


0

1

2

3

4

5

6

7

Table	of	Contents
ReadMe

About	this	Book

A	Brief	Overview

Why	Scripting?	Why	a	Shell?

Why	PowerShell?

The	Business	Story

Where	Can	You	Learn	More?

Why	PowerShell	Remoting?	(While	we're	answering	"Whys")

Why	PowerShell?

2



Ever	wonder	why	PowerShell	is	a	thing,	or	find	yourself	having	to	explain	it	to	someone
else?	Here's	a	concise	guide	that	does	just	that.

Why	PowerShell?

3ReadMe



Why	PowerShell?
By	Warren	Frame	and	Don	Jones

An	incredibly	concise	look	at	why	Windows	PowerShell	is	important,	from	both	a	technical
and	business	perspective.

This	guide	is	released	under	the	Creative	Commons	Attribution-NoDerivs	3.0	Unported
License.	The	authors	encourage	you	to	redistribute	this	file	as	widely	as	possible,	but	ask
that	you	do	not	modify	the	document.

Was	this	book	helpful?	The	author(s)	kindly	ask(s)	that	you	make	a	tax-deductible	(in	the
US;	check	your	laws	if	you	live	elsewhere)	donation	of	any	amount	to	The	DevOps
Collective	to	support	their	ongoing	work.

Check	for	Updates!	Our	ebooks	are	often	updated	with	new	and	corrected	content.	We
make	them	available	in	three	ways:

Our	main,	authoritative	GitHub	organization,	with	a	repo	for	each	book.	Visit
https://github.com/devops-collective-inc/
Our	GitBook	page,	where	you	can	browse	books	online,	or	download	as	PDF,	EPUB,	or
MOBI.	Using	the	online	reader,	you	can	link	to	specific	chapters.	Visit
https://www.gitbook.com/@devopscollective
On	LeanPub,	where	you	can	download	as	PDF,	EPUB,	or	MOBI	(login	required),	and
"purchase"	the	books	to	make	a	donation	to	DevOps	Collective.	You	can	also	choose	to
be	notified	of	updates.	Visit	https://leanpub.com/u/devopscollective

GitBook	and	LeanPub	have	slightly	different	PDF	formatting	output,	so	you	can	choose	the
one	you	prefer.	LeanPub	can	also	notify	you	when	we	push	updates.	Our	main	GitHub	repo
is	authoritative;	repositories	on	other	sites	are	usually	just	mirrors	used	for	the	publishing
process.	GitBook	will	usually	contain	our	latest	version,	including	not-yet-finished	bits;
LeanPub	always	contains	the	most	recent	"public	release"	of	any	book.

Why	PowerShell?

4About	this	Book

https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://github.com/devops-collective-inc/
https://www.gitbook.com/@devopscollective
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://leanpub.com/u/devopscollective


A	Brief	Overview
PowerShell	etnhusiasts	often	find	themselves	explaining	why	someone	with	responsibilities
on	the	Microsoft	side	of	the	IT	shop	should	learn	PowerShell.	We	decided	to	write	this	as	a
reference	going	forward.

We	won’t	be	arguing	for	PowerShell	over	other	Microsoft	languages	such	as	VBScript	or
batch,	or	general	purpose	languages	such	as	Python	or	Perl.	There	is	a	place	for	all	of	these
languages,	but	if	you	work	with	the	Microsoft	and	surrounding	ecosystems,	PowerShell	is	an
important	language	to	learn.

What's	also	important	to	understand	is	that	Microsoft	has	made	an	enormous	commitment	to
PowerShell.	It	isn't	going	away,	and	indeed	the	company	is	building	more	and	more	of	their
management	solutions	on	top	of	it.	To	a	degree,	Microsoft	is	even	backing	off	from	building
management	tooling,	knowing	that	you	can	use	PowerShell	to	build	your	own	tools.	That's
significant.

But	let's	move	on.

Why	PowerShell?

5A	Brief	Overview



Why	Scripting?	Why	a	Shell?
Before	we	dive	into	PowerShell	itself,	let’s	tackle	the	importance	of	scripting	and	automation,
an	integral	facet	of	PowerShell.

You’ve	probably	seen	this	XKCD	comic	or	something	similar	to	justify	scripting.	While	saving
time	is	certainly	a	factor	behind	the	importance	of	scripting	and	automation,	it	is	hardly	the
only	justification.

Here	are	a	few	others	to	consider:

Consistency.	A	scripted	solution	will	run	the	exact	same	script	every	time.	No	risk	of
typos,	forgetting	to	complete	the	task,	or	doing	the	task	incorrectly.	Reduce	human
error.
Audit	trail.	There	are	many	tasks	where	having	an	audit	trail	would	be	helpful,	perhaps
including	what	task	was	performed,	important	results,	errors	that	occurred,	when	the
task	ran,	who	ran	it,	and	so	forth.	Scripts	can	provide	this	trail,	and	in	PowerShell	v5	and
later,	the	shell	itself	features	extensive	logging	capabilities.
Modular	code.	You	might	spend	more	time	on	a	particular	function	than	time	savings
justify,	but	you	can	generally	re-use	or	borrow	ideas	from	the	code	later.
Documentation.	Is	there	documentation	for	the	task?	Is	it	up	to	date?	A	well	written	and
commented	script	can	generally	serve	as	a	helpful	base	level	of	documentation	that
might	not	exist	for	a	manual	task.	In	some	cases,	the	script	can	document	the	process
that	it	automates,	helping	to	preserve	institutional	knowledge.
Education.	Administrators	who	can	automate	tasks	are	almost	always	more	well-
versed	in	the	technology	as	a	result.	That	makes	them	better	planners,	architects,
troubleshooters,	and	operators,	all	of	which	convey	benefit	to	the	organization.
Delegation.	With	a	scripted	solution,	you	can	typically	delegate	more	functions	closer	to
the	teams	best	equipped	to	handle	them.	With	PowerShell	v3	and	later	specifically,
scripts	can	enable	extremely	granular	delegation	of	tasks,	helping	the	overall	IT	team
become	more	efficient	and	responsive.

The	moral	of	the	story	is	that	scripting	and	automation	is	important,	which	is	just	one	factor
behind	the	value	of	learning	PowerShell.

Why	PowerShell?

6Why	Scripting?	Why	a	Shell?

http://xkcd.com/1205/


Why	PowerShell?
Microsoft	describes	PowerShell	as	“a	task-based	command-line	shell	and	scripting
language…	built	on	the	.NET	Framework.”	What	is	so	great	about	PowerShell?	Why	should
you	use	it?

PowerShell	is	both	a	command-line	shell	and
scripting	language
Fight	fires	quickly	using	existing	or	custom	PowerShell	commands	or	scripts	at	the	shell,	no
need	to	compile	code.	Develop	your	code	at	the	command	line	before	creating	a	function	or
script	around	it.	Write	quick	and	dirty	scripts	that	you	will	use	a	single	time	or	a	handful	of
times.	Write	formal,	readable,	production	level	scripts	that	will	maintain	your	services	for
years.

What	is	the	cost	of	this	investment?	Learning	PowerShell.	Pretty	reasonable,	considering
you	will	likely	need	to	do	so	regardless	of	your	current	language	of	choice,	assuming	you
work	with	the	Microsoft	ecosystem.

PowerShell	can	interact	with	a	dizzying	number
of	technologies.
The	.NET	Framework,	the	Registry,	COM,	WMI,	ADSI.	Exchange,	Sharepoint,	Systems
Center,	Hyper-V,	SQL.	VMware	vCenter,	Cisco	UCS,	Citrix	XenApp	and	XenDesktop.	REST
APIs,	XML,	CSV,	JSON,	websites,	Excel	and	other	Office	applications.	C#	and	other
languages,	DLLs	and	other	binaries,	including	Linux	or	Unix	tools.	A	language	that	can	work
with	and	integrate	these	various	technologies	can	be	incredibly	valuable.

Windows	is	not	text	based.	Sooner	or	later	you	will	need	to	do	something	that	you	can’t	do
with	-nix	tools	and	other	text	based	languages.	Many	of	the	technologies	that	PowerShell
can	interact	with	simply	do	not	have	text	based	interfaces,	and	may	not	even	be	directly
accessible	from	more	formal	languages	like	Perl	or	Python.

The	moral	here	is	that	PowerShell	is	the	best	"glue"	Microsoft	has	ever	provided	us	for	tying
together	disparate	systems.	It's	better	than	previous	Windows-based	shells	because	it
understands,	and	works	with,	the	API-based	nature	of	Windows	itself,	which	is	vastly
different	from	what	previous	text-based	shells	did.

Why	PowerShell?

7Why	PowerShell?



PowerShell	is	object-based.
This	gives	us	incredible	flexibility.	Filter,	sort,	measure,	group,	compare	or	take	other	actions
on	objects	as	they	pass	through	the	pipeline.	Work	with	properties	and	methods	rather	than
raw	text.

If	you	have	spent	time	deciphering	and	programmatically	working	with	text	based	output,	you
know	how	frustrating	it	can	be.	What	delimiter	do	I	split	on?	Is	there	even	a	delimiter?	What
if	a	particular	result	has	a	blank	entry	for	a	column?	Do	I	need	to	count	characters	in	each
column?	Will	this	count	vary	depending	on	the	output?	With	objects,	this	is	all	done	for	you,
and	makes	it	quite	simple	to	tie	together	commands	and	data	across	various	technologies.

PowerShell	isn’t	going	away.
Microsoft	is	putting	its	full	weight	behind	PowerShell.

PowerShell	support	is	a	requirement	in	the	Microsoft	Common	Engineering	Criteria,	and	a
Server	product	cannot	be	shipped	without	a	PowerShell	interface.	That	means	very	few
Microsoft	server	products	can't	be	managed	by	PowerShell	-	and	the	few	that	can't,	will	be
able	to	soon.

Vendors	other	than	Microsoft	have	strong	support	for	PowerShell.	This	includes	IBM,	Cisco,
Citrix,	VMware,	NetApp,	Dell,	and	dozens	more.

In	many	cases	Microsoft	uses	PowerShell	to	build	the	GUI	management	consoles	for	its
products.	Some	tasks	can’t	be	performed	in	the	GUI	and	can	only	be	completed	in
PowerShell.	This	is	a	big	deal:	In	an	increasing	number	of	situations,	you	can't	manage	the
product	fully	unless	you	use	PowerShell.	That	applies	to	cloud-based	offerings	like	Azure
and	Office	365,	too.

Consolidate	and	multiply	your	learning
Your	reward	for	learning	PowerShell	is	the	improved	ability	to	control	and	automate	the
many	technologies	it	integrates	with.	You	can	use	the	same	set	of	commands	to	filter,
export,	redirect,	modify,	extend,	and	perform	actions	against	output	for	all	of	these
technologies.	You	can	pick	up	PowerShell	skills	and	take	them	in	any	direction	you	need	-
Hyper-V,	vCenter,	SQL,	AD,	XenApp,	and	more.

Your	reward	for	learning	specific	tools	or	executables	such	as	net.exe	or	schtasks.exe,	is	the
ability	to	work	with	those	specific	tools.	With	PowerShell,	your	learning	investment	blossoms
into	an	enormous	ecosystem	of	capability.

Why	PowerShell?

8Why	PowerShell?



In	Windows,	PowerShell's	really	the	only
option
VBScript	is	deprecated,	and	you're	not	going	to	see	further	development.	VBScript	was
already	anemic	in	terms	of	the	things	it	could	"touch,"	making	it	a	poor	"glue"	for	connecting
systems	and	processes.

And	nothing	else	even	came	close	to	VBScript.	Python,	Perl,	you	name	it	-	they're	great	on
Linux,	a	predominantly	text-based	OS,	but	they	were	nigh-useless	on	Windows,	since	they
couldn't	access	the	many	and	varied	APIs	Windows	uses	for	management.

PowerShell	consolidates	all	of	those	APIs	into	a	single,	largely-consistent	interface	that's
focused	on	systems	operations	and	administration.

Why	PowerShell?

9Why	PowerShell?



The	Business	Story
If	you've	ignored	PowerShell	up	until	now,	or	were	skeptical	about	it,	let's	look	at	what
Microsoft	has	done.

In	version	1,	PowerShell	emerged	as	a	the	first	management	interface	specifically	designed
for	administrative	automation.

In	version	2,	PowerShell	gained	native	remote	management	capabilities,	enabling	remote
management	of	any	server	or	client	running	PowerShell.	PowerShell's	"reach"	extended	to
hundreds	of	management	APIs,	enabling	real-world	management.	The	product	also	matured
a	deceptively	simple,	powerful	scripting	language	that	can	be	used	to	build	professional-
grade	units	of	automation.

In	version	3,	PowerShell	learned	to	run	long-running	tasks	in	a	disconnected,	stateless
fashion	-	called	workflows.	The	product's	reach	extended	even	further,	covering	all	major
Microsoft	server	platforms,	and	pushing	into	Microsoft's	cloud	offerings.	By	this	version,
PowerShell	was	a	very	real	thing,	so	much	so	that	many	Microsoft	native	GUIs	began	to	use
PowerShell	"under	the	hood."

In	version	4,	PowerShell	was	extended	with	even	more	"reach,"	and	gained	a	new
technology:	Desired	State	Configuration.	DSC	lets	administrators	describe,	in	more-or-less
plain	text,	how	a	computer	should	be	configured.	Leveraging	the	existing	investment	in
PowerShell,	DSC	then	puts	the	machine	into	that	state,	and	keeps	it	there.

In	version	5,	PowerShell	matured	DSC	and	extended	its	"tool	making"	capabilities	into
professional	developer	space.	With	support	in	Visual	Studio,	PowerShell	started	to	span	a
much	broader	spectrum	of	user,	from	entry-level	administrators	to	advanced	developers.

The	point	is	that	Microsoft	has	clearly	been	building	PowerShell	since	its	v1	release	in	2006.
They've	done	so	in	a	way	that	they've	never	done	before	in	languages	like	VBScript,	and
they've	done	so	while	maintaining	consistency	and	efficiency.

What's	more,	PowerShell	has	inspired	a	broad	ecosystem	of	supporting	vendors,	and	an
enthusiastic	global	community.	Administrators	are,	more	than	ever,	able	to	get	assistance,
answers,	and	even	ready-made	solutions	from	those	vendors	and	that	community.

Why	PowerShell?

10The	Business	Story



Where	can	you	learn	more?
There	is	a	wealth	of	information	on	PowerShell.

Start	at	PowerShell.org,	a	community-owned	and	-operated	web	site	that	hosts	a
friendly	Q&A	forum.	The	organization	also	offers	numerous	free	ebooks,	runs	the	annual
PowerShell	Summit	event	in	North	America	and	Europe,	hosts	a	DSC	GitHub
repository,	runs	an	annual	Scripting	Games	contest,	and	much	more.
Anyone	with	development	or	scripting	experience	should	pick	up	PowerShell	in	Action
v2.	It’s	written	by	the	co-designer	and	principle	author	of	PowerShell,	Bruce	Payette,
and	is	the	standard	reference.	It	provides	the	best	depth	you	will	get	short	of	verbose
articles	on	the	web,	gives	insight	into	some	of	the	design	decisions	behind	the
language,	and	is	perfectly	applicable	today	despite	being	written	for	PowerShell	v2.
Windows	PowerShell	for	Developers	is	more	narrowly	focused	but	a	good	read	for	the
experienced.
Those	without	scripting	or	development	experience	might	want	to	start	with	lighter
reading,	such	as	Learn	Windows	PowerShell	in	a	Month	of	Lunches.
Want	to	learn	on	the	fly?	PowerShell	includes	everything	you	need	to	learn	directly	from
the	shell.	Get-Command,	Get-Help,	Get-Member,	and	Select-Object	will	get	you
exploring	and	learning	PowerShell.
Prefer	videos?	Product	inventor	Jeffrey	Snover	and	Jason	Helmick	hosted	two	free
PowerShell	sessions	that	have	proven	quite	popular:	Getting	Started	with	PowerShell
3.0	and	Advanced	Tools	and	Scripting	with	PowerShell	3.0.	Or,	check	out	the
PowerShell.org	YouTube	channel,	featuring	technical	videos	and	session	records	from
every	PowerShell	Summit	event.

Why	PowerShell?

11Where	Can	You	Learn	More?

http://powershell.org
http://powershell.org/wp/ebooks
http://powershellsummit.org
http://www.manning.com/payette2/
http://manning.com/jones3/
http://channel9.msdn.com/Series/GetStartedPowerShell3
http://channel9.msdn.com/Series/advpowershell3
http://youtube.com/powershellorg


Why	PowerShell	Remoting?	(While	We're
Answering	"Whys")
Another	big	question	that	comes	along	is,	"why	should	we	enable	PowerShell	Remoting?"

First,	understand	a	couple	of	things	-	which	are	going	to	seem	a	bit	rude.	Sorry.

PowerShell	Remoting	has	been	around	since	2008.	If	you're	seriously	just	asking
yourself	this	now,	then	you're	doing	a	poor	job	of	managing	your	IT	environment.	Also
released	since	2008	were	smart	watches,	Microsoft	(formerly	Windows)	Azure,	the
Tesla	Roadster,	Disney's	"Frozen,"	affordable	LED	light	bulbs,	and	the	iPhone	3G,	3GS,
4,	4S,	5,	5S,	and	6	models.	Just	in	case	you	missed	those	as	well.
Information	technology	is	an	industry	of	change.	The	perfectly	reasonable	decisions	you
made	in	2003	are	going	to	need	to	be	periodically	revisited,	due	to	aforementioned
change.

With	that	out	of	the	way,	let's	briefly	talk	about...

What	is	PowerShell	Remoting?
Remoting	is	simply	a	way	for	management	tools	on	one	computer	to	talk	to	services	on
another	computer,	so	that	you	can	remotely	manage	those	services.

Remoting	is	based	on	HTTP,	and	uses	a	protocol	called	WS-Management	(WS-MAN).	It
requires	servers	to	have	a	single	open	port,	and	routes	all	incoming	management	traffic
through	that	one	port.	WS-MAN	traffic	can	be	logged,	can	be	proxied	through	security
servers	(provided	by	third	parties),	and	can	be	completely	encrypted	by	means	of	SSL.

Like	all	HTTP	traffic,	Remoting	is	essentially	transmitting	text	back	and	forth.	Remoting
simply	specifies	a	way	for	that	text	to	be	laid	out	(predominantly	in	an	XML	variant)	so	that
tools	and	services	can	understand	each	other.

Remoting	does	not	in	any	way	affect	the	security	of	your	network	under	default	conditions.	It
does	not,	by	default,	transmit	usernames	or	passwords	-	encrypted	or	otherwise.	In	a	non-
domain	environment,	you	can	create	an	environment	where	passwords	would	be
transmitted,	but	it	really	wants	that	to	be	encrypted	by	SSL,	so	you'd	be	using	HTTPS.

Remoting	doesn't	in	any	way	give	anyone	special	privileges.	The	technology	literally	can't	let
someone	do	something	they	don't	have	permission	to	do,	unless	you've	gone	through	a
rather	complex	setup	for	something	called	delegated	administration.	In	that	case,	you	can

Why	PowerShell?

12Why	PowerShell	Remoting?	(While	we're	answering	"Whys")



enable	specific	users	to	perform	specific	tasks	that	they	wouldn't	normally	be	able	to	-	but
only	through	the	specific	channel	and	interface	you've	set	up.

Comparing	Remoting	to	what	came	before
Before	Remoting,	most	Windows	remote	management	was	conducted	over	Remote
Procedure	Calls,	or	RPCs.	These	usually	employed	port-hopping,	making	them	incredibly
difficult	to	manage	through	a	firewall.	Contrast	that	with	the	one	port	you	have	to	deal	with	in
Remoting.

A	lot	of	organizations	today	simply	install	management	tools	on	servers,	and	then	use
Remote	Desktop	to	"remotely	manage."	That's	an	incredibly	poor	idea,	and	is	a	major
reason	why	Windows	Server	take	so	many	patches,	so	many	reboots,	and	other	maladies.
The	code	needed	to	support	a	full	GUI,	and	therefore	RDP,	is	massive	-	and	that	means
patches	are	inevitable.	Running	management	tools	on	the	server,	usually	under
administrator	credentials,	is	opening	the	door	to	an	attack.

In	short,	most	organizations	seem	to	be	worred	about	the	security	"implications"	of
PowerShell	Remoting.	The	implications	are	significant	-	Remoting	is	much	more	secure
than	what	you've	been	doing.	It's	also	more	efficient,	imposes	less	overhead	on	servers,	and
lets	servers	run	with	a	leaner	operating	system	that	will	require	fewer	patches,	fewer
reboots,	and	fewer	service	packs.	Those	servers	will	also	boot	faster,	run	fewer	processes,
run	fewer	services,	and	consume	less	storage	space	for	the	OS.	Those	servers	will	require
less	memory	overhead	for	the	OS,	meaning	you	can	pack	more	of	'em	into	a	virtualization
host.	Sounds	horrible,	right?

But	here's	the	best	reason
Quite	simply,	the	main	reason	to	enable	Remoting	is	that	you	haven't	got	any	choice.
Microsoft	has	moved	firmly	in	this	direction,	and	enables	Remoting	by	default	on	Windows
Server	2012	and	later.	The	company	disables	Remote	Desktop	by	default,	which	should	tell
you	something.

Further,	in	Nano	Server,	logging	onto	the	console	isn't	even	an	option,	whether	you	use
Remote	Desktop	or	not.	There	is	no	local	login.	Remoting	is	literally	your	only	option	for
managing	the	server.	That's	going	to	be	the	case	going	forward.

Running	a	Windows	environment	without	enabling	Remoting	-	at	least	on	servers	-	is	like
driving	a	car	without	wanting	to	depress	the	accelerator.	It	isn't	much	fun,	and	you	aren't
going	to	get	very	far.

Why	PowerShell?

13Why	PowerShell	Remoting?	(While	we're	answering	"Whys")


	ReadMe
	About this Book
	A Brief Overview
	Why Scripting? Why a Shell?
	Why PowerShell?
	The Business Story
	Where Can You Learn More?
	Why PowerShell Remoting? (While we're answering "Whys")

