatted	using	a	default	view.	That	means	you’re	not	actually	seeing	the	command’s
“output,”	you’re	seeing	a	“massaged”	version	of	it.

To	see	the	complete	output,	with	the	correct	property	names,	run	your	command	and	pipe	it
to		|	Format-List	*		(or	fl	if	you	prefer).	With	commands	that	produce	a	great	deal	of	output,
that	can	take	some	time	to	run	and	create	a	messy	screen;	a	shorter	version	can	be
obtained	by	piping	your	command	to	`|	Select	-First	1	|	Format-List	`.	You’ll	see	one	output
object,	all	of	its	properties,	and	the	correct	property	names	to	use	in	other	commands.

Commands'	Default	Output	Can	Lie

43

Properties	vs.	Values

$names	=	Get-ADComputer	-filter	*	|

	Select-Object	-Property	Name

	Get-CimInstance	-Class	Win32_BIOS	-ComputerName	$names

Know	why	that	won’t	work?	It’s	because	the	result	of	Get-ADComputer	is	an	object,	which
has	properties.	You	probably	knew	that.	But	the	result	of	Select-Object	is	also	an	object	that
has	properties.	Specifically,	in	this	case,	it’s	“Selected”	ADComputer	object,	having	a	single
property:	Name.

Look	at	the	help	for	Get-CimInstance.	The	-ComputerName	parameter	accepts	objects	of
the	type	String.	It	says	so,	right	in	the	help!	But	a	Selected	ADComputer	object	isn’t	the
same	thing	as	a	String.	The	Name	property	you	selected	contains	strings,	but	it	isn’t	a	string
itself.	This	is	a	huge	distinction,	and	one	that	trips	people	up	all	the	time.

Think	of	a	property	as	a	box.	That	box	can	contain	things,	but	it’s	a	thing	in	and	of	itself,
also.	In	this	case,	the	box	is	called	Name,	and	it	contains	strings.	But	you	can’t	shove	that
whole	box	into	something	that	was	just	expecting	strings.	“Hey,	I	wanted	a	string,	not	a	box!”

Think	about	a	fax	machine.	Do	you	remember	those?	They	accept	pages,	and	transmit
those	pages.	Now	suppose	you	have	an	envelope	full	of	pages.	You	can’t	just	shove	the
envelope	into	the	fax	machine	and	expect	good	results.	In	that	analogy,	the	envelope	is	a
property,	and	the	pages	inside	it	are	values.	To	get	the	pages	into	the	fax	machine,	you	have
to	take	them	out	of	the	envelope	first.

What	you	want	to	do	in	this	case	is	get	the	strings	out	of	the	box,	and	Select-Object	offers	a
way	of	doing	that:

$names	=	Get-ADComputer	-filter	*	|

	Select-Object	-ExpandProperty	Name

	Get-CimInstance	-Class	Win32_BIOS	-ComputerName	$names

See	the	difference?	-ExpandProperty	gets	just	the	contents	of	the	specified	property,	rather
than	returning	an	object	that	only	has	that	property.	Want	a	simple	way	to	test	this	in	the
shell?	Run	these	commands:

Get-Service	|	Select	-Property	Name	|	Get-Member

	Get-Service	|	Select	-ExpandProperty	Name	|	Get-Member

Properties	vs.	Values

44

Properties	vs.	Values

45

Remote	Variables
When	using	Remoting,	you	need	to	remember	that	you’re	dealing	with	two	or	more
computers	that	don’t	share	information	between	them.	For	example,	the	following	command
woudl	run	fine	on	your	local	computer:

$f1	=	"D:\Scripts\folder1"

$f2	=	"D:\Scripts\folder2"	Copy-Item	$f1	-Recurse	-Destination	$f2	-Verbose	-Force

But	if	you	try	to	run	just	the	Copy-Item	command	on	a	remote	computer,	it	will	fail:

	$f1	=	"D:\Scripts\folder1"

	$f2	=	"D:\Scripts\folder2"

	Invoke-Command	-ComputerName	MemberServer	-ScriptBlock	{Copy-Item	$f1	-	Recurse	-Dest

ination	$f2	-Verbose	-Force}

	Cannot	bind	argument	to	parameter	'Path'	because	it	is	null.

	+	CategoryInfo	:	InvalidData:	[:]	[Copy-Item],	ParameterBindingValidationException

	+	FullyQualifiedErrorId	:	ParameterArgumentValidationErrorNullNotAllowed,Microsoft.Po

werShell.Commands.CopyItemCommand

	+	PSComputerName	:	MemberServer

The	problem	here	is	that	$f1	and	$f2	are	defined	on	your	computer,	but	not	on	the	remote
computer.	The	script	block	passed	by	Invoke-Command	isn’t	evaluated	on	your	computer,
it’s	simply	passed	as-is.

There	are	two	possible	fixes.	The	first	is	to	simply	include	the	variable	defintions	in	the	script
block:

	Invoke-Command	-ComputerName	MemberServer	-ScriptBlock	{

	$f1	=	"D:\Scripts\folder1"

	$f2	=	"D:\Scripts\folder2"

	Copy-Item	$f1	-Recurse	-Destination	$f2	-Verbose	-Force

	}

Another	technique,	available	in	PowerShell	v3	and	later,	is	to	use	a	special	variable
designator.	PowerShell	pre-scans	the	script	block	for	these,	and	will	pass	along	your	local
variable	values	to	the	remote	computer(s);

Remote	Variables

46

	$f1	=	"D:\Scripts\folder1"

	$f2	=	"D:\Scripts\folder2"

	Invoke-Command	-ComputerName	MemberServer	-ScriptBlock	{

	Copy-Item	$using:f1	-Recurse	-Destination	$using:f2	-Verbose	-Force}

The	special	$using:	syntax	is	what	makes	this	version	of	the	command	work.

Remote	Variables

47

New-Object	PSObject	vs.	PSCustomObject
There’s	often	some	confusion	in	regards	to	the	differences	between	using	New-Object
PSObject	and	PSCustomObject,	as	well	as	how	the	two	work.

Either	approach	can	be	used	to	take	a	set	of	values	from	a	collection	of	PowerShell	objects
and	collate	them	into	a	single	output.	As	well,	both	avenues	will	output	the	data	as
NoteProperties	in	the	System.Management.Automation.PSCustomObject	object	types.	So
what’s	the	big	deal	between	them?

For	starters,	the	New-Object	cmdlet	was	introduced	in	PowerShell	v1.0	and	has	gone
through	a	number	of	changes,	while	the	use	of	the	PSCustomObject	class	came	later	in
v3.0.	For	systems	using	PowerShell	v2.0	or	earlier,	New-Object	must	be	used.	The	key
difference	between	the	2.0	version	and	1.0	version	from	an	administrative	point	of	view	is
that	2.0	allows	the	use	of	hash	tables.	For	example:

New-Object	PSObject	in	v1.0

$Path	=	"c:\scripts"

$Directory	=	Get-Acl	-Path	$Path

ForEach	($Dir	in	$Directory.Access){

				$DirPermissions	=	New-Object	-TypeName	PSObject

				$DirPermissions	|	Add-Member	-MemberType	NoteProperty	-Name	Path	-Value	$Path

				$DirPermissions	|	Add-Member	-MemberType	NoteProperty	-Name	Owner	-Value	$Director

y.Owner

				$DirPermissions	|	Add-Member	-MemberType	NoteProperty	-Name	Group	-Value	$Dir.Iden

tityReference

				$DirPermissions	|	Add-Member	-MemberType	NoteProperty	-Name	AccessType	-Value	$Dir

.AccessControlType

				$DirPermissions	|	Add-Member	-MemberType	NoteProperty	-Name	Rights	-Value	$Dir.Fil

eSystemRights

				$DirPermissions

}

With	the	New-Object	method	in	PowerShell	v1.0,	you	have	to	declare	the	object	type	you
want	to	create	and	add	members	to	the	collection	in	individual	commands.	This	changed
however	in	v2.0	with	the	ability	to	use	hashtables:

New-Object	PSObject	vs.	PSCustomObject

48

New-Object	in	PS	2.0

$Path	=	"c:\scripts"

$Directory	=	Get-Acl	-Path	$Path

ForEach	($Dir	in	$Directory.Access){

				$DirPermissions	=	New-Object	-TypeName	PSObject	-Property	@{

				'Path'	=	$Path

				'Owner'	=	$Directory.Owner

				'Group'	=	$Dir.IdentityReference

				'AccessType'	=	$Dir.AccessControlType

				'Rights'	=	$Dir.FileSystemRights

				}

				$DirPermissions

}

Here's	the	output:	

This	saved	a	lot	of	overhead	in	typing	and	provided	a	cleaner	looking	script.	However,	both
methods	have	the	same	problem	in	that	the	output	is	not	necessarily	in	the	same	order	as
you	have	it	listed,	so	if	you’re	looking	for	a	particular	format,	it	may	not	work.
PSCustomObject	fixed	this	when	it	was	introduced	in	v3.0,	along	with	providing	more
streamlining	in	your	scripts.

PSCustomObject	in	PowerShell	v3.0

New-Object	PSObject	vs.	PSCustomObject

49

$Path	=	"c:\scripts"

$Directory	=	Get-Acl	-Path	$Path

ForEach	($Dir	in	$Directory.Access){

				[PSCustomObject]@{

				Path	=	$Path

				Owner	=	$Directory.Owner

				Group	=	$Dir.IdentityReference

				AccessType	=	$Dir.AccessControlType

				Rights	=	$Dir.FileSystemRights

				}#EndPSCustomObject

}#EndForEach

As	demonstrated,	your	output	will	always	match	what	you	have	defined	in	your	hashtable.
Another	advantage	of	using	PSCustomObject	is	that	it	has	been	noted	to	enumerate	the
data	faster	than	its	New-Object	counterpart.	The	only	thing	to	keep	in	mind	with
PSCustomObject	is	that	it	will	not	work	with	systems	running	PSv2.0	or	earlier.

New-Object	PSObject	vs.	PSCustomObject

50

Running	Something	as	the	"Currently
Logged-in	User"
A	common	PowerShell	request	is	to	be	able	to	remotely	kick	off	some	code	that	runs	under
the	account	of	the	user	that’s	currently	logged	on	to	the	remote	machine,	or	the	user	who
most	often	uses	the	remote	machine.

This	is	really	difficult,	and	usually	impractical.

First,	understand	that	Windows	is	inherently	a	multi-user	operating	system.	It	doesn’t	have	a
concept	for	“the	currently	logged-on	user”	because	there	might	be	many	logged-on	users.
Even	though	client	versions	of	Windows	don’t	technically	permit	multiple	interactive	logons,
the	base	operating	system	acts	as	if	it	can.

Second,	as	a	multi-user	OS,	Windows’	job	is	to	maintain	a	strict	firewall	around	each	user’s
process	space.	You	don’t	want	one	user	jumping	into	another’s	space,	because	that	would
be	a	huge	risk	to	security	and	stability.	So	you	can’t	easily	log	in	as	one	user	and	run
something	that	another	user	can	“see.”

For	example,	a	common	version	of	this	request	is	for	an	admin	to	remotely	make	Notepad
pop	up	in	front	of	users,	so	they	can	remotely	convey	some	important	message.	Sadly,
Notepad	is	not	a	good	instant	messaging	app,	and	Windows	doesn’t	make	this	easy.	And,	if
you	think	about	it,	what	would	malware	be	able	to	do	if	this	was	possible?	It’d	be	horrible!

With	very	few,	difficult	exceptions,	you	can’t	really	run	something	“as	another	user	on	a
remote	machine.”	One	exception	is	if	you	know	the	remote	user’s	user	name	and	password.
If	you	do,	you	can	establish	a	Remoting	session	to	the	computer	using	their	credentials,	and
potentially	have	applications	run	in	that	user’s	process	space.	But	you	can	see	how
impractical	that	is	in	most	situations.

Running	Something	as	the	"Currently	Logged-in	User"

51

Commands	that	Need	a	User	Profile	May
Fail	When	Run	Remotely
Many	commands	act	against	the	currently	logged-on	user’s	profile.	Those	commands	can
sometimes	fail	when	you	run	them	over	a	Remoting	connection,	such	as	by	using	Invoke-
Command	or	Enter-PSSession.	For	example,	many	installers	default	to	creating	per-user
icons,	and	those	can	fail	when	run	remotely	–	even	when	run	in	a	“silent	install”	mode.

The	problem	is	that,	when	you	connect	to	a	remote	computer,	you	aren’t	spinning	up	a
complete	user	environment.	You’re	technically	not	“logging	on”	to	the	machine	in	the	usual
sense.	You’re	authenticating,	yes,	but	in	much	the	same	way	that	you’d	authenticate	to	a
shared	folder.	Your	remote	connection	doesn’t	have	a	complete	user	profile,	and	so	anything
that’s	expecting	one	can	get	errors	and	fail	(even	if	they	don’t	show	those	errors).

There’s	no	easy	fix	for	this,	unfortunately.

Commands	that	Need	a	User	Profile	May	Fail	When	Run	Remotely

52

	ReadMe
	About this Book
	Format Right
	Where is the __ command?
	PowerShell.exe isn't PowerShell
	Accumulating Output in a Function
	ForEach vs ForEach vs ForEach
	Tab Complete!
	-Contains isn't -Like
	You Can't Have What You Don't Have
	Filter Values Diversity
	Not Everything Produces Output
	One HTML Page at a Time, Please
	Bloody. Awful. Punctuation.
	Don't Concatenate Strings
	$ Isn't Part of the Variable Name
	Use the Pipeline, Not an Array
	Backtick, Grave Accent, Escape
	These Aren't Your Father's Commands
	A Crowd isn't an Individual
	Commands' Default Output Can Lie
	Properties vs. Values
	Remote Variables
	New-Object PSObject vs. PSCustomObject
	Running Something as the "Currently Logged-in User"
	Commands that Need a User Profile May Fail When Run Remotely

