

0

1

2

3

4

5

6

7

8

9

10

11

Table	of	Contents
ReadMe

About	this	Book

What	is	Monad?

The	Problem

Traditional	Approaches	to	Administrative	Automation

New	Approaches

The	Monad	Automation	Model	(MAM)

The	Monad	Shell	(MSH)

The	Monad	Management	Models	(MMM)

The	Monad	Remote	Script	(MRS)

The	Monad	Management	Console	(MMC)

Value	Propositions

The	Monad	Manifesto,	Annotated

2

The	Monad	Manifesto	is	the	original	Jeffrey	Snover-authored	document	that	results	in	the
Windows	PowerShell	we	know	today.	This	version	includes	community-contributed
annotations,	notes,	and	expansions.

The	Monad	Manifesto,	Annotated

3ReadMe

The	Monad	Manifesto	-	Annotated
by	Jeffrey	Snover	as	annotated	by	the	PowerShell	Community

This	project	is	intended	to	preserve	and	annotate	"The	Monad	Manifesto,"	a	paper	written	by
Windows	PowerShell	inventorJeffrey	Snover	at	Microsoft	in	2002.	The	idea	for	this	project
came	from	Pluralsight	author	Tim	Warner,	with	the	initial	annotations	being	made	by	Tim	and
Microsoft	MVP	Don	Jones.

The	original	Manifesto	was	a	forward-looking	document,	predating	the	public	release	of
PowerShell	by	around	4	years.	In	the	years	since	PowerShell's	2006	release,	the	product
has	evolved	substantially	-	but	always	around	the	broad	brush	strokes	outlined	in	the
Manifesto.

We	felt	that	it	was	not	only	important	to	preserve	the	document	for	historical	purposes,	but
also	to	annotate	and	expand	upon	the	various	concepts	it	introduces.	We'll	attempt	to	link	to
references	for	the	now-real	technologies	that	the	Manifest	predicted,	and	to	provide
contextual	explanations	around	some	of	the	Manifesto's	directives.

You'll	notice	1	footnotes	in	the	text.	These	are	a	MultiMarkdown	feature	that	aren't	supported
by	our	publishing	platform,	but	they're	meant	to	link	to	corresponding	footnotes	at	the	bottom
of	the	page.	In	some	cases,	these	are	Jeffrey's	original	footnotes,	and	we've	marked	those
with	"ORIGINAL"	to	set	them	apart	from	footnotes	we've	added	ourselves.

This	guide	is	released	under	the	Creative	Commons	Attribution-NoDerivs	3.0	Unported
License.	The	authors	encourage	you	to	redistribute	this	file	as	widely	as	possible,	but	ask
that	you	do	not	modify	the	document.

Was	this	book	helpful?	The	author(s)	kindly	ask(s)	that	you	make	a	tax-deductible	(in	the
US;	check	your	laws	if	you	live	elsewhere)	donation	of	any	amount	to	The	DevOps
Collective	to	support	their	ongoing	work.

Check	for	Updates!	Our	ebooks	are	often	updated	with	new	and	corrected	content.	We
make	them	available	in	three	ways:

Our	main,	authoritative	GitHub	organization,	with	a	repo	for	each	book.	Visit
https://github.com/devops-collective-inc/
Our	GitBook	page,	where	you	can	browse	books	online,	or	download	as	PDF,	EPUB,	or

The	Monad	Manifesto,	Annotated

4About	this	Book

http://www.jsnover.com/blog/2011/10/01/monad-manifesto/
https://social.technet.microsoft.com/profile/Jeffrey%20Snover%20Windows%20Server
http://takemeback.to/08-August-2002#.VWsXW1xVhBc
http://www.pluralsight.com/author/tim-warner
https://twitter.com/concentrateddon
http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-released.aspx
http://fletcherpenney.net/multimarkdown/
https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://github.com/devops-collective-inc/
https://www.gitbook.com/@devopscollective

MOBI.	Using	the	online	reader,	you	can	link	to	specific	chapters.	Visit
https://www.gitbook.com/@devopscollective
On	LeanPub,	where	you	can	download	as	PDF,	EPUB,	or	MOBI	(login	required),	and
"purchase"	the	books	to	make	a	donation	to	DevOps	Collective.	You	can	also	choose	to
be	notified	of	updates.	Visit	https://leanpub.com/u/devopscollective

GitBook	and	LeanPub	have	slightly	different	PDF	formatting	output,	so	you	can	choose	the
one	you	prefer.	LeanPub	can	also	notify	you	when	we	push	updates.	Our	main	GitHub	repo
is	authoritative;	repositories	on	other	sites	are	usually	just	mirrors	used	for	the	publishing
process.	GitBook	will	usually	contain	our	latest	version,	including	not-yet-finished	bits;
LeanPub	always	contains	the	most	recent	"public	release"	of	any	book.

The	Monad	Manifesto,	Annotated

5About	this	Book

https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://leanpub.com/u/devopscollective

Chapter	1	-	What	is	Monad?

Monad1-11-2	is	the	next	generation	platform	for	administrative	automation.	Monad	solves
traditional	management	problems	by	leveraging	the	.Net	Platform.	From	our	prototype
(though	limited),	we	can	project	significant	benefits	to	developers,	testers,	power	users,	and

administrators.	Monad	leverages1-6	the	.NET	Common	Runtime	to	provide	a	powerful,
consistent,	intuitive,	extensible	and	useful	set	of	tools	that	drive	down	costs	of	administration
and	make	the	life	of	non-programmers	a	lot	easier.

Monad	consists	of:

1.	 Monad	Automation	Model	(MAM):	An	automation	model	based	upon	.Net	classes,

methods	and	attributes	to	produce	Cmdlets.aspx).1-3

2.	 Monad	Shell	(MSH):	A	.Net	based	script	execution	environment	for	exposing	Cmdlets
as	APIs	command	line	tools	and	interactive	programmable	command	line	shell.

3.	 Monad	Management	Models	(MMM):	The	set	managed	code	base	classes	(or
interfaces)	to	implement	specific	management	scenarios	and	in-the-box	administrative
tools	to	execute	those	scenarios.

4.	 Monad	Remote	Scripting	(MRS):	A	set	of	Web	Service	based	components	that	allow

scripts	to	be	remotely	executed	on	many	machines1-4.
5.	 Monad	Management	Console	(MMC):	A	.Net	based	model	and	set	of	services	for

building	management	GUIs	on	top	of	MSH	and	exposing	all	GUI	interactions	as	user-

visible	scripts1-5.

This	white	paper	presents	the	traditional	approach	to	administrative	automation,	its	strengths
and	shortcomings.	Monad’s	new	approaches	are	then	articulated.	An	overview	of	the	major
components	of	Monad	is	then	presented.	A	set	of	value	propositions	is	then	articulated	for
Monad’s	target	audiences.

Notes:

The	Monad	Manifesto,	Annotated

6What	is	Monad?

http://bit.ly/1PAsRao
http://bit.ly/1Q0TrV3
http://bit.ly/1R9oPTO
https://msdn.microsoft.com/en-us/library/ms714395(v=vs.85
https://msdn.microsoft.com/en-us/library/ms123401.aspx
https://msdn.microsoft.com/en-us/library/ms950421.aspx
https://technet.microsoft.com/en-us/magazine/2005.11.scripting.aspx
https://en.wikipedia.org/wiki/White_paper
https://en.wikipedia.org/wiki/Value_proposition

1-1.	(ORIGINAL)	This	is	not	a	Windows	PowerShell	whitepaper	nor	is	it	an	accurate
description	of	how	V1.0	works.	This	is	a	version	of	the	original	Monad	Manifesto	which
articulated	the	long	term	vision	and	started	the	development	effort	which	became
PowerShell.	Many	of	the	elements	described	in	this	document	have	been	delivered	and
those	that	have	not	provide	a	good	roadmap	for	the	future.	The	document	has	been
updated	for	publication.	Confidential	information	has	been	culled	and	examples	are
updated	to	reflect	the	current	syntax.	↩

1-2.	(ORIGINAL)	Monads	are	Leibniz’s	term	for	the	fundamental	unit	of	existence	that
aggregates	into	compounds	to	implement	a	purpose.	In	this	philosophy,	everything	is	a
composition	of	Monads.	This	captures	what	we	want	to	achieve	with	composable
management.	More	information	on	Monadology	can	be	found	at:
http://www.wise.virginia.edu/philosophy/phil206/Leibniz.html	↩

1-3.	Version	1	of	PowerShell	shipped	in	2006,	and	provided	the	implementation	for
these	cmdlets.	Cmdlets	today	are	written	in	.NET	languages,	and	consist	of	a	single
class	per	cmdlet.	PowerShell	provides	a	base	class	that	does	much	of	the	heavy	lifting;
developers	define	properties	of	the	class	that	become	parameters,	and	override	specific
methods	to	participate	in	the	pipeline	lifecycle.	Cmdlets,	along	with	the	overall
environment,	were	the	first	of	four	major	vision	points	proposed	in	the	Manifesto.	↩

1-4.	Remoting	was	introduced	in	PowerShell	version	2,	which	shipped	in	the	box	with
Windows	Vista	and	Windows	Server	2008.	Remoting	is	the	second	of	the	four	major
vision	points	proposed	in	the	Manifesto.	↩

1-5.	Although	never	exposed	as	an	MMC	per	se,	PowerShell's	engine	was
implemented	as	a	.NET	class.	Any	.NET	application	can	instantiate	the	engine,	run
commands,	and	translate	the	output	into	a	GUI	display.	Exchange	Server	2007	was	the
first	product	to	do	so,	and	remains	one	of	the	best	examples	of	the	"full-on	PowerShell
approach"	to	administration.	↩

1-6.	It	should	be	noted	that	PowerShell	very	nearly	didn't	exist	because	of	its
dependency	on	.NET.	At	the	time,	in	2004-2006,	a	startling	number	of	high-profile
managed	code	projects	were	failing,	contributing	to	the	delays	in	Windows	Vista.
Running	around	Microsoft	preaching	about	some	management	scripting	language
written	in	.NET	wasn't	politically	correct	at	the	time.	In	fact,	it	was	so	risky	that	the
Exchange	Server	team	actually	built	in	entire	intermediate	API	under	their	PowerShell
cmdlets,	on	the	theory	that	they	could	trash	the	cmdlets	and	switch	to	something	else
more	easily,	if	needed.	↩

The	Monad	Manifesto,	Annotated

7What	is	Monad?

http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-released.aspx
http://bit.ly/1Q0TyzZ
https://en.wikipedia.org/wiki/Monadology
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
https://en.wikipedia.org/wiki/Composability
http://www.wise.virginia.edu/philosophy/phil206/Leibniz.html
https://en.wikipedia.org/wiki/List_of_CLI_languages
http://blogs.msdn.com/b/powershell/archive/2009/07/23/windows-powershell-2-0-rtm.aspx
https://technet.microsoft.com/en-us/magazine/ff700227.aspx
https://msdn.microsoft.com/en-us/library/bb742441.aspx
https://technet.microsoft.com/en-us/magazine/2006.12.managementshell.aspx

Chapter	2	-	Problem
Windows	has	simple	GUI	administrative	tools	for	basic	users	(Control	Panel,	MMC,	etc).

Windows	also	has	a	rich	set	of	languages,	APIs2-1	and	object	models	for	advanced	systems
programmers	(C,	C++,	C#,	WMI,	Win32,	.Net,	etc).	What	is	missing	is	the	vital	middle	–
administrator-oriented	composable	tools	to	type	commands	and	automate	management.
The	vital	middle	is	typically	addressed	by	scripting	languages.

Our	current	scripting	solutions	(WSH,	VB)	focus	on	the	high	end	of	the	scripting	world	which
manage	the	platform	using	very	low	level	abstractions	such	as	complex	object	models,

schema,	and	APIs2-2.	This	is	effectively	systems	programming	and	misses	much	of	the

admin	community.	Admin	scripting	flows	from	command	line	administration2-3,	it	must	be
small,	simple,	incremental,	and	deal	with	very	high	levels	of	abstraction.

John	Ousterhout	described	the	distinction	between	scripting	and	systems	programming	well
in	his	paper	Scripting:	Higher	Level	Programming	for	the	21st	Century.

Ousterhout	posits	that	scripting	allows	for	“gluing”	applications	together	–	a	higher	level
abstraction	than	system	programming	–	enabling	(even)	more	rapid	application	development
than	today’s	systems	programming	languages.	The	fundamental	argument	is	that	we	should
continue	to	ride	Moore’s	Law	to	move	development	to	higher	levels	of	abstraction	via	script.
To	enable	administration	automation	in	the	mainstream,	administrators	need	a
comprehensive	and	scriptable	shell	and	utilities	and	the	administrative	GUIs	need	to	be

The	Monad	Manifesto,	Annotated

8The	Problem

http://bit.ly/1SmIDVh
http://bit.ly/1HmcYe5
http://bit.ly/1EngdQ6
http://bit.ly/1ekpnrY
http://bit.ly/1IORfB2
http://bit.ly/1ekpvra
http://bit.ly/1Q0VwjT
http://web.stanford.edu/~ouster/cgi-bin/home.php
http://web.stanford.edu/~ouster/cgi-bin/papers/scripting.pdf
http://web.stanford.edu/~ouster/cgi-bin/home.php
http://www.mooreslaw.org
https://notgartner.wordpress.com/2008/02/23/how-to-host-the-powershell-runtime/

layered	on	top	of	this	infrastructure2-4.	This	will	enable	efficient	training	of	administrators	on
command	line	automation,	ensure	comprehensive	administrative	capabilities	at	the
command	line,	and	the	economies	of	scale	of	an	admin-composable	automation	model.

Notes

2-1.	APIs	in	fact,	are	the	main	differentiator	between	Windows	and	Linux/UNIX
systems.	On	Linux/UNIX,	everything	essentially	looks	like	a	folder	or	a	file,	and	nearly
every	bit	of	configuration	is	in	a	loosely-structured	text	file.	Automating	administration	in
that	environment	is	easy,	because	you	only	have	one	API:	text	files.	Windows	is	harder
because	to	do	anything,	you've	got	to	learn	that	something's	API	-	and	all	the	APIs	are
different.	Knowing	how	to	add	a	user	to	Active	Directory	doesn't	help	you	create	a	site
in	SharePoint	-	they're	all	different	APIs.	↩

2-2.	Misses,	in	other	words,	the	point,	because	VBScript	is	basically	a	simplified	way	of
dealing	with	APIs	that	were	meant	for	developers.	VBScript	also	assumes	that	product
teams	have	created	dedicated,	VBScript-compatible	APIs,	which	most	didn't.	Getting
anything	done	with	VBScript	was	often	complicated,	and	always	hit-or-miss.	↩

2-3.	(ORIGINAL)	Administrative	scripting	is	often	the	progression	from	ad	hoc	scripts	to
automated	operations.	Admins	notice	that	they	type	the	same	commands	over	and	over
again	so	they	build	a	script.	The	notice	that	their	scripts	contain	lots	of	the	same	things
so	they	produce	parameterized	subroutines	and	progress	from	there.	↩

2-4	Snover	felt	strongly	about	layering	GUIs	on	top	of	command-line.	That's	in	part	because
it's	how	many	Linux/UNIX	administrative	GUIs	do	things,	but	it's	mostly	because	doing	it	that
way	forces	you	to	ensure	that	everything	can	be	done	from	the	command-line.	The	GUI
doesn't	become	a	special	class	of	citizen	holding	special,	unique	powers;	it's	just	another
consumer	of	the	command-line.	The	command-line,	in	turn,	can	be	much	more	easily
consumed	by	other	consumers	than	a	GUI	could	be.

The	Monad	Manifesto,	Annotated

9The	Problem

http://www.cyberciti.biz/faq/what-is-the-difference-between-linux-and-unix/
https://technet.microsoft.com/en-us/library/hh852274%28v=wps.630%29.aspx
https://technet.microsoft.com/en-us/library/ff678226.aspx
https://msdn.microsoft.com/en-us/library/d1wf56tt%28v=vs.84%29.aspx
https://en.wikipedia.org/wiki/Ad_hoc
https://technet.microsoft.com/en-us/magazine/jj554301.aspx

Chapter	3	-	The	Traditional	Approach	to
Administrative	Automation
The	traditional3-1	model	for	administrative	automation	is	powerful	and	successful.	It	consists
of:

1.	 A	programmatic	shell	(e.g.	sh,	csh,	ksh,	bash)3-5

2.	 A	set	of	administrative	commands	(e.g.	ifconfig,	ps,	chmod,	kill)
3.	 A	set	of	text	manipulation	utilities	(e.g.	awk,	grep,	sed).
4.	 Administrative	GUIs	layered	on	top	of	commands	and	utilities

This	model's	philosophy	is	that	every	executable	should	do	a	narrow	set	of	functions	and
complex	functions	should	be	composed	by	pipelining	or	sequencing	executables	together.
This	model	has	been	extremely	successful	despite	serious	drawbacks.	Upon	inspection,
what	is	widely	considered	a	UNIX	stronghold	is	in	fact	a	flawed	implementation	of	this

model3-2.

When	you	step	back	and	examine	what	is	really	going	on	when	someone	uses	a	pipelined
command	like	"$	a	|	b	|	c",	you	conclude	that	the	first	command	"a"	did	not	accomplish	what
the	admin	wanted	to	do.	If	it	had,	the	admin	would	have	just	type	"a"	and	been	done	with	it.
So	then	the	question	is	why	didn't	"a"	do	what	the	admin	wanted?	The	answer	is	that	in	this
traditional	model,	the	stand-alone	executables	tightly	bind	three	operations	together:	1)

getting	objects;	2)	processing	objects;	3)	outputting	results	as	text3-4.	One	of	those
operations	does	not	do	what	the	admin	needs	so	the	rest	of	the	pipeline	is	an	attempt	to	fix
that.

Because	the	executable	outputs	text,	the	downstream	elements	must	use	text	manipulation
utilities	to	try	to	get	back	to	the	original	objects	to	do	additional	work.	While	the	basic	model
is	extremely	powerful,	its	intrinsic	flaw	is	the	tight	binding	of	these	operations	and	the	use	of

unstructured	text	for	integration3-3.	This	requires	clumsy,	lossy,	imprecise	text	manipulation
utilities.

The	traditional	model	reflects	the	state	of	the	technology	that	was	available	at	the	time	it

emerged.	.Net	provides3-6	a	new	set	of	capabilities	and	opens	up	the	possibility	of	new
approaches.	These	new	approaches	allow	us	to	replace	the	traditional	model	with	a
decisively	superior	one.	That	model	is	Monad.

Notes

The	Monad	Manifesto,	Annotated

10Traditional	Approaches	to	Administrative	Automation

3-1.	Traditional	in	the	Linux/Unix	world;	certainly	not	in	Windows.	This	is	in	fact	the
change	Snover	was	proposing:	to	make	administrative	administration	work	more	like	it
does	in	Unix,	since	Unix	is	a	decades-proven	model	for	success.	It	probably	didn't	hurt
that	Snover	came	from	Digital	Computer,	a	company	with	more	than	a	passing
familiarity	with	Unix	variants	and	similar	operating	systems.	↩

3-2.	People	who	view	PowerShell	as	a	"linux-ification"	of	Windows	should	note	that
Snover	wasn't	enamored	of	the	Unix	command-line	model.	He	felt	it	was	inconsistent
(and,	having	grown	organically,	it	is)	and	often	lacked	good	semantics.	In	many	ways,
PowerShell	was	the	first	"second	comer"	to	Unix's	command-line	model,	taking	its
strengths	but	re-thinking	what	had	become	somewhat	obvious	weaknesses.	↩

3-3.	There's	an	enormous	point	here	that's	often	missed.	When	you	write	a	tool	that
produces	text,	downstream	tools	have	to	know	how	to	process	that	text	in	the	exact
format	you	produced	it.	Your	data	is	unstructured.	If	you	change	the	output	of	your	tool,
everything	that	used	to	work	with	it,	won't.	Object	orientation	-	that	is,	presenting	data	in
a	standardized	structure	that	could	be	consumed	by	anything	understanding	"objects"	-
was	one	of	the	biggest	differences	between	PowerShell	and	what	had	come	before.
Much	of	a	Linux	admin's	time	is	spent	in	the	grep/sed/awk	cycle,	since	they've	got	to
parse	out	text	so	the	next	tool	has	data	to	work	with;	PowerShell	all	but	eliminates	that
entirely	ancillary	work.	↩

3-4.	Practical	upshot	of	this	is	that	tools	-	cmdlets,	in	the	PowerShell	world	-	should	do
one	thing,	and	one	thing	only.	Get	objects,	process	objects,	or	format	objects	into	text	-
pick	just	one,	and	do	only	that.	If	you	do	more	than	one,	you	start	creating	a	monolithic
tool	that's	less	easy	to	re-use	elsewhere.	This	do-one-thing	concept	has	become	a
driving	foundation	for	best	practices	in	the	PowerShell	community,	especially	around
toolmaking.	↩

3-5.	These	examples	emphasize	the	influence	mainframe	and	UNIX	had	on	Snover's
design	choices.	↩

3-6.	Realistically,	COM	could	have	provided	the	same	capabilities	as	it	was	object-
oriented.	However,	by	the	time	the	Manifesto	was	written,	COM	was	effectively
deprecated	and	Microsoft	had	moved	on	to	.NET.	↩

The	Monad	Manifesto,	Annotated

11Traditional	Approaches	to	Administrative	Automation

Chapter	4	-	New	Approaches

Monad	takes	new	approaches	to	the	issues	of	1)	building	commands,	2)	composing
solutions	3)	management	models	and	4)	management	GUIs.	The	Monad	architecture	flows
from	the	following	observations:

1.	 Most	solutions	are	home	brewed	and	composed	out	of	existing	commands	by
administrators.

2.	 Most	solutions	are	focused	on	either	automating	management	or	providing	ad	hoc	fixes.
3.	 Most	administrators	are	para-programmers.	They	either	don't	have	the	desire,	skill	or

(more	often),	the	time	to	do	sophisticated	programming.
4.	 Most	application	developers	won't	make	their	code	manageable	unless	there	is

immediate	and	substantial	user	benefit4-5.

4.1	-	A	New	Approach	to	Building	Commands
The	traditional	approach	to	building	commands	is	inefficient.	Much	of	the	effort	is	spent
rewriting	the	same	functions	over	and	over	again	by	different	people	in	different	ways.	They
all:

Parse,	validate,	and	encode	user	input.
Document	usage.
Log	activity.
Format	data,	output	results	and	report	errors.
Operate	on	remote	nodes	or	sets	of	remote	nodes.

Yet,	despite	all	this	commonality,	most	platforms4-14-2	provide	little	to	no	support	for	doing
these	activities	in	common	consistent	ways.	The	result	is	that	today's	commands	are

inefficient	to	develop	and	inconsistent	to	use4-6.

Monad	takes	a	different	approach	providing	developers	maximal	leverage	and	end	users
maximal	consistency	by	defining	an	automation	model	for	applications	which	factors	out
common	functions	so	they	can	be	implemented	once	in	a	common	runtime	environment4-3.
Developers	no	longer	produce	stand	alone	executables.	Instead,	they	write	narrowly	focused
.Net	classes	(Cmdlets)	which	then	are	exposed	as	APIs,	commands,	and	GUIs.	The
common	functions	are	implemented	and	tested	once	and	provide	a	single	set	of	semantics

as	well	as	a	consistent	and	uniform	set	of	error	messages.4-7

The	Monad	Manifesto,	Annotated

12New	Approaches

4.2	-	A	New	Approach	to	Composing	Solutions
The	traditional	approach	to	composing	solutions	is	difficult	and	fragile.	It	uses	pipelines	to

perform	prayer-based	parsing	of	text	streams4-4.	These	mechanisms	are	awkward,
inconsistent,	and	imprecise.	Admins	spend	the	majority	of	their	thought	process	on
mechanisms	instead	of	problem	solving.	Monad	takes	a	different	approach	providing	a
precise,	powerful	script	execution	engine	for	creating	pipelines	of	.Net	objects.	Instead	of
piping	unstructured	text,	we	pipe	.Net	objects4-8.	This	allows	the	downstream	pipeline
components	to	operate	directly	on	the	objects	and	their	properties	using	the	.Net	Reflection
APIs.	(The	reflection	APIs	allow	a	utility	to	find	the	type	of	an	object,	what
properties/methods	it	has,	get	its	property	values	and	invoke	its	methods)

The	Monad	Runtime	environment	provides	a	means	to	access	Cmdlets	and	run	scripts	on

remote	machines	via	Web	Services.4-9

4.3	-	A	New	Approach	to	Management	Models
The	traditional	approach	to	management	models	produces	an	inconsistent	admin
experience.	Today	there	are	thousands	of	locally	optimized	commands.	Each	command
developer	defines	his	own	management	model	with	a	set	of	names,	and	concepts.	While
copying	of	popular	commands	occurs,	there	is	no	systemic	incentive	for	doing	so.	Efforts
have	been	made	to	provide	guidelines	which	would	drive	global	optimization	but	the	weight
of	legacy	has	made	it	difficult	for	such	efforts	to	gain	much	traction.

A	similar	situation	exists	with	today's	instrumentation	technologies	which	languish	due	to
lack	of	tool	support.	Instrumentation	evangelization	efforts	are	difficult	as	[product]	groups
reject	the	"build	it	and	they	will	come"	strategy.	Tool	developers	balk	at	the	vast	surface	area
of	objects	and	respond	by	either	providing	generic	functionality	(like	monitoring	or	browsing)
across	a	broad	range	of	objects	or	providing	rich	features	for	a	narrow	set	of	objects.

Monad	takes	a	different	approach:	it	minimizes	the	cost	of	automation	and	provides
immediate	end-user	benefit	by	providing	scenario-based	automation	extension	classes
and	in-the-box	tools	that	exploit	those	classes.	Monad	can	support	almost	any	automation
schema	but	strongly	encourages	the	use	of	standard	schemas	by	providing	a	set	of	base
classes	for	specific	administrative	scenarios.	Those	base	classes	include:	Navigation,

Diagnostics,	Configuration,	Lifecycle,	and	Operations4-10].	These	classes	provide	common

syntax,	switches,	internationalized	error	messages	and	solutions	to	common	scenario
problems	(e.g.	a	common	implementation	of	a	directory	stack	for	all	the	navigation
commands).	Monad	also	provides	a	set	of	UI	controls	and	tools	that	ship	with	the	OS	that
drive	those	extensions	to	perform	a	particular	management	task.

The	Monad	Manifesto,	Annotated

13New	Approaches

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreflectionoverview.asp

4.4	-	A	New	Approach	to	Management	GUI
Tools
The	traditional	approach	to	management	GUIs	provides	minimal	developer	leverage.
Today's	Windows	management	GUI	tools	are	developed	in	the	same	way	that	a	full	blown
application	is.	They	have	GUI	code,	domain	logic/constraint	enforcement,	and	API	access	to
local	and	remote	managed	objects.	Management	GUI	services	are	largely	limited	to	a	UI
container	which	facilitates	multiplexing	multiple	tools	and	a	certain	level	of	integration.	This
approach	requires	a	sophisticated	developer	and	an	exhaustive	test	matrix.	Because	much
of	the	domain	logic	and	constraint	enforcement	is	embedded	into	the	GUI,	it	is	common	for
the	command	lines	to	expose	a	subset	of	the	functions	of	a	GUI.	The	traditional	approach
works	against	automation.

Monad	takes	a	different	approach	providing	a	rich	set	of	management	oriented	services
for	developing	management	GUI	tools.	These	services	allow	management	GUIs	to	be
layered	on	top	of	the	scripting	engine	and	Cmdlets.	This	provides	auditing,	macro
record/playback	and	integrated	GUI/command	line	tools.	This	decreases	the	skill	level
required	to	develop	a	management	GUI	by	simplifying	both	the	access	to	and	control	of
management	objects	and	by	providing	transparent	remoting	for	free.	It	also	allows	users	to
see	the	scripts	run	by	GUI	interactions	which	helps	them	learn	the	automation	layer	and
create	their	own	automated	scripts.	The	layering	reduces	the	test	matrix	by	leveraging	the
testing	done	on	the	command	line	and	scripts	and	only	needing	to	test	the	GUI	paths	to
invoke	those	functions.	The	management	GUI	can	also	expose	its	inner	workings	via
Cmdlets	which	provides	developers,	testers,	and	support	easy	access	to	the	internal	state
and	control	of	the	GUI	for	debugging/diagnostics/automated	test.

Notes:	4-1:	ORIGINAL:	UNIX	has	the	getopt()	call	for	simple	command	option	parsing.

4-2.	ORIGINAL:	VMS	DCL	and	AS400’s	CL	are	the	exceptions	to	this.	They	provide	a
common	command	parser	so	the	commands	that	use	this	have	a	high	degree	of
syntactic	consistency.	↩

4-3.	ORIGINAL:	There	is	a	wonderful	synergy	between	programmer’s	desire	to
minimize	the	amount	of	code	they	write	for	management	and	customers	desire	to	have
a	consistent	management	experience.	↩

4-4.	Prayer	based	parsing	is	when	you	parse	the	text	and	pray	that	you	got	it	right.	e.g.
Cut	off	the	first	3	(or	was	it	4?)	lines,	cut	out	column	30-40	(assuming	that	those	spaces
are	not	tabs),	cast	that	as	an	integer	(hmm.	–	does	anyone	use	64	bits?...well	let’s	just
hope	its	32	bits).	↩

The	Monad	Manifesto,	Annotated

14New	Approaches

http://www.gnu.org/software/libc/manual/html_node/Using-Getopt.html
http://h71000.www7.hp.com/doc/732final/9996/9996pro.html

4-5.	Meaning,	most	developers	won't	implement	interfaces	that	administrators	can	use
to	manage	the	application.	At	best,	a	"lazy"	developer	might	simply	put	all	their
configuration	information	into	a	text	file	and	call	that	"manageable."	Ironically,	that's
essentially	how	Unix	is	built	from	the	ground	up,	and	it	is	manageable,	because	there's
little	as	easy	as	modifying	a	text	file,	especially	if	it's	structured	(as	in	JSON	or	XML).	↩

4-6.	Which	is	why	developers	hate	making	them	and	admins	hate	using	them.	↩

4-7.	This	is	the	model	PowerShell	adopted.	Cmdlets	are	instances	of	a	class,	which
they	inherit	as	their	base.	That	class	provides	a	ton	of	common	functionality,	so	that	the
actual	code	in	a	cmdlet	is	around	99%	focused	on	whatever	it	is	that	cmdlet	is	doing.
The	cmdlet	developer	doesn't	focus	on	parsing	command-line	arguments,	validating
mandatory	items,	etc.	↩

4-8.	An	"object"	in	this	sense	is	little	more	than	a	set	of	structured	data,	not	unlike	a
database	table	or	a	spreadsheet.	Each	object	represents	some	management
component,	and	its	properties	represent	bits	of	information	about	that	object.
Commands	don't	have	to	parse	these	objects	to	find	data,	because	.Net	understands
the	object	structure	and	can	simply	retrieve	bits	of	information	by	referring	to	the
property	names.	↩

4-9.	One	of	the	first	oblique	references	to	what	became	PowerShell	Remoting,	which	is
indeed	a	web	service	based	on	WS-MAN	(Web	Services	for	Management).	↩

4-10.	PowerShell	never	really	went	with	specific	base	classes	for	these	different
scenarios,	but	this	is	the	origin	of	PowerShell's	standardized	list	of	verbs	to	be	used	in
cmdlet	names.	This	concept	also	drove	the	creation	of	the	PSProvider	and	PSDrive
abstraction,	wherein	any	data	store	could	be	exposed	as	a	"disk	drive,"	thus	enabling	a
standardized	set	of	commands	to	manipulate	any	data	store	so	exposed.	↩

The	Monad	Manifesto,	Annotated

15New	Approaches

Chapter	5	-	The	Monad	Automation	Model
(MAM)

Monad	defines	a	highly	leveraged	automation	model	for	applications.	The	model	factors	out
common	functions	so	they	can	be	implemented	once	in	the	runtime	environment.	This
provides	both	leverage	for	the	developer	and	consistency	for	the	administrators.	The
incremental	cost	to	develop	and	test	application-specific	functions	is	quite	low	compared	to
the	traditional	methods.	

Developers	express	an	automation	model	to	Admins	as	a	set	of	user-friendly	nouns	and
verbs.	The	developer	implements	these	by	subclassing	a	set	of	base	automation	.Net
classes	and	annotating	them	with	automation	attributes	to	produce	a	set	of	Cmdlets.	The
MSH	engine	exposes	these	Cmdlets	as	APIs	and	a	set	of	commands.	Administrators	and
tool	developers	now	get	a	mainstream	way	to	uniformly	access	the	automation	of	every
aspect	of	the	operating	system.

5.1	-	An	Example

The	Monad	Manifesto,	Annotated

16The	Monad	Automation	Model	(MAM)

Imagine	the	developer	who	needs	to	expose	the	Windows	eventlog	for	reporting	automation.
The	developer	decides	how	to	structure	the	automation	in	terms	of	nouns	and	verbs	("Get-
EventLog").	Monad	provides	strong	guidance	on	this	subject.	The	developer	then	writes	a
CmdLet	(in	C#,	VB.NET,	COBOL,	etc)	to	expose	this	function.

A	CmdLet	might	look	like	this5-1:	

At	first	glance	it	might	appear	that	the	Admin	is	not	going	to	get	much	use	from	this	code	but
nothing	could	be	further	from	the	truth.	Using	the	CmdNoun	and	CmdVerb	attributes
automatically	registers	this	CmdLet	as	the	command	"Get-EventLog"	with	a	single
parameter	"LogName".	The	Admin	then	uses	this	command	along	with	a	set	of	base	utility
commands	to	compose	a	rich	set	of	scenarios:

What	is	filling	up	my	application	log?5-2

Why	is	MsiInstaller	filling	up	my	log?

By	changing	the	last	CmdLet	in	the	pipeline,	this	information	can	be	output	in	XML,	CSV,
LIST,	HTML,	EXCEL	or	any	other	format.

Is	my	eventlog	usage	regular	across	the	week?

The	Monad	Manifesto,	Annotated

17The	Monad	Automation	Model	(MAM)

The	admin	can	add	additional	Cmdlets	to	the	pipeline	to	filter	out	only	those	events	that
where	generated	on	Tuesday	and	then	find	out	which	events	occur	most	on	that	day		($
Get-EventLog	application	|Where	{$_.TimeWritten.DayofWeek	-eq	"Tuesday"}	|Group	EventID)	.
Having	found	that	the	most	frequent	event	on	Tuesdays,	they	can	easy	filter	the	log	for	that
event	and	determine	the	distribution	of	that	event	across	the	days	of	the	week.		($	Get-
EventLog	application	|Where	{$_.EventID	-eq	131080}	|Group	{$_.TimeWritten.DayofWeek})	

Monad	requires	a	small	amount	of	CmdLet5-3	code	to	be	integrated	into	the	runtime
environment	and	take	advantage	of	its	rich	set	of	functions	and	utilities	to	provide	a	powerful
and	relevant	set	of	administrative	functions.	While	this	example	focused	on	an	ad	hoc
investigation,	it	is	obvious	how	this	investigation	could	lead	to	a	set	of	automated	nightly
reports.	This	example	is	a	narrow	scenario;	comprehensive	Cmdlets	would	need	to	provide
a	full	range	of	verbs,	have	the	input	extensively	checked,	and	perform	error	handling.	Still,
the	savings	in	development	and	test	are	dramatic.

5.2	-	Leveraging	.Net
Developers	use	.Net	attributes	to	offload	work	to	the	runtime	environment5-4.	The	general
philosophy	of	Monad	is	to	implement	things	once	and	then	use	them	everywhere.	A	rich	set
of	declarative	attributes	direct	the	Monad	runtime	to	perform	actions	on	behalf	of	the
developer.	This	transfers	the	responsibility	for	writing	and	testing	this	code	as	well	as	for
interacting	with	the	user	during	error	conditions	and	producing	and	localizing	error
messages.

Monad	defines	automation	attributes	in	the	following	areas:

The	Monad	Manifesto,	Annotated

18The	Monad	Automation	Model	(MAM)

Parsing	Guidance
These	tell	the	parser	how	to	map	user	input	to	the	CmdLet
Request	Object.	E.g.	how	to	map	parameters	to	properties,	or
whether	a	qualifier	is	mandatory.

Data	Generation

These	tell	the	new	shell	to	process	the	user	input	to	generate
the	actual	data.	E.g.	filename	globbing.	There	will	also	be
globbers	for	hostnames,	ipaddrs,	registrykeynames,
ProcessNames,	etc.

Data	Validation These	express	validation	rules	on	the	input	data.	E.g.
cardinality	of	the	data,	the	min/max	values	of	the	data,	etc.

Encoding	Directives
These	convey	how	to	encode	the	processed	user	input	into
data	objects.	E.g.	a	CmdLet	may	want	an	array	of
StreamWriters	instead	of	an	array	of	filenames.

Object	Processing Perform	a	set	of	common	functions	on	common	datatypes.	E.g.
perform	a	ToLower()	on	strings.

Visibility/Applicability

These	provide	predicates	for	visiblity/applicablity.	E.g.	Cmdlets
can	be	tagged	with	the	Machine	and	User	Roles.	If	a	machine
does	not	have	the	DHCP	Server	Role,	the	DHCP	server
commands	will	not	be	visible	by	default.

Documentation These	provide	utilities	information	about	the	element.	E.g.	Help

Test These	provide	hints	to	utilities	to	facilitate	the	auto	generation	of
Test	Vectors.

Notes

5-1.	Briefly,	during	development,	PowerShell's	"script	cmdlets"	(now,	"advanced
functions")	did	have	a	syntax	similar	to	this.	In	C#,	cmdlet	source	code	still	looks	a	lot
like	this.	↩

5-2.	ORIGINAL:	"Get-EventLog	application"	is	provided	by	the	sample	code	above	and
the	rest	come	from	the	Monad	base	commands.	"Group	source"	counts	the	number	of
objects	that	have	the	same	value	for	a	particular	property	(i.e.	how	many	times	did	a
particular	source	show	up?).	"Select	-First	5"	truncates	the	set	of	objects	to	only	have
the	first	5.	"Format-Table"	formats	the	objects	and	their	properties	a	table	↩

5-3.	Note	that	even	in	this	document,	Snover	wasn't	consistent	about	"CmdLet"	versus
"Cmdlet."	Today,	"cmdlet"	is	the	standard.	His	original	idea	was	to	emphasize	that	a
"cmdlet"	wasn't	a	"full	command"	with	all	the	parsing	and	whatnot	a	traditional
command	implemented;	instead,	it	was	a	portion	of	a	command,	with	much	of	the
overhead	being	provided	by	the	automation	engine's	base	classes.	↩

The	Monad	Manifesto,	Annotated

19The	Monad	Automation	Model	(MAM)

5-4.	Meaning,	a	.NET	developer	can	tell	the	.NET	runtime	to	perform	certain
standardized	tasks.	You	see	this	a	lot	in	PowerShell:	for	example,	a	function	can
declare	a	parameter	as	mandatory,	and	the	shell	will	enforce	that	attribtue	rather	than
the	function	developer	having	to	write	logic	to	do	so.	↩

The	Monad	Manifesto,	Annotated

20The	Monad	Automation	Model	(MAM)

Chapter	6	-	The	Monad	Shell	(MSH)
Monad	provides	a	runtime	environment	for	creating	highly	consistent,	powerful,
discoverable,	and	secure	APIs,	command	lines	and	GUIs	by	creating	pipelines	of	Cmdlets.
This	capability	is	delivered	as	a	.Net	class	which	can	be	embedded	in	a	number	of	"hosts"
which	expose	this	functionality	to	the	user.	The	term	MSH	refers	to	both	the	runtime
environment	and	the	host	that	exposes	that	to	the	use	as	a	command	line	interactive	shell.

6.1	-	Pipelines	of	.Net	Objects
Monad	takes	user	input,	builds	a	pipeline	of	Cmdlets	for	each	of	the	commands,	parses	and
encodes	the	user	input	for	each	command	into	a	CmdLet	Request	Object	(CRO).	The	script
execution	engine	then	sequences	the	pipeline.	The	first	Cmdlet	is	invoked	and	passed	its
CRO	as	a	parameter.	This	Cmdlet	returns	a	set	of	.Net	objects	which	are	then	processed
and	passed	to	the	next	Cmdlet	along	with	its	CRO	and	so	on	until	the	pipeline	is	complete.	

Passing	.Net	objects	to	Cmdlets	instead	of	text	streams	allows	reflection-based	utilities	to
provide	a	function	for	any	.Net	object.	In	the	example	above,	the	WHERE	CmdLet	filters	a
set	of	objects	based	upon	a	test	of	those	object's	properties.	It	takes	objects	of	any	type
(e.g.	Processes,	Files,	Disks,	etc)	and	queries	for	its	type	using	the	.Net	reflection	APIs.
Using	the	Type,	it	queries	for	the	existence	of	the	property	specified	by	the	user
("HandleCount").	It	uses	this	information	to	query	each	object	for	the	value	of	that	property
and	performs	the	test	on	that	property	and	to	filter	the	object	appropriately.

The	Monad	Manifesto,	Annotated

21The	Monad	Shell	(MSH)

The	same	mechanism	is	used	by	the	SORT	CmdLet	to	sort	a	set	of	objects	and	the
FORMAT-TABLE	CmdLet	to	display	the	properties	of	a	set	of	objects	as	a	table.	Monad's
utilities	facilitate	factoring	common	functions	out	of	the	Cmdlets	which	saves	costs	for	the
developer	and	increases	power/consistency	for	Administrators.

Integrating	legacy	commands6-1	is	trivial	because	text	streams	are	merely	one	type	of	.Net
Object	stream.	That	said,	once	rendered	into	text,	you	lose	the	ability	to	operate	upon	it	as	a
rich	reflection-based	object	and	are	back	into	the	world	of	prayer	based	parsing.

6.2	-	Monad	Runtime	Environment	Components
The	diagram	below	illustrates	the	major	components	of	the	Monad	Runtime	Environment:	

6.2.1.1	-	The	Parser

The	Monad	parser	is	used	by	all	Cmdlets	and	ensures	a	consistent	syntax.	It	is	responsible
for	parsing	user	input	for	the	script	execution	engine.	When	a	user	enters	a	command	line,
the	Parser	maps	the	command	to	a	CmdLet	method	and	it's	Request	Object.	The	fields	and
attributes	of	the	request	object	are	used	to	parse	the	rest	of	the	command	line,	generate	any
additional	information	(e.g.	globbing),	validate	the	input,	and	encode	those	values	into	the
request	object.

In	performing	this	process,	the	parser	augments	the	metadata	provided	by	the	Request
Object	with	metadata	provided	by	3rd	party	policy	providers.	For	instance,	a	request	object
may	indicate	that	it	can	accept	up	to	16	nodenames	and	that	the	names	must	resolve	to	an
IPv4	address.	A	policy	can	not	change	those	directives	but	could	add	a	directive	indicating
that	the	nodes	must	be	currently	responding	to	an	ICMP	ping	(e.g.	IsAlive).

The	Monad	Manifesto,	Annotated

22The	Monad	Shell	(MSH)

6.2.1.2	-	The	Script	Execution	Engine

The	Monad	script	execution	engine	sequences	the	Cmdlets	and	ensures	a	consistent
runtime	experience.	It	is	responsible	for	taking	the	pipelines	encoded	by	the	parser	and
performing	all	the	operations	required	to	sequence	them	to	completion.	If	the	actions	need	to
occur	on	a	remote	machine	or	a	set	of	remote	machines,	it	coordinates	with	the	MRS.	It	logs
all	activities	to	the	audit	log.	The	execution	engine	looks	at	the	incoming	datastream	and
finds	the	correct	properties	to	bind	on	a	CmdLet	(a	CmdLet	might	have	multiple
parametersets	to	take	advantage	of	different	types	of	data).	The	output	from	a	CmdLet	is
then	gathered,	potentially	processed	(converted,	batched,	etc),	and	passed	on	to	the
appropriate	properties	of	the	next	CmdLet.	Since	the	runtime	environment	can	be	embedded
in	multiple	hosts	(e.g.	command	line,	GUI,	etc.),	it	is	important	that	a	CmdLet	never	directly
communication	with	the	user.	The	script	execution	engine	mediates	this	activity	between	the
CmdLet	and	the	various	hosts.

6.2.1.3	-	The	Cmdlets

Cmdlets	perform	actions.	There	are	four	types	of	Cmdlets:	1)	Base	2)	Host	3)	Platform	and
4)	User.	Base	Cmdlets	will	work	in	any	.Net	environment	such	as	Sort,	Where,	Group	etc.
Platform	Cmdlets	are	those	that	are	dependant	upon	a	particular	platform	(XP,	Smart
Phone,	or	Compact	Framework)	and	are	not	available	on	other	platforms.	Host	Cmdlets	are
those	that	are	provided	by	the	application	that	embeds	the	Monad	runtime	environment.	For
instance	msh.exe,	or	admin	GUI	that	expose	Cmdlets	specific	to	that	host	(e.g.	Change	a
font,	close	a	window,	etc).	User	Cmdlets	are	those	written	by	the	User.	These	can	be	written
in	any	language	(C#,	VB.NET,	etc)	but	most	will	be	written	in	MSH	(the	shell	language).

The	unique	identifier	for	these	Cmdlets	is	their	.Net	Type	(e.g.
System.Command.ProcessCmdLet).	While	this	identifier	can	always	be	used	to	invoke	the
CmdLet,	it	is	long	and	unfriendly.	As	such,	CmdLet	authors	are	required	to	provide	Friendly
names	through	attributes.

It	will	be	fairly	common	and	easy	for	higher	order	Cmdlets	to	be	implemented	by	getting	a
set	of	data	and	then	using	the	Monad	runtime	to	invoke	a	script	on	that	data,	and	then
returning	the	results	of	that	script.

6.2.1.4	-	The	Extended	Type	Reflector

The	power	of	Monad	is	its	ability	to	leverage	.Net	reflection.	The	problem	is	that	there	are
important	objects	that	are	encoded	in	ways	that	denude	reflection	of	its	power.	When	you
reflect	against	ADO	datatables,	you	find	out	that	they	have	a	property	called	Columns.	What

The	Monad	Manifesto,	Annotated

23The	Monad	Shell	(MSH)

https://www.penflip.com/powershellorg/monad-manifesto-annotated/blob/master/chapter-8-the-monad-remote-script-mrs.txt

we	need	are	the	names	of	the	columns	but	these	are	encoded	as	values.	A	similar	problem
exists	with	WMI,	Active	Directory,	and	XML.	The	extended	type	reflector	is	designed	to
address	such	issues.

6.2.1.5	-	The	Type	Annotation	and	Extension	System

Dealing	with	raw	objects	provides	both	too	much	and	too	little	information.	It	is	the	job	of	the
type	annotation	and	extension	system	to	resolve	this	paradox.	It	provides	a	mechanism	for
3rd	parties	to	define	sets	of	properties	(e.g.	properties	associated	with	performance,
configuration,	resource	consumption,	or	dependencies)	and	give	the	set	a	public	name.	This
allows	the	user	to	give	a	name	instead	of	having	to	specify	each	and	every	property.	E.g.
"Format-Table	resources"	vs.	"Format-Table	name	,pid,	workingset,	handlecount,
virtualmemory,	privatememory".

Monad	provides	access	to	objects	and	the	methods	on	those	objects.	However	the	intrinsic
methods	of	an	object	represent	a	very	small	number	of	the	interesting	things	that	users	want
to	do.	The	type	extension	mechanism	allows	3rd	parties	to	register	brokered	methods	on
those	objects.	These	methods	can	be	accessed	using	the	same	syntax	as	the	native	ones
but	this	system	will	then	dispatch	them	to	the	appropriate	3rd	party	method	passing	the
original	object	as	a	parameter.

6.2.1.6	-	The	Remote	Agent

Users	will	be	able	to	run	scripts	on	remote	machines	via	Web	Service	requests	to	Remote
Agent	host.	This	host	will	embed	the	runtime	and	respond	to	requests	received	via
Soap/HTTP	or	DIME/TCP.	Users	will	be	authenticated	and	their	activities	authorized	(either
by	ID	or	ROLE).	Requests	and	replies	will	be	encoded	in	a	way	that	allows	cancellation	and
allow	tracing	local	activities	back	to	specific	requests	in	remote	audit	logs.

When	a	script	is	complete,	its	return	objects	are	serialized	by	value	for	transmission	across
the	wire.

6.2.1.7	-	Security

Monad	could	well	be	one	of	the	most	secure	shell	environments	ever	created.	All	interesting
actions	are	recorded	into	an	audit	log.	The	code	identification	facilities	provided	by	.NET
significantly	reduce	exposure	to	one	of	the	most	common	security	exposures	in	a	shell
environment:	Trojans.	Signing,	strong	names	and	hashes	in	system	policy	will	be	used	to
identify	which	utilities	are	legitimate	and	approved	and	also	prevent	known	Trojans	from
being	executed.

The	Monad	Manifesto,	Annotated

24The	Monad	Shell	(MSH)

In	sum,	the	Monad	shell	will	provide	both	reduced	security	exposures	and	far	better
detection	and	remediation	of	security	breaches.

6.2.1.8	-	MSH	Host

MSH	is	a	.Net	assembly	which	can	be	embedded	into	any	executable	host	to	provide	script
execution	and	access	to	Cmdlets.	Hosts	are	able	to	determine	which	subset	of	Cmdlets	are
made	available	to	the	user.	The	most	common	case	will	be	that	a	Host	exposes	all	Base
Cmdlets	(e.g.	sort,	where,	etc),	all	of	its	Host	Cmdlets	(e.g.	outlook	would	expose	Cmdlets
for	dealing	with	mailboxes	and	messages),	and	an	appropriate	subset	of	the	Platform
Cmdlets	(Cmdlets	dealing	with	processes,	disks,	network	adapters,	etc).

MSH	is	also	a	stand	alone	executable	which	hosts	the	script	execution	engine	and	provides
a	rich	interactive	experience.	While	providing	a	compelling	vt100-type	experience,	MSH	will
leverage	the	capabilities	of	a	PC	to	provide	world	class	analytics.	MSH	provides	rich,
graphical	intellisense	capabilities	for	command	completion.	Data	can	be	output	in	graphical
formats	to	leverage	the	PCs	interaction	and	visualization	capabilities.

6.3	-	MSH	Scripting	Language
MSH	provides	a	full	featured	scripting	language	using	the	functions	and	syntax	of	the	POSIX
Shell	model	(flow	control,	faulting	handling,	variables,	function	definition,	scoping,	IO
redirection,	etc)	as	a	starting	point.	These	are	then	modified	and	expanded	upon	to	either
improve	the	programming	experience,	take	advantage	of	new	functionality	or	provide	a	glide
path	to	C#	.	The	goal	is	that	UNIX	admins	working	with	Windows	will	find	it	easy	to	learn	and
migrate	their	skills	to	MSH.

In	addition	to	writing	traditional	functions,	users	can	use	the	scripting	capabilities	of	MSH	to
write	their	own	Cmdlets	and	to	add	or	override	verbs	to	existing	CmdLet	Nouns.

Notes

6-1.	ORIGINAL:	Msh	will	be	able	to	seamlessly	invoke	legacy	commands	and	legacy
shells	will	be	able	to	seamless	invoke	Msh	CmdLets.	(Msh	will	provide	a	mechanism	to
export	CmdLets	for	access	from	the	legacy	shells)	[In	fact,	PowerShell	never
implemented	an	easy	way	for	legacy	commands	to	invoke	cmdlets]	↩

The	Monad	Manifesto,	Annotated

25The	Monad	Shell	(MSH)

Chapter	7	-	The	Monad	Management
Models	(MMM)
Monad	helps	application	developers	design	the	administrative	experience	by	providing	a	set
of	management	models.	A	MMM	is	a	rich	set	of	scenario	based	automation	base	classes
and	a	tool	or	set	of	tools	that	use	those	classes	to	perform	a	particular	management
scenario.	These	base	classes	cover	the	major	management	scenarios	including:	Navigation,
Diagnostics,	Configuration,	Lifecycle,	and	Operations.	The	base	classes	provide	a	common
way	of	performing	these	tasks	across	multiple	resource	types.	This	allows	the	admin	to	learn
a	model	for	managing	a	particular	scenario	and	then	apply	that	model	to	a	wide	range	of
problems	and	new	situations.	Developers	pick	the	appropriate	set	of	base	classes,	derive
their	own	classes	from	these,	and	implement	the	appropriate	methods	for	their	resource
types.	The	base	classes	provide	the	following:

1.	 A	set	of	verbs	for	the	scenario	(e.g.	Navigation	has	the	verb	set:	pwd,	cd,	dir,	pushd,
popd,	dirs)

2.	 A	set	of	base	request	objects	which	define	common	qualifiers.	E.g.	If	the	scenario	refers
to	a	remote	machine,	the	base	request	object	would	define	a	common	qualifier	-
MACHINENAME.	This	discourages	people	from	using	the	terms:	NODE,	SERVER,
HOST,	etc.

3.	 A	set	of	exceptions	and	error	messages	for	that	scenario.	E.g.	There	will	be	a	standard
schematized	exception	for	“Resource	unavailable”	so	that	we	don’t	end	up	with	dozens
of	variations	[which	exist	today].

4.	 Common	solutions	to	common	scenario	problems.	E.g.	the	base	classes	will	provide	a
standard	solution	to	the	problem	of	someone	accidentally	asking	for	too	much
information	[get	all	objectsin	LDAP].

Microsoft	will	localize	all	the	user	visible	portions	of	these	scenarios	(Verbs,	qualifiers,	error
messages,	etc)	so	ISVs	can	significantly	reduce	their	development	costs	by	leveraging	these
base	classes.	In	addition	to	these	benefits,	Monad	provides	UI	controls	to	graphically	display
and	interact	with	implementations	of	these	base	classes.	Monad	will	ship	with	MMC	plug-in
tools	that	host	these	UI	controls	but	ISVs	or	in-house	developers	can	host	the	controls	in
their	own	management	UIs.	Since	these	controls	will	be	accessing	well	defined	and
promulgated	data	and	control	interfaces,	3	rd	parties	can	create	replacement	controls	as
well.

An	Example

The	Monad	Manifesto,	Annotated

26The	Monad	Management	Models	(MMM)

Navigation	provides	a	example	of	a	Management	Model.	There	will	be	a	base	class	for	all
Cmdlets	that	want	to	do	Navigation.	This	will	define	the	verbs	(pwd,	cd,	pushd,	dirs,	popd,
dir),	common	error	messages,	and	provide	common	implementations	for	common	problems
(pushd,	dirs,	and	popd	will	be	implemented	once).	That	base	class	can	then	be	subclassed
to	provide	a	consistent	admin	experience	for	a	minimal	amount	of	code.	Once	the	admin
learns	how	to	use	this	model,	they	will	be	able	to	use	to	across	a	wide	range	of	resources.
Navigating	the	filesystem	will	be	the	default	case:	

The	same	commands	can	be	used	to	explore	the	Registry:	

The	same	commands	can	be	used	to	explore	the	Help	system,	Active	Directory,	SQL
databases,	WMI	or	other	namespaces.

The	Monad	Manifesto,	Annotated

27The	Monad	Management	Models	(MMM)

Chapter	8	-	The	Monad	Remote	Script
(MRS)
Monad	provides	a	Web	Services	based	mechanism	to	execute	scripts	on	remote	systems.
The	scripts	can	be	run	on	a	single	or	large	number	(many	thousands)	of	remote	systems.
The	results	of	the	scripts	can	be	processes	as	each	individual	script	completes	or	the	results
can	be	aggregated	and	processed	en-masse	when	all	have	finished.	A	script	can	be
executed	in	BestEffort	or	Reliable	mode.	BestEffort	scripts	are	run	from	the	existing	process
and	if	that	process	terminates,	no	effort	to	clean	up	the	remote	scripts	is	done	and	any
outstanding	results	are	lost.	Reliable	mode	scripts	are	persisted	to	a	local	SQL	store	and	a
service	handles	the	execution	of	the	script.	The	user	can	log	of	out	the	machine	and	the
service	continues	to	process	the	script.	The	user	can	log	back	in	and	get	the	results	of	that
job	sometime	in	the	future.

The	Monad	Manifesto,	Annotated

28The	Monad	Remote	Script	(MRS)

Chapter	9	-	The	Monad	Management
Console	(MMC)
Monad	provides	a	rich	set	of	management	framework	service	Cmdlets	to	facilitate	to	build
management	consoles.	These	services	reduce	development	and	test	costs	to	produce
admin	UIs	and	consoles	while	enabling	an	integrated	and	admin	experience.	The	services
are	used	to	produce	an	in-the-box	management	console	but	can	also	be	used	by	third
parties	or	in-house	IT	to	implement	their	ownmanagement	console.	The	goal	is	to	be	able	to
provide	50-70%	of	a	generic	management	GUI	tool	for	free	just	by	building	the	right	type	of
Cmdlets.	Monad	provides	the	following	resources	and	services:

1.	 A	script	execution	environment	which	provides	GUIs	uniform	and	consistent	access	to
local	and	remote	resources.

2.	 Integrated	GUI	and	command	line	environment	so	that	GUI	interactions	are	displayed	in
a	command	line	console.	Users	can	use	this	to	learn	the	automation	layer	and	can	also
directly	execute	command	line	actions	as	well.	This	mechanism	is	also	leveraged	to
provide	macro	record/playback.

3.	 Application-specific	scripting.	The	application	can	expose	its	inner	workings	(e.g.
buttons,	displays,	internal	data	structures	etc)	via	Cmdlets	to	allow	application	specific
scripting,	debugging,	and	supportability.

4.	 Base	UI	controls	associated	with	specific	MMMs.	(E.g.	Navigation	controls,	lifecycle
controls,	diagnostic	controls).

5.	 Rich	set	of	base	error	messages	which	will	be	localized	by	MMC.
6.	 Declarative	UI	framework	to	allow	metadata	driven	custom	management	GUIs.

The	Monad	Manifesto,	Annotated

29The	Monad	Management	Console	(MMC)

Chapter	10	-	Value	Propositions
For	application	developers	who	need	to	expose	their	administrative	functions	as
command	lines	and	GUIs,	Monad	provides	a	highly	productive	development	framework.

Unlike	building	stand-alone	command	lines,	Monad	provides	most	of	the	common
functions	including	a	parser,	a	data	validator/encoder,	error	reporting	mechanisms,
common	functions	like	sorting/filtering/grouping/formatting/outputting	and	a	set	of
management	models	which	provide	common	verb	sets,	error	messages	and
solutions	to	common	problems	and	tools.
Unlike	WMI/WMIC,	Monad	provides	a	simple	programming	model.	Cmdlets	are
merely	attributed	.Net	classes.
Unlike	MMC,	Monad	provides	strong	guidance	on	how	to	perform	management
tasks	and	large	benefits	(reduced	coding/testing)	for	those	that	follow	that
guidance.

For	application	testers	who	want	to	ensure	that	the	administrative	command	lines	and
GUIs	operate	correctly,	Monad	reduces	the	amount	of	code	that	needs	to	be	tested	and
increases	the	productivity	of	the	test	process.

Unlike	building	stand-alone	command	lines,	Monad	provides	a	common
implementation	of	most	common	functions	minimizing	the	amount	of	application
code	to	develop	and	test.
Unlike	traditional	management	GUIs,	Monad	layers	GUIs	on	top	of	Cmdlets	so	the
bulk	of	the	GUI	core	will	already	be	tested	when	the	command	line	is	tested.	Monad
will	also	make	it	easier	to	test	GUIs	by	exposing	the	inner	workings	of	the	GUI
through	a	command	line	shell	and	by	the	ability	to	drive	the	GUI	controls	and	code
paths	through	command	line	scripts.

For	power	users	who	want	to	interact	with	the	system	through	command	line
interfaces,	Monad	provides	a	highly	consistent	set	of	commands	and	utilities	as	well	as
an	environment	that	allows	the	creation	of	custom	admin	tools	(i.e.	not	scenario	bound).

Unlike	cmd.exe,	sh,	ksh,	csh,	etc	and	traditional	commands	and	utilities,	Monad
provides	a	common	parser	for	all	CmdLet	and	utilities	ensuring	syntactic
consistency	and	common	input	error	handling	and	messaging	across	all	Cmdlets
and	utilities.
Unlike	cmd.exe,	sh,	ksh,	csh,	etc	and	traditional	command	and	utilities,	Monad
provides	a	strong	prescriptive	guidance	and	enforcement	of	CmdLet	naming	and
error	handling	and	provides	a	set	of	scenario	automation	base	classes	which	make
it	easy	and	valuable	for	developers	to	follow	those	guidelines.
Unlike	cmd.exe,	sh,	ksh,	csh,	etc	and	traditional	command	and	utilities,	Monad
replaces	pipelines	passing	text	with	pipelines	passing	.Net	objects	which	allows

The	Monad	Manifesto,	Annotated

30Value	Propositions

utilities	to	use	the	.Net	reflection	APIs	to	operate	directly	against	the	objects	without
the	need	to	perform	error-prone	text	parsing	and	object	lookup.

For	Administrators	that	want	to	develop	management	scripts	to	automate	the
management	of	their	systems,	Monad	provides	a	highly	productive	model	for	learning
and	effecting	that	automation.

Unlike	cmd.exe,	the	Monad	shell	is	based	upon	and	extends	the	Bourne	Shell
syntax	and	control	structures	facilitating	the	skill	transfer	of	Unix	Admins.
Unlike	sh,	ksh,	csh,	etc	and	traditional	command/utilities,	Monad	uses	.Net	objects
instead	of	text	as	an	integration	mechanism	allowing	easier	and	more	precise
integration.
Unlike	sh,	ksh,	csh,	etc	and	traditional	command/utilities,	Monad	exposes	a	rich
error	model	leveraging	.Net	objects	to	expose	precise	details	of	what	went	wrong,
where,	when,	and	what	objects	where	processed/unprocessed.
Unlike	traditional	management	GUIs,	Monad	GUIs	allow	Admins	the	ability	to	see
the	inner	workings	of	the	GUI	by	exposing	their	actions	via	a	command	line	console
so	that	the	Admin	can	learn	the	automation	surface	by	using	the	GUI.

For	GUI	users	who	want	to	automate	their	operations,	Monad	facilitates	learning	the
automation	layer	by	exposing	the	shell	equivalents	of	GUI	interactions.

Unlike	traditional	management	GUIs,	Monad	GUIs	are	layered	on	top	of	Cmdlets	so
every	function	available	in	the	GUI	is	also	available	via	the	command	line.	Unlike
traditional	management	GUIs,	Monad	GUIs	allow	Admins	the	ability	to	see	the
inner	workings	of	the	GUI	by	exposing	their	actions	via	a	command	line	console	so
that	the	Admin	can	see	the	command	line	equivalent	of	their	GUI	interactions.

The	Monad	Manifesto,	Annotated

31Value	Propositions

	ReadMe
	About this Book
	What is Monad?
	The Problem
	Traditional Approaches to Administrative Automation
	New Approaches
	The Monad Automation Model (MAM)
	The Monad Shell (MSH)
	The Monad Management Models (MMM)
	The Monad Remote Script (MRS)
	The Monad Management Console (MMC)
	Value Propositions

