

Windows PowerShell™
3.0 Step by Step

Ed Wilson

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2013 by Ed Wilson
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-735-66339-8

1 2 3 4 5 6 7 8 9 M 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the author, O’Reilly Media, Inc., Microsoft Corporation, nor
its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

Acquisitions and Developmental Editor: Michael Bolinger

Production Editor: Kristen Borg

Editorial Production: Zyg Group, LLC

Technical Reviewer: Thomas Lee

Copyeditor: Zyg Group, LLC

Indexer: Zyg Group, LLC

Cover Design: Twist Creative • Seattle

Cover Composition: Zyg Group, LLC

Illustrators: Rebecca Demarest and Robert Romano

To Teresa, who makes each day seem fresh with opportunity
and new with excitement.

Contents at a Glance

Foreword xix

Introduction xxi

ChaPtEr 1 Overview of Windows PowerShell 3.0 1

ChaPtEr 2 Using Windows PowerShell Cmdlets 23

ChaPtEr 3 Understanding and Using PowerShell Providers 65

ChaPtEr 4 Using PowerShell remoting and Jobs 107

ChaPtEr 5 Using PowerShell Scripts 131

ChaPtEr 6 Working with Functions 171

ChaPtEr 7 Creating advanced Functions and Modules 209

ChaPtEr 8 Using the Windows PowerShell ISE 251

ChaPtEr 9 Working with Windows PowerShell Profiles 267

ChaPtEr 10 Using WMI 283

ChaPtEr 11 Querying WMI 307

ChaPtEr 12 remoting WMI 337

ChaPtEr 13 Calling WMI Methods on WMI Classes 355

ChaPtEr 14 Using the CIM Cmdlets 367

ChaPtEr 15 Working with active Directory 383

ChaPtEr 16 Working with the aD DS Module 419

ChaPtEr 17 Deploying active Directory with Windows Server 2012 447

ChaPtEr 18 Debugging Scripts 461

ChaPtEr 19 handling Errors 501

ChaPtEr 20 Managing Exchange Server 539

aPPEnDIx a Windows PowerShell Core Cmdlets 571

aPPEnDIx B Windows PowerShell Module Coverage 579

aPPEnDIx C Windows PowerShell Cmdlet naming 583

aPPEnDIx D Windows PowerShell FaQ 587

aPPEnDIx E Useful WMI Classes 597

aPPEnDIx F Basic troubleshooting tips 621

aPPEnDIx G General PowerShell Scripting Guidelines 625

Index 633

 vii

Contents

Foreword . xix

Introduction . xxi

Chapter 1 Overview of Windows PowerShell 3.0 1
Understanding Windows PowerShell . 1

Using cmdlets . 3

Installing Windows PowerShell . 3

Deploying Windows PowerShell to down-level
operating systems . 4

Using command-line utilities . 5

Security issues with Windows PowerShell . 6

Controlling execution of PowerShell cmdlets . 7

Confirming actions . 8

Suspending confirmation of cmdlets . 9

Working with Windows PowerShell .10

Accessing Windows PowerShell .10

Configuring the Windows PowerShell console11

Supplying options for cmdlets .12

Working with the help options .13

Exploring commands: step-by-step exercises .19

Chapter 1 quick reference .22

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

Chapter 2 Using Windows PowerShell Cmdlets 23
Understanding the basics of cmdlets .23

Using the Get-ChildItem cmdlet .24

Obtaining a directory listing .24

Formatting a directory listing using the Format-List cmdlet26

Using the Format-Wide cmdlet .27

Formatting a directory listing using Format-Table 29

Formatting output with Out-GridView . 31

Leveraging the power of Get-Command .36

Searching for cmdlets using wildcard characters 36

Using the Get-Member cmdlet .44

Using the Get-Member cmdlet to examine properties
and methods .44

Using the New-Object cmdlet .50

Creating and Using the wshShell Object .50

Using the Show-Command cmdlet .52

Windows PowerShell cmdlet naming helps you learn54

Windows PowerShell verb grouping .54

Windows PowerShell verb distribution .55

Creating a Windows PowerShell profile .57

Finding all aliases for a particular object .59

Working with cmdlets: step-by-step exercises .59

Chapter 2 quick reference .63

Chapter 3 Understanding and Using PowerShell Providers 65
Understanding PowerShell providers .65

Understanding the alias provider .66

Understanding the certificate provider .68

Understanding the environment provider . 76

Understanding the filesystem provider .80

Understanding the function provider .85

 Contents ix

Using the registry provider to manage the Windows registry87

The two registry drives .87

Understanding the variable provider .97

Exploring PowerShell providers: step-by-step exercises101

Chapter 3 quick reference .106

Chapter 4 Using PowerShell Remoting and Jobs 107
Understanding Windows PowerShell remoting .107

Classic remoting .107

WinRM .112

Using Windows PowerShell jobs .119

Using Windows PowerShell remoting: step-by-step exercises127

Chapter 4 quick reference .130

Chapter 5 Using PowerShell Scripts 131
Why write Windows PowerShell scripts? .131

Scripting fundamentals .133

Running Windows PowerShell scripts .133

Enabling Windows PowerShell scripting support134

Transitioning from command line to script .136

Running Windows PowerShell scripts .138

Understanding variables and constants .141

Use of constants .146

Using the While statement .147

Constructing the While statement in PowerShell148

A practical example of using the While statement.150

Using special features of Windows PowerShell.150

Using the Do...While statement .151

Using the range operator .152

Operating over an array .152

Casting to ASCII values .152

x Contents

Using the Do...Until statement .153

Comparing the PowerShell Do...Until statement with VBScript . . .154

Using the Windows PowerShell Do statement154

The For statement .156

Using the For statement .156

Using the Foreach statement .158

Exiting the Foreach statement early .159

The If statement .161

Using assignment and comparison operators 163

Evaluating multiple conditions .164

The Switch statement .164

Using the Switch statement .165

Controlling matching behavior .167

Creating multiple folders: step-by-step exercises .168

Chapter 5 quick reference .170

Chapter 6 Working with Functions 171
Understanding functions .171

Using functions to provide ease of code reuse .178

Including functions in the Windows PowerShell environment180

Using dot-sourcing .180

Using dot-sourced functions .182

Adding help for functions .184

Using a here-string object for help .184

Using two input parameters .186

Using a type constraint in a function .190

Using more than two input parameters .192

Use of functions to encapsulate business logic .194

Use of functions to provide ease of modification .196

Understanding filters .201

Creating a function: step-by-step exercises .205

Chapter 6 quick reference .208

 Contents xi

Chapter 7 Creating Advanced Functions and Modules 209
The [cmdletbinding] attribute .209

Easy verbose messages .210

Automatic parameter checks .211

Adding support for the -whatif parameter .214

Adding support for the -confirm parameter215

Specifying the default parameter set .216

The parameter attribute .217

The mandatory parameter property .217

The position parameter property .218

The ParameterSetName parameter property219

The ValueFromPipeline property .220

The HelpMessage property .221

Understanding modules .222

Locating and loading modules .222

Listing available modules .223

Loading modules .225

Installing modules .227

Creating a per-user Modules folder .227

Working with the $modulePath variable .230

Creating a module drive .232

Checking for module dependencies .234

Using a module from a share .237

Creating a module .238

Creating an advanced function: step-by-step exercises 245

Chapter 7 quick reference .249

Chapter 8 Using the Windows PowerShell ISE 251
Running the Windows PowerShell ISE .251

Navigating the Windows PowerShell ISE .252

Working with the script pane .254

Tab expansion and IntelliSense .256

xii Contents

Working with Windows PowerShell ISE snippets .257

Using Windows PowerShell ISE snippets to create code257

Creating new Windows PowerShell ISE snippets259

Removing user-defined Windows PowerShell ISE snippets261

Using the Commands add-on: step-by-step exercises262

Chapter 8 quick reference .265

Chapter 9 Working with Windows PowerShell Profiles 267
Six Different PowerShell profiles .267

Understanding the six different Windows PowerShell profiles . . .268

Examining the $profile variable .268

Determining whether a specific profile exists270

Creating a new profile .270

Design considerations for profiles .271

Using one or more profiles .273

Using the All Users, All Hosts profile .275

Using your own file .276

Grouping similar functionality into a module .277

Where to store the profile module .278

Creating a profile: step-by-step exercises .278

Chapter 9 quick reference .282

Chapter 10 Using WMI 283
Understanding the WMI model .284

Working with objects and namespaces .284

Listing WMI providers .289

Working with WMI classes .289

Querying WMI .293

Obtaining service information: step-by-step exercises298

Chapter 10 quick reference .305

 Contents xiii

Chapter 11 Querying WMI 307
Alternate ways to connect to WMI .307

Selective data from all instances .316

Selecting multiple properties .316

Choosing specific instances .319

Utilizing an operator .321

Where is the where? .325

Shortening the syntax .325

Working with software: step-by-step exercises .327

Chapter 11 quick reference .335

Chapter 12 Remoting WMI 337
Using WMI against remote systems .337

Supplying alternate credentials for the remote connection338

Using Windows PowerShell remoting to run WMI.341

Using CIM classes to query WMI classes .343

Working with remote results. .344

Reducing data via Windows PowerShell parameters347

Running WMI jobs .350

Using Windows PowerShell remoting and WMI:
Step-by-step exercises .352

Chapter 12 quick reference .354

Chapter 13 Calling WMI Methods on WMI Classes 355
Using WMI cmdlets to execute instance methods355

Using the terminate method directly .357

Using the Invoke-WmiMethod cmdlet .358

Using the [wmi] type accelerator .360

Using WMI to work with static methods .361

Executing instance methods: step-by-step exercises364

Chapter 13 quick reference .366

xiv Contents

Chapter 14 Using the CIM Cmdlets 367
Using the CIM cmdlets to explore WMI classes .367

Using the -classname parameter .367

Finding WMI class methods .368

Filtering classes by qualifier .369

Retrieving WMI instances .371

Reducing returned properties and instances372

Cleaning up output from the command .373

Working with associations .373

Retrieving WMI instances: step-by-step exercises 379

Chapter 14 quick reference .382

Chapter 15 Working with Active Directory 383
Creating objects in Active Directory .383

Creating an OU .383

ADSI providers .385

LDAP names .387

Creating users .393

What is user account control? .396

Working with users .397

Creating multiple organizational units: step-by-step exercises412

Chapter 15 quick reference .418

Chapter 16 Working with the AD DS Module 419
Understanding the Active Directory module .419

Installing the Active Directory module .419

Getting started with the Active Directory module 421

Using the Active Directory module .421

Finding the FSMO role holders .422

Discovering Active Directory .428

Renaming Active Directory sites .431

Managing users .432

Creating a user .435

Finding and unlocking Active Directory user accounts436

 Contents xv

Finding disabled users .438

Finding unused user accounts .440

Updating Active Directory objects: step-by-step exercises443

Chapter 16 quick reference .445

Chapter 17 Deploying Active Directory with
Windows Server 2012 447

Using the Active Directory module to deploy a new forest447

Adding a new domain controller to an existing domain453

Adding a read-only domain controller .455

Domain controller prerequisites: step-by-step exercises457

Chapter 17 quick reference .460

Chapter 18 Debugging Scripts 461
Understanding debugging in Windows PowerShell461

Understanding three different types of errors461

Using the Set-PSDebug cmdlet .467

Tracing the script .467

Stepping through the script .471

Enabling strict mode .479

Using Set-PSDebug -Strict . 479

Using the Set-StrictMode cmdlet .481

Debugging the script .483

Setting breakpoints .483

Setting a breakpoint on a line number .483

Setting a breakpoint on a variable .485

Setting a breakpoint on a command .489

Responding to breakpoints .490

Listing breakpoints. .492

Enabling and disabling breakpoints .494

Deleting breakpoints .494

Debugging a function: step-by-step exercises .494

Chapter 18 quick reference .499

xvi Contents

Chapter 19 Handling Errors 501
Handling missing parameters .501

Creating a default value for a parameter .502

Making the parameter mandatory .503

Limiting choices .504

Using PromptForChoice to limit selections .504

Using Test-Connection to identify computer connectivity506

Using the -contains operator to examine contents of an array . . .507

Using the -contains operator to test for properties509

Handling missing rights .512

Attempt and fail .512

Checking for rights and exiting gracefully .513

Handling missing WMI providers .513

Incorrect data types .523

Out-of-bounds errors .526

Using a boundary-checking function .526

Placing limits on the parameter .528

Using Try...Catch...Finally . 529

Catching multiple errors .532

Using PromptForChoice to limit selections: Step-by-step exercises534

Chapter 19 quick reference .537

Chapter 20 Managing Exchange Server 539
Exploring the Exchange 2010 cmdlets .539

Working with remote Exchange servers .540

Configuring recipient settings . 544

Creating the user and the mailbox . 544

Reporting user settings .548

Managing storage settings .550

Examining the mailbox database .550

Managing the mailbox database .551

 Contents xvii

Managing Exchange logging .553

Managing auditing .557

Parsing the audit XML file .562

Creating user accounts: step-by-step exercises .565

Chapter 20 quick reference .570

Appendix A Windows PowerShell Core Cmdlets 571

Appendix B Windows PowerShell Module Coverage 579

Appendix C Windows PowerShell Cmdlet Naming 583

Appendix D Windows PowerShell FAQ 587

Appendix E Useful WMI Classes 597

Appendix F Basic Troubleshooting Tips 621

Appendix G General PowerShell Scripting Guidelines 625

Index 633

About the Author 667

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xix

Foreword

I’ve always known that automation was a critical IT Pro skill. Automation dramatically
increases both productivity and quality of IT operations; it is a transformational skill

that improves both the companies and the careers of the individuals that master it.
Improving IT Pro automation was my top priority when I joined Microsoft in 1999 as the
Architect for management products and technologies. That led to inventing Windows
PowerShell and the long hard road to making it a centerpiece of the Microsoft manage-
ment story. Along the way, the industry made some dramatic shifts. These shifts make it
even more critical for IT Pros to become experts of automation.

During the development of PowerShell V1, the team developed a very strong partner-
ship with Exchange. We thought Exchange would drive industry adoption of PowerShell.
You can imagine our surprise (and delight) when we discovered that the most active
PowerShell V1 community was VMWare customers. I reached out to the VMWare team
to find out why it was so successful with their customers. They explained to me that their
customers were IT Pros that were barely keeping up with the servers they had. When
they adopted virtualization, they suddenly had 5-10 times the number of servers so it was
either “automate or drown.” Their hair was on fire and PowerShell was a bucket of water.

 The move to the cloud is another shift that increases the importance of automa-
tion. The entire DevOps movement is all about making change safe through changes
in culture and automation. When you run cloud scale applications, you can’t afford to
have it all depend upon a smart guy with a cup of coffee and a mouse–you need to au-
tomate operations with scripts and workflows. When you read the failure reports of the
biggest cloud outages, you see that the root cause is often manual configuration. When
you have automation and an error occurs, you review the scripts and modify them to
it doesn’t happen again. With automation, Nietzsche was right: that which does not kill
you strengthens you. It is no surprise that Azure has supported PowerShell for some
time, but I was delighted to see that Amazon just released 587 cmdlets to manage AWS.

 Learning automation with PowerShell is a critical IT Pro skill and there are few
people better qualified to help you do that than Ed Wilson. Ed Wilson is the husband of
The Scripting Wife and the man behind the wildly popular blog The Scripting Guy. It is
no exaggeration to say that Ed and his wife Teresa are two of the most active people in
the PowerShell community. Ed is known for his practical “how to” approach to Pow-
erShell. Having worked with so many customers and people learning PowerShell, Ed
knows what questions you are going to have even before you have them and has taken
the time to lay it all out for you in his new book: Windows PowerShell 3.0 Step by Step.

—Jeffrey Snover, Distinguished Engineer and Lead Architect, Microsoft Windows

 xxi

Introduction

Windows PowerShell 3.0 is an essential management and automation tool that
brings the simplicity of the command line to next generation operating systems.

Included in Windows 8 and Windows Server 2012, and portable to Windows 7 and
Windows Server 2008 R2, Windows PowerShell 3.0 offers unprecedented power and
flexibility to everyone from power users to enterprise network administrators and
architects.

Who should read this book

This book exists to help IT Pros come up to speed quickly on the exciting Windows
PowerShell 3.0 technology. Windows PowerShell 3.0 Step by Step is specifically aimed at
several audiences, including:

■■ Windows networking consultants Anyone desiring to standardize and to
automate the installation and configuration of dot-net networking components.

■■ Windows network administrators Anyone desiring to automate the day-to-
day management of Windows dot-net networks.

■■ Microsoft Certified Solutions Experts (MCSEs) and Microsoft Certified
Trainers (MCTs) Windows PowerShell is a key component of many Microsoft
courses and certification exams.

■■ General technical staff Anyone desiring to collect information, configure set-
tings on Windows machines.

■■ Power users Anyone wishing to obtain maximum power and configurability of
their Windows machines either at home or in an unmanaged desktop workplace
environment.

assumptions
This book expects that you are familiar with the Windows operating system, and
therefore basic networking terms are not explained in detail. The book does not expect
you to have any background in programming, development, or scripting. All elements
related to these topics, as they arise, are fully explained.

xxii Windows PowerShell 3.0 Step by Step

Who should not read this book

Not every book is aimed at every possible audience. This is not a Windows PowerShell
3.0 reference book, and therefore extremely deep, esoteric topics are not covered.
While some advanced topics are covered, in general the discussion starts with beginner
topics and proceeds through an intermediate depth. If you have never seen a computer,
nor have any idea what a keyboard or a mouse are, then this book definitely is not
for you.

Organization of this book

This book is divided into three sections, each of which focuses on a different aspect or
technology within the Windows PowerShell world. The first section provides a quick
overview of Windows PowerShell and its fundamental role in Windows Management.
It then delves into the details of Windows PowerShell remoting. The second section
covers the basics of Windows PowerShell scripting. The last portion of the book covers
different management technology and discusses specific applications such as Active
Directory and Exchange.

Finding your best starting point in this book
The different sections of Windows PowerShell 3.0 Step by Step cover a wide range of
technologies associated with the data library. Depending on your needs and your exist-
ing understanding of Microsoft data tools, you may wish to focus on specific areas of
the book. Use the following table to determine how best to proceed through the book.

If you are Follow these steps

New to Windows PowerShell Focus on Chapters 1–3 and 5–9, or read through the
entire book in order.

An IT pro who knows the basics of Windows
PowerShell and only needs to learn how to
manage network resources

Briefly skim Chapters 1–3 if you need a refresher on
the core concepts.
Read up on the new technologies in Chapters 4 and
10–14.

Interested in Active Directory and Exchange Read Chapters 15–17 and 20.

Interested in Windows PowerShell Scripting Read Chapters 5–8, 18, and 19.

Most of the book’s chapters include hands-on samples that let you try out the con-
cepts just learned.

 Introduction xxiii

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow.

■■ Each chapter concludes with two exercises.

■■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2,
and so on) listing each action you must take to complete the exercise.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (e.g. File | Close), means that
you should select the first menu or menu item, then the next, and so on.

System requirements

You will need the following hardware and software to complete the practice exercises in
this book:

■■ One of the following: Windows 7, Windows Server 2008 with Service Pack 2,
Windows Server 2008 R2, Windows 8 or Windows Server 2012.

■■ Computer that has a 1.6GHz or faster processor (2GHz recommended)

■■ 1 GB (32 Bit) or 2 GB (64 Bit) RAM (Add 512 MB if running in a virtual machine
or SQL Server Express Editions, more for advanced SQL Server editions)

■■ 3.5 GB of available hard disk space

■■ 5400 RPM hard disk drive

■■ DirectX 9 capable video card running at 1024 ✕ 768 or higher-resolution display

xxiv Windows PowerShell 3.0 Step by Step

■■ DVD-ROM drive (if installing Visual Studio from DVD)

■■ Internet connection to download software or chapter examples

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2010 and SQL Server 2008 products.

Code samples

Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All sample projects, in both their pre-exercise and
post-exercise formats, can be downloaded from the following page:

http://aka.ms/PowerShellSBS_book

Follow the instructions to download the scripts.zip file.

note In addition to the code samples, your system should have Windows
PowerShell 3.0 installed.

Installing the code samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book.

1. After you download the scripts.zip file, make sure you unblock it by right-
clicking on the scripts.zip file, and then clicking on the Unblock button on the
property sheet.

2. Unzip the scripts.zip file that you downloaded from the book’s website (name a
specific directory along with directions to create it, if necessary).

Acknowledgments

I’d like to thank the following people: my agent Claudette Moore, because without her
this book would never have come to pass. My editors Devon Musgrave and Michael
Bolinger for turning the book into something resembling English, and my technical

 Introduction xxv

reviewer Thomas Lee whose attention to detail definitely ensured a much better book.
Lastly I want to acknowledge my wife Teresa (aka the Scripting Wife) who read every
page and made numerous suggestions that will be of great benefit to beginning
scripters.

Errata and book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=275530

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

 1

C H A P T E R 1

Overview of
Windows PowerShell 3.0

after completing this chapter, you will be able to:

■■ Understand basic use and capabilities of Windows PowerShell.

■■ Install Windows PowerShell.

■■ Use basic command-line utilities inside Windows PowerShell.

■■ Use Windows PowerShell help.

■■ Run basic Windows PowerShell cmdlets.

■■ Get help on basic Windows PowerShell cmdlets.

■■ Configure Windows PowerShell to run scripts.

The release of Microsoft Windows PowerShell 3.0 marks a significant advance for the Windows
network administrator. Combining the power of a full-fledged scripting language with access to
command-line utilities, Windows Management Instrumentation (WMI), and even VBScript, Windows
PowerShell provides the power and ease of use that have been missing from the Windows plat-
form since the beginning of time. As part of the Microsoft Common Engineering Criteria, Windows
PowerShell is quickly becoming the management solution for the Windows platform. IT professionals
using the Windows Server 2012 core installation must come to grips with Windows PowerShell sooner
rather than later.

Understanding Windows PowerShell

Perhaps the biggest obstacle for a Windows network administrator in migrating to Windows
PowerShell 3.0 is understanding what PowerShell actually is. In some respects, it is a replacement
for the venerable CMD (command) shell. In fact, on Windows Server 2012 running in core mode, it is
possible to replace the CMD shell with Windows PowerShell so that when the server boots up, it uses
Windows PowerShell as the interface. As shown here, after Windows PowerShell launches, you can use
cd to change the working directory, and then use dir to produce a directory listing in exactly the same
way you would perform these tasks from the CMD shell.

2 Windows PowerShell 3 Step by Step

Windows PowerShell
Copyright (C) 2012 Microsoft Corporation. All rights reserved.

PS C:\Users\administrator> cd c:\
PS C:\> dir

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 3/22/2012 4:03 AM PerfLogs
d-r-- 3/22/2012 4:24 AM Program Files
d-r-- 3/23/2012 6:02 PM Users
d---- 3/23/2012 4:59 PM Windows
-a--- 3/22/2012 4:33 AM 24 autoexec.bat
-a--- 3/22/2012 4:33 AM 10 config.sys

PS C:\>

You can also combine traditional CMD interpreter commands with some of the newer utilities, such
as fsutil. This is shown here:

PS C:\> md c:\test

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 4/22/2012 5:01 PM test

PS C:\> fsutil file createnew C:\test\mynewfile.txt 1000
File C:\test\mynewfile.txt is created
PS C:\> cd c:\test
PS C:\test> dir

 Directory: C:\test

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/22/2012 5:01 PM 1000 mynewfile.txt

PS C:\test>

 CHAPTER 1 Overview of Windows PowerShell 3.0 3

The preceding two examples show Windows PowerShell being used in an interactive man-
ner. Interactivity is one of the primary features of Windows PowerShell, and you can begin to use
Windows PowerShell interactively by opening a Windows PowerShell prompt and typing commands.
You can enter the commands one at a time, or you can group them together like a batch file. I will
discuss this later because you will need more information to understand it.

Using cmdlets
In addition to using Windows console applications and built-in commands, you can also use the
cmdlets (pronounced commandlets) that are built into Windows PowerShell. Cmdlets can be cre-
ated by anyone. The Windows PowerShell team creates the core cmdlets, but many other teams at
Microsoft were involved in creating the hundreds of cmdlets shipping with Windows 8. They are like
executable programs, but they take advantage of the facilities built into Windows PowerShell, and
therefore are easy to write. They are not scripts, which are uncompiled code, because they are built
using the services of a special .NET Framework namespace. Windows PowerShell 3.0 comes with
about 1,000 cmdlets on Windows 8, and as additional features and roles are added, so are additional
cmdlets. These cmdlets are designed to assist the network administrator or consultant to leverage
the power of Windows PowerShell without having to learn a scripting language. One of the strengths
of Windows PowerShell is that cmdlets use a standard naming convention that follows a verb-noun
pattern, such as Get-Help, Get-EventLog, or Get-Process. The cmdlets using the get verb display
information about the item on the right side of the dash. The cmdlets that use the set verb modify
or set information about the item on the right side of the dash. An example of a cmdlet that uses the
set verb is Set-Service, which can be used to change the start mode of a service. All cmdlets use one
of the standard verbs. To find all of the standard verbs, you can use the Get-Verb cmdlet. In Windows
PowerShell 3.0, there are nearly 100 approved verbs.

Installing Windows PowerShell
Windows PowerShell 3.0 comes with Windows 8 Client and Windows Server 2012. You can down-
load the Windows Management Framework 3.0 package containing updated versions of Windows
Remote Management (WinRM), WMI, and Windows PowerShell 3.0 from the Microsoft Download
center. Because Windows 8 and Windows Server 2012 come with Windows PowerShell 3.0, there is no
Windows Management Framework 3.0 package available for download—it is not needed. In order to
install Windows Management Framework 3.0 on Windows 7, Windows Server 2008 R2, and Windows
Server 2008, they all must be running at least Service Pack (SP) 1 and the Microsoft .NET Framework
4.0. There is no package for Windows Vista, Windows Server 2003, or earlier versions of the operating
system. You can run both Windows PowerShell 3.0 and Windows PowerShell 2.0 on the same system,
but this requires both the .NET Framework 3.5 and 4.0.

To prevent frustration during the installation, it makes sense to use a script that checks for the
operating system, service pack level, and .NET Framework 4.0. A sample script that will check for the
prerequisites is Get-PowerShellRequirements.ps1, which follows.

4 Windows PowerShell 3 Step by Step

Get-PowerShellRequirements.ps1
Param([string[]]$computer = @($env:computername, "LocalHost"))
 foreach ($c in $computer)
 {
 $o = Get-WmiObject win32_operatingsystem -cn $c
 switch ($o.version)
 {
 {$o.version -gt 6.2} {"$c is Windows 8 or greater"; break}
 {$o.version -gt 6.1}
 {
 If($o.ServicePackMajorVersion -gt 0){$sp = $true}
 If(Get-WmiObject Win32_Product -cn $c |
 where { $_.name -match '.NET Framework 4'}) {$net = $true }
 If($sp -AND $net) { "$c meets the requirements for PowerShell 3" ; break}
 ElseIF (!$sp) {"$c needs a service pack"; break}
 ELSEIF (!$net) {"$c needs a .NET Framework upgrade"} ; break}
 {$o.version -lt 6.1} {"$c does not meet standards for PowerShell 3.0"; break}
 Default {"Unable to tell if $c meets the standards for PowerShell 3.0"}
 }

 }

Deploying Windows PowerShell to down-level
operating systems
After Windows PowerShell is downloaded from http://www.microsoft.com/downloads, you can deploy
it to your enterprise by using any of the standard methods. Here are few of the methods that you can
use to accomplish Windows PowerShell deployment:

■■ Create a Microsoft Systems Center Configuration Manager package and advertise it to the
appropriate organizational unit (OU) or collection.

■■ Create a Group Policy Object (GPO) in Active Directory Domain Services (AD DS) and link it to
the appropriate OU.

■■ Approve the update in Software Update Services (SUS) when available.

■■ Add the Windows Management Framework 3.0 packages to a central file share or webpage
for self service.

If you are not deploying to an entire enterprise, perhaps the easiest way to install Windows
PowerShell is to download the package and step through the wizard.

note To use a command-line utility in Windows PowerShell, launch Windows PowerShell
by choosing Start | Run | PowerShell. At the PowerShell prompt, type in the command
to run.

 CHAPTER 1 Overview of Windows PowerShell 3.0 5

Using command-line utilities

As mentioned earlier, command-line utilities can be used directly within Windows PowerShell. The
advantages of using command-line utilities in Windows PowerShell, as opposed to simply run-
ning them in the CMD interpreter, are the Windows PowerShell pipelining and formatting features.
Additionally, if you have batch files or CMD files that already use existing command-line utilities, you
can easily modify them to run within the Windows PowerShell environment. The following procedure
illustrates adding ipconfig commands to a text file.

running ipconfig commands

1. Start Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents folder.

2. Enter the command ipconfig /all. This is shown here:

PS C:\> ipconfig /all

3. Pipe the result of ipconfig /all to a text file. This is illustrated here:

PS C:\> ipconfig /all >ipconfig.txt

4. Open Notepad to view the contents of the text file, as follows:

PS C:\> notepad ipconfig.txt

Typing a single command into Windows PowerShell is useful, but at times you may need more
than one command to provide troubleshooting information or configuration details to assist with
setup issues or performance problems. This is where Windows PowerShell really shines. In the past,
you would have either had to write a batch file or type the commands manually. This is shown in the
TroubleShoot.bat script that follows.

troubleShoot.bat

ipconfig /all >C:\tshoot.txt
route print >>C:\tshoot.txt
hostname >>C:\tshoot.txt
net statistics workstation >>C:\tshoot.txt

Of course, if you typed the commands manually, then you had to wait for each command to com-
plete before entering the subsequent command. In that case, it was always possible to lose your place
in the command sequence, or to have to wait for the result of each command. Windows PowerShell
eliminates this problem. You can now enter multiple commands on a single line, and then leave the
computer or perform other tasks while the computer produces the output. No batch file needs to be
written to achieve this capability.

6 Windows PowerShell 3 Step by Step

tip Use multiple commands on a single Windows PowerShell line. Type each complete
command, and then use a semicolon to separate each command.

The following exercise describes how to run multiple commands. The commands used in the pro-
cedure are in the RunningMultipleCommands.txt file.

running multiple commands

1. Open Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings folder.

2. Enter the ipconfig /all command. Pipe the output to a text file called Tshoot.txt by using the
redirection arrow (>). This is the result:

ipconfig /all >tshoot.txt

3. On the same line, use a semicolon to separate the ipconfig /all command from the route print
command. Append the output from the command to a text file called Tshoot.txt by using the
redirect-and-append arrow (>>). Here is the command so far:

ipconfig /all >tshoot.txt; route print >>tshoot.txt

4. On the same line, use a semicolon to separate the route print command from the hostname
command. Append the output from the command to a text file called Tshoot.txt by using the
redirect-and-append arrow. The command up to this point is shown here:

ipconfig /all >tshoot.txt; route print >>tshoot.txt; hostname >>tshoot
.txt

5. On the same line, use a semicolon to separate the hostname command from the net statistics
workstation command. Append the output from the command to a text file called Tshoot.txt
by using the redirect-and-append arrow. The completed command looks like the following:

ipconfig /all >tshoot.txt; route print >>tshoot.txt; netdiag /q >>tshoot
.txt; net statistics workstation >>tshoot.txt

Security issues with Windows PowerShell

As with any tool as versatile as Windows PowerShell, there are bound to be some security concerns.
Security, however, was one of the design goals in the development of Windows PowerShell.

When you launch Windows PowerShell, it opens in your Documents folder; this ensures you are in
a directory where you will have permission to perform certain actions and activities. This is far safer
than opening at the root of the drive, or even opening in system root.

 CHAPTER 1 Overview of Windows PowerShell 3.0 7

To change to a directory in the Windows PowerShell console, you cannot automatically go up to
the next level; you must explicitly name the destination of the change-directory operation (although
you can use the cd .. command to move up one level).

The running of scripts is disabled by default and can be easily managed through group policy. It
can also be managed on a per-user or per-session basis.

Controlling execution of PowerShell cmdlets
Have you ever opened a CMD interpreter prompt, typed in a command, and pressed Enter so that
you could see what it does? What if that command happened to be Format C:\? Are you sure you
want to format your C drive? This section will cover some arguments that can be supplied to cmdlets
that allow you to control the way they execute. Although not all cmdlets support these arguments,
most of those included with Windows PowerShell do. The three arguments you can use to control
execution are -whatif, -confirm, and suspend. Suspend is not really an argument that is supplied to
a cmdlet, but rather is an action you can take at a confirmation prompt, and is therefore another
method of controlling execution.

note To use -whatif at a Windows PowerShell prompt, enter the cmdlet. Type the
-whatif parameter after the cmdlet. This only works for cmdlets that change system state.
Therefore, there is no -whatif parameter for cmdlets like Get-Process that only display
information.

Windows PowerShell cmdlets that change system state (such as Set-Service) support a prototype
mode that you can enter by using the -whatif parameter. The developer decides to implement -whatif
when developing the cmdlet; however, the Windows PowerShell team recommends that developers
implement -whatif. The use of the -whatif argument is shown in the following procedure. The com-
mands used in the procedure are in the UsingWhatif.txt file.

Using -whatif to prototype a command

1. Open Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings folder.

2. Start an instance of Notepad.exe. Do this by typing notepad and pressing the Enter key. This
is shown here:

notepad

3. Identify the Notepad process you just started by using the Get-Process cmdlet. Type enough
of the process name to identify it, and then use a wildcard asterisk (*) to avoid typing the
entire name of the process, as follows:

Get-Process note*

8 Windows PowerShell 3 Step by Step

4. Examine the output from the Get-Process cmdlet and identify the process ID. The output
on my machine is shown here. Please note that in all likelihood, the process ID used by your
instance of Notepad.exe will be different from the one on my machine.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 39 2 944 400 29 0.05 1056 notepad

5. Use -whatif to see what would happen if you used Stop-Process to stop the process ID you
obtained in step 4. This process ID will be found under the Id column in your output. Use the
-id parameter to identify the Notepad.exe process. The command is as follows:

Stop-Process -id 1056 -whatif

6. Examine the output from the command. It tells you that the command will stop the Notepad
process with the process ID that you used in your command.

What if: Performing operation "Stop-Process" on Target "notepad (1056)"

Confirming actions
As described in the previous section, you can use -whatif to prototype a cmdlet in Windows PowerShell.
This is useful for seeing what a cmdlet would do; however, if you want to be prompted before the
execution of the cmdlet, you can use the -confirm argument. The cmdlets used in the "Confirming the
execution of cmdlets" procedure are listed in the ConfirmingExecutionOfCmdlets.txt file.

Confirming the execution of cmdlets

1. Open Windows PowerShell, start an instance of Notepad.exe, identify the process, and exam-
ine the output, just as in steps 1 through 4 in the previous exercise.

2. Use the -confirm argument to force a prompt when using the Stop-Process cmdlet to stop the
Notepad process identified by the Get-Process note* command. This is shown here:

Stop-Process -id 1768 -confirm

The Stop-Process cmdlet, when used with the -confirm argument, displays the following con-
firmation prompt:

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "notepad (1768)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

3. Type y and press Enter. The Notepad.exe process ends. The Windows PowerShell prompt
returns to the default, ready for new commands, as shown here:

PS C:\>

 CHAPTER 1 Overview of Windows PowerShell 3.0 9

tip To suspend cmdlet confirmation, at the confirmation prompt from the cmdlet, type s
and press Enter.

Suspending confirmation of cmdlets
The ability to prompt for confirmation of the execution of a cmdlet is extremely useful and at times
may be vital to assisting in maintaining a high level of system uptime. There may be times when you
type in a long command and then remember that you need to check on something else first. For
example, you may be in the middle of stopping a number of processes, but you need to view details
on the processes to ensure you do not stop the wrong one. For such eventualities, you can tell the
confirmation you would like to suspend execution of the command. The commands used for suspend-
ing execution of a cmdlet are in the SuspendConfirmationOfCmdlets.txt file.

Suspending execution of a cmdlet

1. Open Windows PowerShell, start an instance of Notepad.exe, identify the process, and exam-
ine the output, just as in steps 1 through 4 in the previous exercise. The output on my machine
is shown following. Please note that in all likelihood, the process ID used by your instance of
Notepad.exe will be different from the one on my machine.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 39 2 944 400 29 0.05 3576 notepad

2. Use the -confirm argument to force a prompt when using the Stop-Process cmdlet to stop the
Notepad process identified by the Get-Process note* command. This is illustrated here:

Stop-Process -id 3576 -confirm

The Stop-Process cmdlet, when used with the -confirm argument, displays the following con-
firmation prompt:

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "notepad (3576)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

3. To suspend execution of the Stop-Process cmdlet, enter s. A triple-arrow prompt will appear,
as follows:

PS C:\>>>

10 Windows PowerShell 3 Step by Step

4. Use the Get-Process cmdlet to obtain a list of all the running processes that begin with the let-
ter n. The syntax is as follows:

Get-Process n*

On my machine, two processes appear. The Notepad process I launched earlier and another
process. This is shown here:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 39 2 944 400 29 0.05 3576 notepad
 75 2 1776 2708 23 0.09 632 nvsvc32

5. Return to the previous confirmation prompt by typing exit.

Once again, the confirmation prompt appears as follows:

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "notepad (3576)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

6. Type y and press Enter to stop the Notepad process. There is no further confirmation. The
prompt now displays the default Windows PowerShell prompt, as shown here:

PS C:\>

Working with Windows PowerShell

This section will go into detail about how to access Windows PowerShell and configure the Windows
PowerShell console.

accessing Windows PowerShell
After Windows PowerShell is installed on a down-level system, it becomes available for immediate
use. However, using the Windows flag key on the keyboard and pressing R to bring up a run com-
mand prompt—or mousing around and choosing Start | Run | Windows PowerShell all the time—will
become time-consuming and tedious. (This is not quite as big a problem on Windows 8, where you
can just type PowerShell on the Start screen). On Windows 8, I pin both Windows PowerShell and
the PowerShell ISE to both the Start screen and the taskbar. On Windows Server 2012 in core mode,
I replace the CMD prompt with the Windows PowerShell console. For me and the way I work, this is
ideal, so I wrote a script to do it. This script can be called through a log-on script to automatically
deploy the shortcut on the desktop. On Windows 8, the script adds both the Windows PowerShell ISE
and the Windows PowerShell console to both the Start screen and the taskbar. On Windows 7, it adds
both to the taskbar and to the Start menu. The script only works for U.S. English–language operating

 CHAPTER 1 Overview of Windows PowerShell 3.0 11

systems. To make it work in other languages, change the value of $pinToStart or $pinToTaskBar to the
equivalent values in the target language.

note Using Windows PowerShell scripts is covered in Chapter 5, “Using PowerShell Scripts.”
See that chapter for information about how the script works and how to actually run
the script.

The script is called PinToStartAndTaskBar.ps1, and is as follows:

PintoStartandtaskBar.ps1

$pinToStart = "Pin to Start"
$pinToTaskBar = "Pin to Taskbar"
$file = @((Join-Path -Path $PSHOME -childpath "PowerShell.exe"),
 (Join-Path -Path $PSHOME -childpath "powershell_ise.exe"))
Foreach($f in $file)
 {$path = Split-Path $f
 $shell=New-Object -com "Shell.Application"
 $folder=$shell.Namespace($path)
 $item = $folder.parsename((Split-Path $f -leaf))
 $verbs = $item.verbs()
 foreach($v in $verbs)
 {if($v.Name.Replace("&","") -match $pinToStart){$v.DoIt()}}
 foreach($v in $verbs)
 {if($v.Name.Replace("&","") -match $pinToTaskBar){$v.DoIt()}} }

Configuring the Windows PowerShell console
Many items can be configured for Windows PowerShell. These items can be stored in a Psconsole file.
To export the console configuration file, use the Export-Console cmdlet, as shown here:

PS C:\> Export-Console myconsole

The Psconsole file is saved in the current directory by default and has an extension of .psc1. The
Psconsole file is saved in XML format. A generic console file is shown here:

<?xml version="1.0" encoding="utf-8"?>
<PSConsoleFile ConsoleSchemaVersion="1.0">
 <PSVersion>3.0</PSVersion>
 <PSSnapIns />
</PSConsoleFile>

Controlling PowerShell launch options

1. Launch Windows PowerShell without the banner by using the -nologo argument. This is shown
here:

PowerShell -nologo

12 Windows PowerShell 3 Step by Step

2. Launch a specific version of Windows PowerShell by using the -version argument. (To launch
Windows PowerShell 2.0, you must install the .NET Framework 3.5). This is shown here:

PowerShell -version 2

3. Launch Windows PowerShell using a specific configuration file by specifying the -psconsolefile
argument, as follows:

PowerShell -psconsolefile myconsole.psc1

4. Launch Windows PowerShell, execute a specific command, and then exit by using the
-command argument. The command itself must be prefixed by an ampersand (&) and
enclosed in curly brackets. This is shown here:

Powershell -command "& {Get-Process}"

Supplying options for cmdlets

One of the useful features of Windows PowerShell is the standardization of the syntax in working with
cmdlets. This vastly simplifies the learning of the new shell and language. Table 1-1 lists the common
parameters. Keep in mind that some cmdlets cannot implement some of these parameters. However,
if these parameters are used, they will be interpreted in the same manner for all cmdlets, because the
Windows PowerShell engine itself interprets the parameters.

TABLE 1-1 Common parameters

Parameter Meaning

-whatif Tells the cmdlet to not execute, but to tell you what would
happen if the cmdlet were to run.

-confirm Tells the cmdlet to prompt before executing the
command.

-verbose Instructs the cmdlet to provide a higher level of detail
than a cmdlet not using the verbose parameter.

-debug Instructs the cmdlet to provide debugging information.

-ErrorAction Instructs the cmdlet to perform a certain action when an
error occurs. Allowed actions are continue, stop, silently-
Continue, and inquire.

-ErrorVariable Instructs the cmdlet to use a specific variable to hold er-
ror information. This is in addition to the standard $error
variable.

-OutVariable Instructs the cmdlet to use a specific variable to hold the
output information.

-OutBuffer Instructs the cmdlet to hold a certain number of objects
before calling the next cmdlet in the pipeline.

 CHAPTER 1 Overview of Windows PowerShell 3.0 13

note To get help on any cmdlet, use the Get-Help <cmdletname> cmdlet. For example, use
Get-Help Get-Process to obtain help with using the Get-Process cmdlet.

Working with the help options

One of the first commands to run when opening Windows PowerShell for the first time is the
Update-Help cmdlet. This is because Windows PowerShell does not ship help files with the product.
This does not mean that no help presents itself—it does mean that help beyond simple syntax display
requires an additional download.

A default installation of Windows PowerShell 3.0 contains numerous modules that vary from
installation to installation depending upon the operating system features and roles selected. In fact,
Windows PowerShell 3.0 installed on Windows 7 workstations contains far fewer modules and cmdlets
than are available on a similar Windows 8 workstation. This does not mean all is chaos, however,
because the essential Windows PowerShell cmdlets—the core cmdlets—remain unchanged from
installation to installation. The difference between installations is because additional features and
roles often install additional Windows PowerShell modules and cmdlets.

The modular nature of Windows PowerShell requires additional consideration when updating
help. Simply running Update-Help does not update all of the modules loaded on a particular system.
In fact, some modules may not support updatable help at all—these generate an error when you
attempt to update help. The easiest way to ensure you update all possible help is to use both the
module parameter and the force switched parameter. The command to update help for all installed
modules (that support updatable help) is shown here:

Update-Help -Module * -Force

The result of running the Update-Help cmdlet on a typical Windows 8 client system is shown in
Figure 1-1.

14 Windows PowerShell 3 Step by Step

FIGURE 1-1 Errors appear when attempting to update help files that do not support updatable help.

One way to update help and not to receive a screen full of error messages is to run the
Update-Help cmdlet and suppress the errors all together. This technique appears here:

Update-Help -Module * -Force -ea 0

The problem with this approach is that you can never be certain that you have actually received
updated help for everything you wanted to update. A better approach is to hide the errors during the
update process, but also to display errors after the update completes. The advantage to this approach
is the ability to display cleaner errors. The UpdateHelpTrackErrors.ps1 script illustrates this technique.
The first thing the UpdateHelpTrackErrors.ps1 script does is to empty the error stack by calling the
clear method. Next, it calls the Update-Help module with both the module parameter and the force
switched parameter. In addition, it uses the ErrorAction parameter (ea is an alias for this parameter)
with a value of 0. A 0 value means that errors will not be displayed when the command runs. The
script concludes by using a For loop to walk through the errors and displays the error exceptions. The
complete UpdateHelpTrackErrors.ps1 script appears here.

note For information about writing Windows PowerShell scripts and about using the For
loop, see Chapter 5.

UpdateHelpTrackErrors.ps1
$error.Clear()
Update-Help -Module * -Force -ea 0
For ($i = 0 ; $i -le $error.Count ; $i ++)
 { "`nerror $i" ; $error[$i].exception }

 CHAPTER 1 Overview of Windows PowerShell 3.0 15

Once the UpdateHelpTrackErrors script runs, a progress bar displays indicating the progress as the
updatable help files update. Once the script completes, any errors appear in order. The script and
associated errors appear in Figure 1-2.

FIGURE 1-2 Cleaner error output from updatable help generated by the UpdateHelpTrackErrors script.

You can also determine which modules receive updated help by running the Update-Help cmdlet
with the -verbose parameter. Unfortunately, when you do this, the output scrolls by so fast that it is
hard to see what has actually updated. To solve this problem, redirect the verbose output to a text
file. In the command that follows, all modules attempt to update help. The verbose messages redirect
to a text file named updatedhelp.txt in a folder named fso off the root.

Update-Help -module * -force -verbose 4>>c:\fso\updatedhelp.txt

Windows PowerShell has a high level of discoverability; that is, to learn how to use PowerShell, you
can simply use PowerShell. Online help serves an important role in assisting in this discoverability.
The help system in Windows PowerShell can be entered by several methods. To learn about using
Windows PowerShell, use the Get-Help cmdlet as follows:

Get-Help Get-Help

This command prints out help about the Get-Help cmdlet. The output from this cmdlet is illus-
trated here:

16 Windows PowerShell 3 Step by Step

NAME
 Get-Help

SYNOPSIS
 Displays information about Windows PowerShell commands and concepts.

SYNTAX
 Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>] [-Full
 [<SwitchParameter>]] [-Functionality <String>] [-Path <String>] [-Role
 <String>] [<CommonParameters>]

 Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>]
 [-Functionality <String>] [-Path <String>] [-Role <String>] -Detailed
 [<SwitchParameter>] [<CommonParameters>]

 Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>]
 [-Functionality <String>] [-Path <String>] [-Role <String>] -Examples
 [<SwitchParameter>] [<CommonParameters>]

 Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>]
 [-Functionality <String>] [-Path <String>] [-Role <String>] -Online
 [<SwitchParameter>] [<CommonParameters>]

 Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>]
 [-Functionality <String>] [-Path <String>] [-Role <String>] -Parameter <String>
 [<CommonParameters>]

 Get-Help [[-Name] <String>] [-Category <String>] [-Component <String>]
 [-Functionality <String>] [-Path <String>] [-Role <String>] -ShowWindow
 [<SwitchParameter>] [<CommonParameters>]

DESCRIPTION
 The Get-Help cmdlet displays information about Windows PowerShell concepts and
 commands, including cmdlets, providers, functions, aliases and scripts.

 Get-Help gets the help content that it displays from help files on your
 computer. Without the help files, Get-Help displays only basic information
 about commands. Some Windows PowerShell modules come with help files. However,
 beginning in Windows PowerShell 3.0, the modules that come with Windows
 PowerShell do not include help files. To download or update the help files for
 a module in Windows PowerShell 3.0, use the Update-Help cmdlet. You can also
 view the help topics for Windows PowerShell online in the TechNet Library at http:
 //go.microsoft.com/fwlink/?LinkID=107116

 To get help for a Windows PowerShell command, type "Get-Help" followed by the
 command name. To get a list of all help topics on your system, type "Get-Help
 *".

 Conceptual help topics in Windows PowerShell begin with "about_", such as
 "about_Comparison_Operators". To see all "about_" topics, type "Get-Help
 about_*". To see a particular topic, type "Get-Help about_<topic-name>", such
 as "Get-Help about_Comparison_Operators".

 CHAPTER 1 Overview of Windows PowerShell 3.0 17

 You can display the entire help topic or use the parameters of the Get-Help
 cmdlet to get selected parts of the topic, such as the syntax, parameters, or
 examples. You can also use the Online parameter to display an online version of
 a help topic for a command in your Internet browser.

 If you type "Get-Help" followed by the exact name of a help topic, or by a word
 unique to a help topic, Get-Help displays the topic contents. If you enter a
 word or word pattern that appears in several help topic titles, Get-Help
 displays a list of the matching titles. If you enter a word that does not
 appear in any help topic titles, Get-Help displays a list of topics that
 include that word in their contents.

 In addition to "Get-Help", you can also type "help" or "man", which displays
 one screen of text at a time, or "<cmdlet-name> -?", which is identical to
 Get-Help but works only for cmdlets.

 For information about the symbols that Get-Help displays in the command syntax
 diagram, see about_Command_Syntax http://go.microsoft.com/fwlink/?LinkID=113215.
 For information about parameter attributes, such as Required and Position, see
 about_Parameters http://go.microsoft.com/fwlink/?LinkID=113243.

RELATED LINKS
 Online Version: http://go.microsoft.com/fwlink/?LinkID=113316
 Get-Command
 Get-Member
 Get-PSDrive
 about_Command_Syntax
 about_Comment_Based_Help
 about_Parameters

REMARKS
 To see the examples, type: "Get-Help Get-Help -examples".
 For more information, type: "Get-Help Get-Help -detailed".
 For technical information, type: "Get-Help Get-Help -full".
 For online help, type: "Get-Help Get-Help -online"

The good thing about help with the Windows PowerShell is that it not only displays help about
cmdlets, which you would expect, but it also has three levels of display: normal, detailed, and full.
Additionally, you can obtain help about concepts in Windows PowerShell. This last feature is equiva-
lent to having an online instruction manual. To retrieve a listing of all the conceptual help articles, use
the Get-Help about* command, as follows:

Get-Help about*

Suppose you do not remember the exact name of the cmdlet you wish to use, but you remember
it was a get cmdlet? You can use a wildcard, such as an asterisk (*), to obtain the name of the cmdlet.
This is shown here:

Get-Help get*

This technique of using a wildcard operator can be extended further. If you remember that the
cmdlet was a get cmdlet, and that it started with the letter p, you can use the following syntax to
retrieve the desired cmdlet:

18 Windows PowerShell 3 Step by Step

Get-Help get-p*

Suppose, however, that you know the exact name of the cmdlet, but you cannot exactly remember
the syntax. For this scenario, you can use the -examples argument. For example, for the Get-PSDrive
cmdlet, you would use Get-Help with the -examples argument, as follows:

Get-Help Get-PSDrive -examples

To see help displayed one page at a time, you can use the Help function. The Help function passes
your input to the Get-Help cmdlet, and pipelines the resulting information to the more.com utility.
This causes output to display one page at a time in the Windows PowerShell console. This is useful if
you want to avoid scrolling up and down to see the help output.

note Keep in mind that in the Windows PowerShell ISE, the pager does not work, and
therefore you will see no difference in output between Get-Help and Help. In the ISE, both
Get-Help and Help behave the same way. However, it is likely that if you are using the
Windows PowerShell ISE, you will use Show-Command for your help instead of relying on
Get-Help.

This formatted output is shown in Figure 1-3.

FIGURE 1-3 Using Help to display information one page at a time.

 CHAPTER 1 Overview of Windows PowerShell 3.0 19

Getting tired of typing Get-Help all the time? After all, it is eight characters long. The solution is to
create an alias to the Get-Help cmdlet. An alias is a shortcut keystroke combination that will launch a
program or cmdlet when typed. In the “Creating an alias for the Get-Help cmdlet” procedure, you will
assign the Get-Help cmdlet to the G+H key combination.

note When creating an alias for a cmdlet, confirm it does not already have an alias by
using Get-Alias. Use New-Alias to assign the cmdlet to a unique keystroke combination.

Creating an alias for the Get-Help cmdlet

1. Open Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents folder.

2. Retrieve an alphabetic listing of all currently defined aliases, and inspect the list for one
assigned to either the Get-Help cmdlet or the keystroke combination G+H. The command to
do this is as follows:

Get-Alias sort

3. After you have determined that there is no alias for the Get-Help cmdlet and that none is
assigned to the G+H keystroke combination, review the syntax for the New-Alias cmdlet. Use
the -full argument to the Get-Help cmdlet. This is shown here:

Get-Help New-Alias -full

4. Use the New-Alias cmdlet to assign the G+H keystroke combination to the Get-Help cmdlet.
To do this, use the following command:

New-Alias gh Get-Help

Exploring commands: step-by-step exercises

In the following exercises, you’ll explore the use of command-line utilities in Windows PowerShell. You
will see that it is as easy to use command-line utilities in Windows PowerShell as in the CMD inter-
preter; however, by using such commands in Windows PowerShell, you gain access to new levels of
functionality.

20 Windows PowerShell 3 Step by Step

Using command-line utilities

1. Open Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents folder.

2. Change to the C:\root directory by typing cd c:\ inside the PowerShell prompt:

cd c:\

3. Obtain a listing of all the files in the C:\root directory by using the dir command:

dir

4. Create a directory off the C:\root directory by using the md command:

md mytest

5. Obtain a listing of all files and folders off the root that begin with the letter m:

dir m*

6. Change the working directory to the PowerShell working directory. You can do this by using
the Set-Location command as follows:

Set-Location $pshome

7. Obtain a listing of memory counters related to the available bytes by using the typeperf com-
mand. This command is shown here:

typeperf "\memory\available bytes"

8. After a few counters have been displayed in the PowerShell window, press Ctrl+C to break the
listing.

9. Display the current boot configuration by using the bootcfg command (note that you must run
this command with admin rights):

bootcfg

10. Change the working directory back to the C:\Mytest directory you created earlier:

Set-Location c:\mytest

11. Create a file named mytestfile.txt in the C:\Mytest directory. Use the fsutil utility, and make the
file 1,000 bytes in size. To do this, use the following command:

fsutil file createnew mytestfile.txt 1000

12. Obtain a directory listing of all the files in the C:\Mytest directory by using the Get-ChildItem
cmdlet.

13. Print out the current date by using the Get-Date cmdlet.

 CHAPTER 1 Overview of Windows PowerShell 3.0 21

14. Clear the screen by using the cls command.

15. Print out a listing of all the cmdlets built into Windows PowerShell. To do this, use the Get-
Command cmdlet.

16. Use the Get-Command cmdlet to get the Get-Alias cmdlet. To do this, use the -name argu-
ment while supplying Get-Alias as the value for the argument. This is shown here:

Get-Command -name Get-Alias

This concludes the step-by-step exercise. Exit Windows PowerShell by typing exit and press-
ing Enter.

In the following exercise, you’ll use various help options to obtain assistance with various cmdlets.

Obtaining help

1. Open Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents folder.

2. Use the Get-Help cmdlet to obtain help about the Get-Help cmdlet. Use the command
Get-Help Get-Help as follows:

Get-Help Get-Help

3. To obtain detailed help about the Get-Help cmdlet, use the -detailed argument as follows:

Get-Help Get-Help -detailed

4. To retrieve technical information about the Get-Help cmdlet, use the -full argument. This is
shown here:

Get-Help Get-Help -full

5. If you only want to obtain a listing of examples of command usage, use the -examples argu-
ment as follows:

Get-Help Get-Help -examples

6. Obtain a listing of all the informational help topics by using the Get-Help cmdlet and the
about noun with the asterisk (*) wildcard operator. The code to do this is shown here:

Get-Help about*

7. Obtain a listing of all the help topics related to get cmdlets. To do this, use the Get-Help cmd-
let, and specify the word get followed by the wildcard operator as follows:

Get-Help get*

22 Windows PowerShell 3 Step by Step

8. Obtain a listing of all the help topics related to set cmdlets. To do this, use the Get-Help
cmdlet, followed by the set verb, followed by the asterisk wildcard. This is shown here:

Get-Help set*

This concludes this exercise. Exit Windows PowerShell by typing exit and pressing Enter.

Chapter 1 quick reference

To Do This

Use an external command-line utility Type the name of the command-line utility while inside
Windows PowerShell.

Use multiple external command-line utilities sequentially Separate each command-line utility with a semicolon on a
single Windows PowerShell line.

Obtain a list of running processes Use the Get-Process cmdlet.

Stop a process Use the Stop-Process cmdlet and specify either the name
or the process ID as an argument.

Model the effect of a cmdlet before actually performing
the requested action

Use the -whatif argument.

Instruct Windows PowerShell to start up, run a cmdlet,
and then exit

Use the PowerShell command while prefixing the cmdlet
with & and enclosing the name of the cmdlet in curly
brackets.

Prompt for confirmation before stopping a process Use the Stop-Process cmdlet while specifying the -confirm
argument.

 23

C H A P T E R 2

Using Windows PowerShell
Cmdlets

after completing this chapter, you will be able to:

■■ Understand the basic use of Windows PowerShell cmdlets.

■■ Use Get-Command to retrieve a listing of cmdlets.

■■ Configure cmdlet search options.

■■ Configure output display.

■■ Use Get-Member.

■■ Use Show-Command.

■■ Use New-Object.

The inclusion of a large amount of cmdlets in Microsoft Windows PowerShell makes it immediately
useful to network administrators and others who need to perform various maintenance and admin-
istrative tasks on their Windows servers and desktop systems. In this chapter, you’ll review several of
the more useful cmdlets as a means of highlighting the power and flexibility of Windows PowerShell.
However, the real benefit of this chapter is the methodology you’ll use to discover the use of the vari-
ous cmdlets. All the scripts mentioned in this chapter are located in the download package from the
Microsoft TechNet Script Center Script Repository (http://aka.ms/PowerShellSBS_book).

Understanding the basics of cmdlets

In Chapter 1, “Overview of Windows PowerShell 3.0,” you learned about using the various help utilities
available that demonstrate how to use cmdlets. You looked at a couple of cmdlets that are helpful in
finding out what commands are available and how to obtain information about them. In this section,
you will learn some additional ways to use cmdlets in Windows PowerShell.

24 Windows PowerShell 3 Step by Step

tip Typing long cmdlet names can be somewhat tedious. To simplify this process, type
enough of the cmdlet name to uniquely distinguish it, and then press the Tab key on the
keyboard. What is the result? Tab completion completes the cmdlet name for you. This also
works with parameter names and other things you are entering (such as .NET objects, direc-
tories, registry keys, and so on). Feel free to experiment with this great time-saving tech-
nique. You may never have to type Get-Command again!

Because the cmdlets return objects instead of string values, you can obtain additional information
about the returned objects. The additional information would not be available if you were working
with just string data. To take information from one cmdlet and feed it to another cmdlet, you can
use the pipe character (|). This may seem complicated, but it is actually quite simple and, by the end
of this chapter, will seem quite natural. At the most basic level, consider obtaining a directory list-
ing; after you have the directory listing, perhaps you would like to format the way it is displayed—as
a table or a list. As you can see, obtaining the directory information and formatting the list are two
separate operations. The second task takes place on the right side of the pipe.

Using the Get-ChildItem cmdlet

In Chapter 1, you used the dir command to obtain a listing of all the files and folders in a directory.
This works because there is an alias built into Windows PowerShell that assigns the Get-ChildItem
cmdlet to the letter combination dir.

Obtaining a directory listing
In a Windows PowerShell console, enter the Get-ChildItem cmdlet followed by the directory to list.
(Remember that you can use tab completion to compete the command. Type get-ch and press Tab to
complete the command name.) Here is the command:

Get-ChildItem C:\

note Windows PowerShell is not case sensitive, therefore get-Childitem, Get-childitem, and
Get-ChildItem all work the same way, because Windows PowerShell views all three as the
same command.

In Windows PowerShell, there actually is no cmdlet called dir, nor does Windows PowerShell actu-
ally use the dir command from the DOS days. The alias dir is associated with the Get-ChildItem cmdlet.
This is why the output from dir is different in Windows PowerShell from output appearing in the
CMD.exe interpreter. The Windows PowerShell cmdlet Get-Alias resolves the association between dir
and the Get-ChildItem cmdlet as follows:

 CHAPTER 2 Using Windows PowerShell Cmdlets 25

PS C:\> Get-Alias dir

CommandType Name ModuleName
----------- ---- ----------
Alias dir -> Get-ChildItem

If you use the Get-ChildItem cmdlet to obtain the directory listing, the output appears exactly the
same as output produced in Windows PowerShell by using dir because dir is simply an alias for the
Get-ChildItem cmdlet. This is shown here:

PS C:\> dir c:\

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 3/22/2012 4:03 AM PerfLogs
d-r-- 3/22/2012 4:24 AM Program Files
d---- 4/22/2012 7:14 PM test
d-r-- 3/23/2012 6:02 PM Users
d---- 3/23/2012 4:59 PM Windows
-a--- 3/22/2012 4:33 AM 24 autoexec.bat
-a--- 3/22/2012 4:33 AM 10 config.sys

PS C:\> Get-ChildItem c:\

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 3/22/2012 4:03 AM PerfLogs
d-r-- 3/22/2012 4:24 AM Program Files
d---- 4/22/2012 7:14 PM test
d-r-- 3/23/2012 6:02 PM Users
d---- 3/23/2012 4:59 PM Windows
-a--- 3/22/2012 4:33 AM 24 autoexec.bat
-a--- 3/22/2012 4:33 AM 10 config.sys

PS C:\>

If you were to use Get-Help and then dir, you would receive the same output as if you were to use
Get-Help Get-ChildItem. This is shown following, where only the name and the synopsis of the cmdlets
are displayed in the output:

26 Windows PowerShell 3 Step by Step

PS C:\> Get-Help dir | select name, synopsis | Format-Table -AutoSize

Name Synopsis
---- --------
Get-ChildItem Gets the files and folders in a file system drive.

PS C:\> Get-Help Get-ChildItem | select name, synopsis | Format-Table -AutoSize

Name Synopsis
---- --------
Get-ChildItem Gets the files and folders in a file system drive.

PS C:\>

In Windows PowerShell, an alias and a full cmdlet name perform in exactly the same manner.
You do not use an alias to modify the behavior of a cmdlet. (To do that, create a function or a proxy
function.)

Formatting a directory listing using the Format-List cmdlet
In a Windows PowerShell console, enter the Get-ChildItem cmdlet, followed by the directory to list,
followed by the pipe character and the Format-List cmdlet. Here’s an example:

Get-ChildItem C:\ | Format-List

Formatting output with the Format-List cmdlet

1. Open the Windows PowerShell console.

2. Use the Get-ChildItem cmdlet to obtain a directory listing of the C:\ directory.

Get-ChildItem C:\

3. Use the Format-List cmdlet to arrange the output of Get-ChildItem:

Get-ChildItem | Format-List

4. Use the -property argument of the Format-List cmdlet to retrieve only a listing of the name of
each file in the root.

Get-ChildItem C:\ | Format-List -property name

5. Use the -property argument of the Format-List cmdlet to retrieve only a listing of the name
and length of each file in the root.

Get-ChildItem C:\ | Format-List -property name, length

 CHAPTER 2 Using Windows PowerShell Cmdlets 27

Using the Format-Wide cmdlet
In the same way that you use the Format-List cmdlet to produce output in a list, you can use the
Format-Wide cmdlet to produce output that’s more compact. The difference is that Format-Wide
permits the selection of only a single property; however, you can choose how many columns you will
use to display the information. By default, the Format-Wide cmdlet uses two columns.

Formatting a directory listing using Format-Wide

1. In a Windows PowerShell prompt, enter the Get-ChildItem cmdlet, followed by the directory
to list, followed by the pipe character and the Format-Wide cmdlet. Here’s an example:

Get-ChildItem C:\ | Format-Wide

2. Change to a three-column display and specifically select the name property.

Get-ChildItem | Format-Wide -Column 3 -Property name

3. Allow Windows PowerShell to maximize the amount of space between columns and display as
many columns as possible. Use the -AutoSize switched parameter to do this:

Get-ChildItem | Format-Wide -Property name –AutoSize

4. Force Windows PowerShell to truncate the columns by choosing a number of columns greater
than can be displayed on the screen:

Get-ChildItem | Format-Wide -Property name -Column 8

Formatting output with the Format-Wide cmdlet

1. Open the Windows PowerShell console.

2. Use the Get-ChildItem cmdlet to obtain a directory listing of the C:\Windows directory.

Get-ChildItem C:\Windows

3. Use the -recursive argument to cause the Get-ChildItem cmdlet to walk through a nested
directory structure, including only .txt files in the output. Hide errors by using the -ea
parameter (ea is an alias for ErrorAction) and assign a value of 0 (which means that errors will
be ignored):

Get-ChildItem C:\Windows -recurse -include *.txt –ea 0

28 Windows PowerShell 3 Step by Step

Partial output from the command is shown here:

PS C:\> Get-ChildItem C:\Windows -recurse -include *.txt -ea 0
 Directory: C:\Windows\ehome\en-US

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 3/22/2012 4:17 AM 15826 epgtos.txt
-a--- 3/22/2012 4:17 AM 14642 playready_eula.txt
-a--- 3/22/2012 4:17 AM 36672 playReady_eula_oem.txt
PS C:\>

4. Use the Format-Wide cmdlet to adjust the output from the Get-ChildItem cmdlet. Use the
-columns argument and supply a parameter of 3 to it. This is shown here:

Get-ChildItem C:\Windows -recurse -include *.txt –ea 0| Format-Wide -column 3

Once this command is run, you will see output similar to this:

PS C:\> Get-ChildItem C:\Windows -recurse -include *.txt -ea 0 | Format-Wide -Column
3

 Directory: C:\Windows\ehome\en-US

epgtos.txt playready_eula.txt playReady_eula_oem.txt

 Directory: C:\Windows\SoftwareDistribution\SelfUpdate

wuident.txt

5. Use the Format-Wide cmdlet to adjust the output from the Get-ChildItem cmdlet. Use
the -property argument to specify the name property, and group the outputs by size.
The command shown here appears on two lines; however, when typed into Windows
PowerShell, it is a single command and can be on one line. In addition, when typed into
the Windows PowerShell console, if you continue typing when approaching the end of a
line, Windows PowerShell will automatically wrap the command to the next line; therefore,
you do not need to press the Enter key.

Get-ChildItem C:\Windows -recurse -include *.txt |
Format-Wide -property name -groupby length -column 3

 CHAPTER 2 Using Windows PowerShell Cmdlets 29

Partial output is shown here. Note that although three columns were specified, if there are not
three files of the same length, only one column will be used:

PS C:\> Get-ChildItem C:\Windows -recurse -include *.txt -ea 0 |
Format-Wide -Column3 -GroupBy length

 Directory: C:\Windows\ehome\en-US

epgtos.txt

 Directory: C:\Windows\ehome\en-US

playready_eula.txt

 Directory: C:\Windows\ehome\en-US

Formatting a directory listing using Format-Table
In a Windows PowerShell console, enter the Get-ChildItem cmdlet, followed by the directory to list,
followed by the pipe character and the Format-Table cmdlet. Here’s an example:

Get-ChildItem C:\ | Format-Table

Formatting output with the Format-Table cmdlet

1. Open Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings folder.

2. Use the Get-ChildItem cmdlet to obtain a directory listing of the C:\Windows directory:

Get-ChildItem C:\Windows –ea 0

3. Use the -recursive argument to cause the Get-ChildItem cmdlet to walk through a nested
directory structure. Include only .txt files in the output.

Get-ChildItem C:\Windows -recurse -include *.txt -ea 0

4. Use the Format-Table cmdlet to adjust the output from the Get-ChildItem cmdlet. This is
shown here:

Get-ChildItem C:\Windows -recurse -include *.txt –ea 0 | Format-Table

30 Windows PowerShell 3 Step by Step

The command results in the creation of a table, as follows:

PS C:\> Get-ChildItem C:\Windows -recurse -include *.txt –ea 0 | Format-Table

 Directory: C:\Windows\ehome\en-US

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 3/22/2012 4:17 AM 15826 epgtos.txt
-a--- 3/22/2012 4:17 AM 14642 playready_eula.txt
-a--- 3/22/2012 4:17 AM 36672 playReady_eula_oem.txt

 Directory: C:\Windows\SoftwareDistribution\SelfUpdate

Mode LastWriteTime Length Name
---- ------------- ------ ----
----- 3/13/2012 5:51 PM 275 wuident.txt

5. Use the -property argument of the Format-Table cmdlet and choose the name, length, and
last-write-time properties. This is shown here:

Get-ChildItem C:\Windows -recurse -include *.txt –ea 0 |Format-Table -property
name, length, lastwritetime

This command results in producing a table with the name, length, and last write time as col-
umn headers. A sample of this output is shown here:

PS C:\> Get-ChildItem C:\Windows -recurse -include *.txt –ea 0 |Format-Table -property
 name, length, lastwritetime

Name Length LastWriteTime
---- ------ -------------
epgtos.txt 15826 3/22/2012 4:17:20 AM
playready_eula.txt 14642 3/22/2012 4:17:20 AM
playReady_eula_oem.txt 36672 3/22/2012 4:17:20 AM
wuident.txt 275 3/13/2012 5:51:28 PM
dberr.txt 177095 3/23/2012 4:55:52 PM
gmreadme.txt 646 11/27/2010 6:57:47 PM
erofflps.txt 9183 3/22/2012 4:17:06 AM
about_Aliases.help.txt 6551 2/28/2012 4:48:38 AM
about_Arithmetic_Operator... 14241 2/28/2012 4:48:38 AM

 CHAPTER 2 Using Windows PowerShell Cmdlets 31

Formatting output with Out-GridView

The Out-GridView cmdlet is different from the other formatting cmdlets explored thus far in this
chapter. Out-GridView is an interactive cmdlet—that is, it does not format output for display on the
Windows PowerShell console, or for sending to a printer. Instead, Out-GridView provides a control
permitting exploration of the pipelined data. It does this by adding the data to a table in a floating
window. For example, the following command pipelines the results of the Get-Process cmdlet to the
Out-GridView cmdlet (gps is an alias for the Get-Process cmdlet):

gps | Out-GridView

When the Get-Process cmdlet completes, a grid appears containing process information arranged
in columns and in rows. Figure 2-1 shows the new window displaying the process information in a
grid. One useful feature of the Out-GridView cmdlet is that the returned control contains the com-
mand producing the control in the title bar. Figure 2-1 lists the command gps | Out-GridView in the
title bar (the command that is run to produce the grid control).

FIGURE 2-1 The Out-GridView cmdlet accepts pipelined input and displays a control that permits further
exploration.

32 Windows PowerShell 3 Step by Step

You can click the column headings to sort the output in descending order. Clicking the same
column again changes the sort to ascending order. Figure 2-2 sorts the processes by the number of
handles used by each process. The sort is ordered from largest number of handles to smallest.

FIGURE 2-2 Clicking the column heading buttons permits sorting in either descending or ascending order.

Out-GridView accepts input from other cmdlets, as well as from the Get-Process cmdlet. For exam-
ple, you can pipeline the output from the Get-Service cmdlet to Out-GridView by using the syntax
that appears here (gsv is an alias for the Get-Service cmdlet, and ogv is an alias for the Out-GridView
cmdlet):

gsv | ogv

Figure 2-3 shows the resulting grid view.

 CHAPTER 2 Using Windows PowerShell Cmdlets 33

FIGURE 2-3 Out-GridView displays service controller information, such as the current status of all defined services.

The Out-GridView cmdlet automatically detects the data type of the incoming properties. It
uses this data type to determine how to present the filtered and the sorted information to you. For
example, the data type of the Status property is a string. Clicking the Add Criteria button, choosing
the status property, and selecting Add adds a filter that permits choosing various ways of interacting
with the text stored in the status property. The available options include the following: contains, does
not contain, equals, does not equal, ends with, is empty, and is not empty. The options change depend-
ing upon the perceived data type of the incoming property.

To filter only running services, you can change the filter to equals and the value to running. Keep
in mind that if you choose an equality operator, your filtered string must match exactly. Therefore,
equals run will not return any matches. Only equals running works. On the other hand, if you choose a
starts with operator, you will find all the running services with the first letter. For instance, starts with r
returns everything. As you continue to type, matches continue to be refined in the output.

note Keep in the mind the difference in the behavior of the various filters. Depending on
the operator you select, the self-updating output is extremely useful. This works especially
well when attempting to filter out numerical data if you are not very familiar with the data
ranges and what a typical value looks like. This technique appears in Figure 2-4.

34 Windows PowerShell 3 Step by Step

FIGURE 2-4 The Out-GridView self-updates when you type in the filter box.

By the time you type the first two letters of the explorer process name in the filter box, the resul-
tant process information changes to display the single matching process name. The output appears in
Figure 2-5.

FIGURE 2-5 Clicking the red X at the right of the filter box clears the explorer filter you added.

Filtering processes using CPU time with a memory working set greater than 20,000

1. First use the Add Criteria button to choose CPU(s).

2. Click the blue plus symbol on the Add Criteria button beneath the Filter dialog box.

3. In the Add Criteria selection menu that appears, place a check beside CPU(s) and press the
Add button.

4. Click the underlined word contains and select Is Not Empty from the selection menu.

5. Click the blue plus symbol on the Add Criteria button.

6. Places a check next to the WS(K) item.

7. Click the Add button to add the working set memory to the criteria.

8. Click the blue underlined “is less than or equal to” criterion to change it to “is greater than or
equal to.”

9. Add the number 20000 to the box beside the “is greater than or equal to” criterion.

 CHAPTER 2 Using Windows PowerShell Cmdlets 35

Creating a sorted process list

1. Type the following command into the Windows PowerShell console:

Get-Process

2. Send the output of the Get-Process cmdlet to the Get-Member cmdlet:

Get-Process | Get-Member

3. Examine the property section. Note that CPU is a script property.

4. Pipeline the results from the Get-Process cmdlet to the Sort-Object cmdlet and use the cpu
property:

Get-Process | Sort-Object cpu

5. Retrieve the previous command and add the -Descending switched parameter:

Get-Process | Sort-Object cpu -Descending

6. Send the whole thing to the Out-GridView cmdlet. The command appears here:

Get-Process | Sort-Object cpu -Descending | Out-GridView

7. Remove columns from the grid view. Right-click the column process names and select the
columns.

8. When the select-column prompt appears, click it to bring up the Select Columns dialog box.
Click to add or remove the columns individually.

The Select Columns dialog box appears in Figure 2-6.

FIGURE 2-6 Use the Select Columns dialog box to control columns appearing in the gridview control.

36 Windows PowerShell 3 Step by Step

note Because the process of selecting columns is a bit slow, if you only want to see a few
columns, it is best to filter the columns by using the Select-Object cmdlet before you send it
to the Out-GridView cmdlet.

Leveraging the power of Get-Command

The Get-Command cmdlet gets details of every command available to you. These commands include
cmdlets, functions, workflows, aliases, and executable commands. Using the Get-Command cmdlet,
you can obtain a listing of all the cmdlets installed on Windows PowerShell, but there is much more
that can be done using this extremely versatile cmdlet. For example, you can use wildcard characters
to search for cmdlets using Get-Command. This is shown in the following procedure.

Searching for cmdlets using wildcard characters
In a Windows PowerShell prompt, enter the Get-Command cmdlet followed by a wildcard character:

Get-Command *

Finding commands by using the Get-Command cmdlet

1. Open Windows PowerShell.

2. Use an alias to refer to the Get-Command cmdlet. To find the correct alias, use the Get-Alias
cmdlet as follows:

Get-Alias g*

This command produces a listing of all the aliases defined that begin with the letter g. An
example of the output of this command is shown here:

CommandType Name ModuleName
----------- ---- ----------
Alias gal -> Get-Alias
Alias gbp -> Get-PSBreakpoint
Alias gc -> Get-Content
Alias gci -> Get-ChildItem
Alias gcm -> Get-Command
Alias gcs -> Get-PSCallStack
Alias gdr -> Get-PSDrive
Alias ghy -> Get-History
Alias gi -> Get-Item
Alias gjb -> Get-Job
Alias gl -> Get-Location

 CHAPTER 2 Using Windows PowerShell Cmdlets 37

Alias gm -> Get-Member
Alias gmo -> Get-Module
Alias gp -> Get-ItemProperty
Alias gps -> Get-Process
Alias group -> Group-Object
Alias gsn -> Get-PSSession
Alias gsnp -> Get-PSSnapin
Alias gsv -> Get-Service
Alias gu -> Get-Unique
Alias gv -> Get-Variable
Alias gwck -> Get-WmiKey HSGWMImoduleV6
Alias gwcm -> Get-WmiClassMethods HSGWMImoduleV6
Alias gwcp -> Get-WmiClassProperties HSGWMImoduleV6
Alias gwcq -> Get-WMIClassesWithQualifiers HSGWMImoduleV6
Alias gwkv -> Get-WmiKeyvalue HSGWMImoduleV6
Alias gwmi -> Get-WmiObject
Alias gwq -> Get-WmiClassesAndQuery HSGWMImoduleV6

3. Using the gcm alias, use the Get-Command cmdlet to return the Get-Command cmdlet. This is
shown here:

gcm Get-Command

This command returns the Get-Command cmdlet. The output is shown here:

CommandType Name ModuleName
----------- ---- ----------
Cmdlet Get-Command Microsoft.Powe...

4. Using the gcm alias to get the Get-Command cmdlet, pipe the output to the Format-List cmd-
let. Use the wildcard asterisk (*) to obtain a listing of all the properties of the Get-Command
cmdlet. This is shown here:

gcm Get-Command |Format-List *

This command will return all the properties from the Get-Command cmdlet. The output is
shown here:

HelpUri : http://go.microsoft.com/fwlink/?LinkID=113309
DLL : C:\WINDOWS\Microsoft.Net\assembly\GAC_MSIL\System.Management
 .Automation\v4.0_3.0.0.0__31bf3856ad364e35\System.Management
 .Automation.dll
Verb : Get
Noun : Command
HelpFile : System.Management.Automation.dll-Help.xml
PSSnapIn : Microsoft.PowerShell.Core
ImplementingType : Microsoft.PowerShell.Commands.GetCommandCommand
Definition :
 Get-Command [[-ArgumentList] <Object[]>] [-Verb <string[]>]
 [-Noun <string[]>] [-Module <string[]>] [-TotalCount <int>]
 [-Syntax] [-All] [-ListImported] [-ParameterName <string[]>]
 [-ParameterType <PSTypeName[]>] [<CommonParameters>]

38 Windows PowerShell 3 Step by Step

 Get-Command [[-Name] <string[]>] [[-ArgumentList] <Object[]>]
 [-Module <string[]>] [-CommandType <CommandTypes>]
 [-TotalCount <int>] [-Syntax] [-All] [-ListImported]
 [-ParameterName <string[]>] [-ParameterType <PSTypeName[]>]
 [<CommonParameters>]

DefaultParameterSet : CmdletSet
OutputType : {System.Management.Automation.AliasInfo,
 System.Management.Automation.ApplicationInfo,
 System.Management.Automation.FunctionInfo,
 System.Management.Automation.CmdletInfo...}
Options : ReadOnly
Name : Get-Command
CommandType : Cmdlet
Visibility : Public
ModuleName : Microsoft.PowerShell.Core
Module :
RemotingCapability : PowerShell
Parameters : {[Name, System.Management.Automation.ParameterMetadata],
 [Verb, System.Management.Automation.ParameterMetadata],
 [Noun, System.Management.Automation.ParameterMetadata],
 [Module, System.Management.Automation.ParameterMetadata]...}
ParameterSets : {[[-ArgumentList] <Object[]>] [-Verb <string[]>] [-Noun
 <string[]>] [-Module <string[]>] [-TotalCount <int>]
 [-Syntax] [-All] [-ListImported] [-ParameterName <string[]>]
 [-ParameterType <PSTypeName[]>] [<CommonParameters>],
 [[-Name] <string[]>] [[-ArgumentList] <Object[]>] [-Module
 <string[]>] [-CommandType <CommandTypes>] [-TotalCount <int>]
 [-Syntax] [-All] [-ListImported] [-ParameterName <string[]>]
 [-ParameterType <PSTypeName[]>] [<CommonParameters>]}

5. Using the gcm alias and the Get-Command cmdlet, pipe the output to the Format-List cmdlet.
Use the -property argument and specify the definition property of the Get-Command cmdlet.
Rather than retyping the entire command, use the up arrow on your keyboard to retrieve the
previous gcm Get-Command | Format-List * command. Use the Backspace key to remove the
asterisk, and then simply add -property definition to your command. This is shown here:

gcm Get-Command | Format-List -property definition

This command only returns the property definition for the Get-Command cmdlet. The
returned definition is shown here:

Definition :
 Get-Command [[-ArgumentList] <Object[]>] [-Verb <string[]>] [-Noun
 <string[]>] [-Module <string[]>] [-TotalCount <int>] [-Syntax] [-All]
 [-ListImported] [-ParameterName <string[]>] [-ParameterType
 <PSTypeName[]>] [<CommonParameters>]

 Get-Command [[-Name] <string[]>] [[-ArgumentList] <Object[]>] [-Module
 <string[]>] [-CommandType <CommandTypes>] [-TotalCount <int>]
 [-Syntax] [-All] [-ListImported] [-ParameterName <string[]>]
 [-ParameterType <PSTypeName[]>] [<CommonParameters>]

 CHAPTER 2 Using Windows PowerShell Cmdlets 39

6. Because objects are returned from cmdlets instead of simply string data, you can also retrieve
the definition of the Get-Command cmdlet by directly using the definition property. This is
done by putting the expression inside parentheses and using dotted notation, as shown here:

(gcm Get-Command).definition

The definition returned from the previous command is virtually identical to the one returned
by using the Format-List cmdlet.

7. Use the gcm alias and specify the -verb argument. Use se* for the verb. This is shown here:

gcm -verb se*

The previous command returns a listing of all the cmdlets that contain a verb beginning with
se. The result is as follows:

CommandType Name ModuleName
----------- ---- ----------
Function Set-BCAuthentication BranchCache
Function Set-BCCache BranchCache
Function Set-BCDataCacheEntryMaxAge BranchCache
Function Set-BCMinSMBLatency BranchCache
Function Set-BCSecretKey BranchCache
Function Set-ClusteredScheduledTask ScheduledTasks
Function Set-CmdLetBoldFace DocModule
Function Set-DAClientExperienceConfiguration DirectAccessCl...
Function Set-DAEntryPointTableItem DirectAccessCl...
Function Set-Disk Storage
Function Set-DnsClient DnsClient
Function Set-DnsClientGlobalSetting DnsClient
Function Set-DnsClientNrptGlobal DnsClient
Function Set-DnsClientNrptRule DnsClient
Function Set-DnsClientServerAddress DnsClient
Function Set-DtcAdvancedHostSetting MsDtc
Function Set-DtcAdvancedSetting MsDtc
Function Set-DtcClusterDefault MsDtc
Function Set-DtcClusterTMMapping MsDtc
Function Set-DtcDefault MsDtc
Function Set-DtcLog MsDtc
Function Set-DtcNetworkSetting MsDtc
Function Set-DtcTransaction MsDtc
Function Set-DtcTransactionsTraceSession MsDtc
Function Set-DtcTransactionsTraceSetting MsDtc
Function Set-FileIntegrity Storage
Function Set-InitiatorPort Storage
Function Set-IscsiChapSecret iSCSI
Function Set-LocalGroup LocalUserManag...
Function Set-LocalUser LocalUserManag...
Function Set-LocalUserPassword LocalUserManag...
Function Set-LogProperties PSDiagnostics
Function Set-MMAgent MMAgent
Function Set-NCSIPolicyConfiguration NetworkConnect...
Function Set-Net6to4Configuration NetworkTransition
Function Set-NetAdapter NetAdapter

40 Windows PowerShell 3 Step by Step

Function Set-NetAdapterAdvancedProperty NetAdapter
Function Set-NetAdapterBinding NetAdapter
Function Set-NetAdapterChecksumOffload NetAdapter
Function Set-NetAdapterEncapsulatedPacketTaskOffload NetAdapter
Function Set-NetAdapterIPsecOffload NetAdapter
Function Set-NetAdapterLso NetAdapter
Function Set-NetAdapterPowerManagement NetAdapter
Function Set-NetAdapterQos NetAdapter
Function Set-NetAdapterRdma NetAdapter
Function Set-NetAdapterRsc NetAdapter
Function Set-NetAdapterRss NetAdapter
Function Set-NetAdapterSriov NetAdapter
Function Set-NetAdapterVmq NetAdapter
Function Set-NetConnectionProfile NetConnection
Function Set-NetDnsTransitionConfiguration NetworkTransition
Function Set-NetFirewallAddressFilter NetSecurity
Function Set-NetFirewallApplicationFilter NetSecurity
Function Set-NetFirewallInterfaceFilter NetSecurity
Function Set-NetFirewallInterfaceTypeFilter NetSecurity
Function Set-NetFirewallPortFilter NetSecurity
Function Set-NetFirewallProfile NetSecurity
Function Set-NetFirewallRule NetSecurity
Function Set-NetFirewallSecurityFilter NetSecurity
Function Set-NetFirewallServiceFilter NetSecurity
Function Set-NetFirewallSetting NetSecurity
Function Set-NetIPAddress NetTCPIP
Function Set-NetIPHttpsConfiguration NetworkTransition
Function Set-NetIPInterface NetTCPIP
Function Set-NetIPsecDospSetting NetSecurity
Function Set-NetIPsecMainModeCryptoSet NetSecurity
Function Set-NetIPsecMainModeRule NetSecurity
Function Set-NetIPsecPhase1AuthSet NetSecurity
Function Set-NetIPsecPhase2AuthSet NetSecurity
Function Set-NetIPsecQuickModeCryptoSet NetSecurity
Function Set-NetIPsecRule NetSecurity
Function Set-NetIPv4Protocol NetTCPIP
Function Set-NetIPv6Protocol NetTCPIP
Function Set-NetIsatapConfiguration NetworkTransition
Function Set-NetLbfoTeam NetLbfo
Function Set-NetLbfoTeamMember NetLbfo
Function Set-NetLbfoTeamNic NetLbfo
Function Set-NetNatTransitionConfiguration NetworkTransition
Function Set-NetNeighbor NetTCPIP
Function Set-NetOffloadGlobalSetting NetTCPIP
Function Set-NetQosPolicy NetQos
Function Set-NetRoute NetTCPIP
Function Set-NetTCPSetting NetTCPIP
Function Set-NetTeredoConfiguration NetworkTransition
Function Set-NetUDPSetting NetTCPIP
Function Set-NetVirtualizationCustomerRoute NetWNV
Function Set-NetVirtualizationGlobal NetWNV
Function Set-NetVirtualizationLookupRecord NetWNV
Function Set-NetVirtualizationProviderAddress NetWNV
Function Set-NetVirtualizationProviderRoute NetWNV
Function Set-OdbcDriver Wdac
Function Set-OdbcDsn Wdac

 CHAPTER 2 Using Windows PowerShell Cmdlets 41

Function Set-Partition Storage
Function Set-PhysicalDisk Storage
Function Set-PrintConfiguration PrintManagement
Function Set-Printer PrintManagement
Function Set-PrinterProperty PrintManagement
Function Set-Profile
Function Set-Profile PowerShellISEM...
Function Set-PsConsole
Function Set-PSConsoleFont
Function Set-PsISE MenuModule
Function Set-ResiliencySetting Storage
Function Set-ScheduledTask ScheduledTasks
Function Set-SmbClientConfiguration SmbShare
Function Set-SmbServerConfiguration SmbShare
Function Set-SmbShare SmbShare
Function Set-StoragePool Storage
Function Set-StorageSetting Storage
Function Set-StorageSubSystem Storage
Function Set-VirtualDisk Storage
Function Set-Volume Storage
Function Set-VolumeScrubPolicy Storage
Function Set-VpnConnection VpnClient
Function Set-VpnConnectionProxy VpnClient
Cmdlet Select-Object Microsoft.Powe...
Cmdlet Select-String Microsoft.Powe...
Cmdlet Select-Xml Microsoft.Powe...
Cmdlet Send-DtcDiagnosticTransaction MsDtc
Cmdlet Send-MailMessage Microsoft.Powe...
Cmdlet Set-Acl Microsoft.Powe...
Cmdlet Set-Alias Microsoft.Powe...
Cmdlet Set-AppLockerPolicy AppLocker
Cmdlet Set-AuthenticodeSignature Microsoft.Powe...
Cmdlet Set-BitsTransfer BitsTransfer
Cmdlet Set-CertificateAutoEnrollmentPolicy PKI
Cmdlet Set-CimInstance CimCmdlets
Cmdlet Set-Content Microsoft.Powe...
Cmdlet Set-Culture International
Cmdlet Set-Date Microsoft.Powe...
Cmdlet Set-ExecutionPolicy Microsoft.Powe...
Cmdlet Set-Item Microsoft.Powe...
Cmdlet Set-ItemProperty Microsoft.Powe...
Cmdlet Set-JobTrigger PSScheduledJob
Cmdlet Set-KdsConfiguration Kds
Cmdlet Set-Location Microsoft.Powe...
Cmdlet Set-PSBreakpoint Microsoft.Powe...
Cmdlet Set-PSDebug Microsoft.Powe...
Cmdlet Set-PSSessionConfiguration Microsoft.Powe...
Cmdlet Set-ScheduledJob PSScheduledJob
Cmdlet Set-ScheduledJobOption PSScheduledJob
Cmdlet Set-SecureBootUEFI SecureBoot
Cmdlet Set-Service Microsoft.Powe...
Cmdlet Set-StrictMode Microsoft.Powe...
Cmdlet Set-TpmOwnerAuth TrustedPlatfor...
Cmdlet Set-TraceSource Microsoft.Powe...
Cmdlet Set-Variable Microsoft.Powe...
Cmdlet Set-VHD Hyper-V

42 Windows PowerShell 3 Step by Step

Cmdlet Set-VM Hyper-V
Cmdlet Set-VMBios Hyper-V
Cmdlet Set-VMComPort Hyper-V
Cmdlet Set-VMDvdDrive Hyper-V
Cmdlet Set-VMFibreChannelHba Hyper-V
Cmdlet Set-VMFloppyDiskDrive Hyper-V
Cmdlet Set-VMHardDiskDrive Hyper-V
Cmdlet Set-VMHost Hyper-V
Cmdlet Set-VMMemory Hyper-V
Cmdlet Set-VMMigrationNetwork Hyper-V
Cmdlet Set-VMNetworkAdapter Hyper-V
Cmdlet Set-VMNetworkAdapterFailoverConfiguration Hyper-V
Cmdlet Set-VMNetworkAdapterVlan Hyper-V
Cmdlet Set-VMProcessor Hyper-V
Cmdlet Set-VMRemoteFx3dVideoAdapter Hyper-V
Cmdlet Set-VMReplication Hyper-V
Cmdlet Set-VMReplicationAuthorizationEntry Hyper-V
Cmdlet Set-VMReplicationServer Hyper-V
Cmdlet Set-VMResourcePool Hyper-V
Cmdlet Set-VMSan Hyper-V
Cmdlet Set-VMSwitch Hyper-V
Cmdlet Set-VMSwitchExtensionPortFeature Hyper-V
Cmdlet Set-VMSwitchExtensionSwitchFeature Hyper-V
Cmdlet Set-WinAcceptLanguageFromLanguageListOptOut International
Cmdlet Set-WinCultureFromLanguageListOptOut International
Cmdlet Set-WinDefaultInputMethodOverride International
Cmdlet Set-WindowsEdition Dism
Cmdlet Set-WindowsProductKey Dism
Cmdlet Set-WinHomeLocation International
Cmdlet Set-WinLanguageBarOption International
Cmdlet Set-WinSystemLocale International
Cmdlet Set-WinUILanguageOverride International
Cmdlet Set-WinUserLanguageList International
Cmdlet Set-WmiInstance Microsoft.Powe...
Cmdlet Set-WSManInstance Microsoft.WSMa...
Cmdlet Set-WSManQuickConfig Microsoft.WSMa...

8. Use the gcm alias and specify the -noun argument. Use o* for the noun. This is shown here:

gcm -noun o*

The previous command will return all the cmdlets that contain a noun that begins with the
letter o. This result is as follows:

CommandType Name ModuleName
----------- ---- ----------
Function Add-OdbcDsn Wdac
Function Disable-OdbcPerfCounter Wdac
Function Enable-OdbcPerfCounter Wdac
Function Get-OdbcDriver Wdac
Function Get-OdbcDsn Wdac
Function Get-OdbcPerfCounter Wdac
Function Get-OffloadDataTransferSetting Storage
Function Get-OptimalSize BasicFunctions
Function Remove-OdbcDsn Wdac
Function Set-OdbcDriver Wdac

 CHAPTER 2 Using Windows PowerShell Cmdlets 43

Function Set-OdbcDsn Wdac
Cmdlet Compare-Object Microsoft.Powe...
Cmdlet ForEach-Object Microsoft.Powe...
Cmdlet Group-Object Microsoft.Powe...
Cmdlet Measure-Object Microsoft.Powe...
Cmdlet New-Object Microsoft.Powe...
Cmdlet Register-ObjectEvent Microsoft.Powe...
Cmdlet Select-Object Microsoft.Powe...
Cmdlet Sort-Object Microsoft.Powe...
Cmdlet Tee-Object Microsoft.Powe...
Cmdlet Where-Object Microsoft.Powe...
Cmdlet Write-Output Microsoft.Powe...

9. Retrieve only the syntax of the Get-Command cmdlet by specifying the -syntax argument. Use
the gcm alias to do this, as shown here:

gcm -syntax Get-Command

The syntax of the Get-Command cmdlet is returned by the previous command. The output is
as follows:

Get-Command [[-ArgumentList] <Object[]>] [-Verb <String[]>] [-Noun <String[]>]
[-PSSnapin <String[]>] [-TotalCount <Int32>] [-Syntax] [-Verbose] [-Debug]
 [-ErrorAction <ActionPreference>] [-ErrorVariable <String>] [-OutVariable <String>]
[-OutBuffer <Int32>]
Get-Command [[-Name] <String[]>] [[-ArgumentList] <Object[]>] [-CommandType
<CommandTypes>]
 [-TotalCount <Int32>] [-Syntax] [-Verbose] [-Debug] [-ErrorAction
<ActionPreference>] [-ErrorVariable <String>] [-OutVariable <String>] [-OutBuffer
<Int32>]

10. Try to use only aliases to repeat the Get-Command syntax command to retrieve the syntax of
the Get-Command cmdlet. This is shown here:

gcm -syntax gcm

The result of this command is not the nice syntax description of the previous command. The
rather disappointing result is as follows:

Get-Command

This concludes the procedure for finding commands by using the Get-Command cmdlet.

Quick Check
Q. To retrieve a definition of the Get-Command cmdlet, using the dotted notation, what com-
mand would you use?

A. (gcm Get-Command).definition

44 Windows PowerShell 3 Step by Step

Using the Get-Member cmdlet

The Get-Member cmdlet retrieves information about the members of objects. Although this may
not seem very exciting, remember that because everything returned from a cmdlet is an object,
you can use the Get-Member cmdlet to examine the methods and properties of objects. When
the Get-Member cmdlet is used with Get-ChildItem on the file system, it returns a listing of all the
methods and properties available to work with the DirectoryInfo and FileInfo objects.

Objects, properties, and methods
One of the fundamental features of Windows PowerShell is that cmdlets return objects. An
object is a thing that gives us the ability to either describe something or do something. If
you are not going to describe or do something, then there is no reason to create the object.
Depending on the circumstances, you may be more interested in the methods or the proper-
ties. As an example, let’s consider rental cars. I used to travel a great deal when I was a consul-
tant at Microsoft, and I often needed to obtain a rental car.

To put this into programming terms, when I got to the airport, I would go to the rental
car counter, and I would use the New-Object cmdlet to create a rentalCAR object. When I
used this cmdlet, I was only interested in the methods available from the rentalCAR object.
I needed to use the DriveDowntheRoad method, the StopAtaRedLight method, and perhaps
the PlayNiceMusic method. I was not, however, interested in the properties of the rentalCAR
object.

At home, I have a cute little sports car. It has exactly the same methods as the rentalCAR
object, but I created the sportsCAR object primarily because of its properties. It is green and
has alloy rims, a convertible top, and a 3.5-liter engine. Interestingly enough, it has exactly
the same methods as the rentalCAR object. It also has the DriveDowntheRoad method, the
StopAtaRedLight method, and the PlayNiceMusic method, but the deciding factor in creating
the sportsCAR object was the properties, not the methods.

Using the Get-Member cmdlet to examine properties
and methods
In a Windows PowerShell prompt, enter the Get-ChildItem cmdlet followed by the path to a folder,
and pipe it to the Get-Member cmdlet. Here’s an example:

Get-ChildItem C:\ | Get-Member

 CHAPTER 2 Using Windows PowerShell Cmdlets 45

Using the Get-Member cmdlet

1. Open Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings folder.

2. Use an alias to refer to the Get-Alias cmdlet. To find the correct alias, use the Get-Alias cmdlet
as follows:

Get-Alias g*

3. After you have retrieved the alias for the Get-Alias cmdlet, use it to find the alias for the
Get-Member cmdlet. One way to do this is to use the following command, simply using gal in
place of the Get-Alias name you used in the previous command:

gal g*

The listing of aliases defined that begin with the letter g appears as a result of the previous
command. The output is shown here:

CommandType Name ModuleName
----------- ---- ----------
Alias gal -> Get-Alias
Alias gbp -> Get-PSBreakpoint
Alias gc -> Get-Content
Alias gci -> Get-ChildItem
Alias gcm -> Get-Command
Alias gcs -> Get-PSCallStack
Alias gdr -> Get-PSDrive
Alias ghy -> Get-History
Alias gi -> Get-Item
Alias gjb -> Get-Job
Alias gl -> Get-Location
Alias gm -> Get-Member
Alias gmo -> Get-Module
Alias gp -> Get-ItemProperty
Alias gps -> Get-Process
Alias group -> Group-Object
Alias gsn -> Get-PSSession
Alias gsnp -> Get-PSSnapin
Alias gsv -> Get-Service
Alias gu -> Get-Unique
Alias gv -> Get-Variable
Alias gwck -> Get-WmiKey HSGWMImoduleV6
Alias gwcm -> Get-WmiClassMethods HSGWMImoduleV6
Alias gwcp -> Get-WmiClassProperties HSGWMImoduleV6
Alias gwcq -> Get-WMIClassesWithQualifiers HSGWMImoduleV6
Alias gwkv -> Get-WmiKeyvalue HSGWMImoduleV6
Alias gwmi -> Get-WmiObject
Alias gwq -> Get-WmiClassesAndQuery HSGWMImoduleV6

46 Windows PowerShell 3 Step by Step

4. Use the gal alias to obtain a listing of all aliases that begin with the letter g. Pipe the results to
the Sort-Object cmdlet and sort on the property attribute called definition. This is shown here:

gal g* |Sort-Object -property definition

The listings of cmdlets that begin with the letter g are now sorted, and the results of the com-
mand are as follows:

CommandType Name ModuleName
----------- ---- ----------
Alias gal -> Get-Alias
Alias gci -> Get-ChildItem
Alias gcm -> Get-Command
Alias gc -> Get-Content
Alias ghy -> Get-History
Alias gi -> Get-Item
Alias gp -> Get-ItemProperty
Alias gjb -> Get-Job
Alias gl -> Get-Location
Alias gm -> Get-Member
Alias gmo -> Get-Module
Alias gps -> Get-Process
Alias gbp -> Get-PSBreakpoint
Alias gcs -> Get-PSCallStack
Alias gdr -> Get-PSDrive
Alias gsn -> Get-PSSession
Alias gsnp -> Get-PSSnapin
Alias gsv -> Get-Service
Alias gu -> Get-Unique
Alias gv -> Get-Variable
Alias gwq -> Get-WmiClassesAndQuery HSGWMImoduleV6
Alias gwcq -> Get-WMIClassesWithQualifiers HSGWMImoduleV6
Alias gwcm -> Get-WmiClassMethods HSGWMImoduleV6
Alias gwcp -> Get-WmiClassProperties HSGWMImoduleV6
Alias gwck -> Get-WmiKey HSGWMImoduleV6
Alias gwkv -> Get-WmiKeyvalue HSGWMImoduleV6
Alias gwmi -> Get-WmiObject
Alias group -> Group-Object

5. Use the alias for the Get-ChildItem cmdlet and pipe the output to the alias for the Get-Member
cmdlet. This is shown here:

gci | gm

6. To only see properties available for the Get-ChildItem cmdlet, use the -membertype argument
and supply a value of property. Use tab completion this time, rather than the gci | gm alias.
This is shown here:

Get-ChildItem -Force | Get-Member -membertype property

 CHAPTER 2 Using Windows PowerShell Cmdlets 47

The output from this command is shown here:

 TypeName: System.IO.DirectoryInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property datetime CreationTime {get;set;}
CreationTimeUtc Property datetime CreationTimeUtc {get;set;}
Exists Property bool Exists {get;}
Extension Property string Extension {get;}
FullName Property string FullName {get;}
LastAccessTime Property datetime LastAccessTime {get;set;}
LastAccessTimeUtc Property datetime LastAccessTimeUtc {get;set;}
LastWriteTime Property datetime LastWriteTime {get;set;}
LastWriteTimeUtc Property datetime LastWriteTimeUtc {get;set;}
Name Property string Name {get;}
Parent Property System.IO.DirectoryInfo Parent {get;}
Root Property System.IO.DirectoryInfo Root {get;}

 TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property datetime CreationTime {get;set;}
CreationTimeUtc Property datetime CreationTimeUtc {get;set;}
Directory Property System.IO.DirectoryInfo Directory {get;}
DirectoryName Property string DirectoryName {get;}
Exists Property bool Exists {get;}
Extension Property string Extension {get;}
FullName Property string FullName {get;}
IsReadOnly Property bool IsReadOnly {get;set;}
LastAccessTime Property datetime LastAccessTime {get;set;}
LastAccessTimeUtc Property datetime LastAccessTimeUtc {get;set;}
LastWriteTime Property datetime LastWriteTime {get;set;}
LastWriteTimeUtc Property datetime LastWriteTimeUtc {get;set;}
Length Property long Length {get;}
Name Property string Name {get;}

7. Use the -membertype parameter of the Get-Member cmdlet to view the methods available
from the object returned by the Get-ChildItem cmdlet. To do this, supply a value of method to
the -membertype parameter, as follows:

Get-ChildItem | Get-Member -membertype method

48 Windows PowerShell 3 Step by Step

8. The output from the previous list returns all the methods defined for the Get-ChildItem cmd-
let. This output is shown here:

 TypeName: System.IO.DirectoryInfo

Name MemberType Definition
---- ---------- ----------
Create Method void Create(), void Create(System.Security.A...
CreateObjRef Method System.Runtime.Remoting.ObjRef CreateObjRef(...
CreateSubdirectory Method System.IO.DirectoryInfo CreateSubdirectory(s...
Delete Method void Delete(), void Delete(bool recursive)
EnumerateDirectories Method System.Collections.Generic.IEnumerable[Syste...
EnumerateFiles Method System.Collections.Generic.IEnumerable[Syste...
EnumerateFileSystemInfos Method System.Collections.Generic.IEnumerable[Syste...
Equals Method bool Equals(System.Object obj)
GetAccessControl Method System.Security.AccessControl.DirectorySecur...
GetDirectories Method System.IO.DirectoryInfo[] GetDirectories(), ...
GetFiles Method System.IO.FileInfo[] GetFiles(string searchP...
GetFileSystemInfos Method System.IO.FileSystemInfo[] GetFileSystemInfo...
GetHashCode Method int GetHashCode()
GetLifetimeService Method System.Object GetLifetimeService()
GetObjectData Method void GetObjectData(System.Runtime.Serializat...
GetType Method type GetType()
InitializeLifetimeService Method System.Object InitializeLifetimeService()
MoveTo Method void MoveTo(string destDirName)
Refresh Method void Refresh()
SetAccessControl Method void SetAccessControl(System.Security.Access...
ToString Method string ToString()

9. Use the up arrow key in the Windows PowerShell console to retrieve the previous
Get-ChildItem | Get-Member -MemberType method command, and change the value method
to m* to use a wildcard to retrieve the methods. The output will be exactly the same as the
previous listing of members because the only member type beginning with the letter m on
the Get-ChildItem cmdlet is the MemberType method. The command is as follows:

Get-ChildItem | Get-Member -membertype m*

10. Use the -inputobject argument to the Get-Member cmdlet to retrieve member definitions of
each property or method in the list. The command to do this is as follows:

Get-Member -inputobject Get-ChildItem

The output from the previous command is shown here:

PS C:\> Get-Member -inputobject Get-ChildItem

 TypeName: System.String

 CHAPTER 2 Using Windows PowerShell Cmdlets 49

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone()
CompareTo Method System.Int32 CompareTo(Object value),...
Contains Method System.Boolean Contains(String value)
CopyTo Method System.Void CopyTo(Int32 sourceIndex,...
EndsWith Method System.Boolean EndsWith(String value)...
Equals Method System.Boolean Equals(Object obj), Sy...
GetEnumerator Method System.CharEnumerator GetEnumerator()
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
get_Chars Method System.Char get_Chars(Int32 index)
get_Length Method System.Int32 get_Length()
IndexOf Method System.Int32 IndexOf(Char value, Int3...
IndexOfAny Method System.Int32 IndexOfAny(Char[] anyOf,...
Insert Method System.String Insert(Int32 startIndex...
IsNormalized Method System.Boolean IsNormalized(), System...
LastIndexOf Method System.Int32 LastIndexOf(Char value, ...
LastIndexOfAny Method System.Int32 LastIndexOfAny(Char[] an...
Normalize Method System.String Normalize(), System.Str...
PadLeft Method System.String PadLeft(Int32 totalWidt...
PadRight Method System.String PadRight(Int32 totalWid...
Remove Method System.String Remove(Int32 startIndex...
Replace Method System.String Replace(Char oldChar, C...
Split Method System.String[] Split(Params Char[] s...
StartsWith Method System.Boolean StartsWith(String valu...
Substring Method System.String Substring(Int32 startIn...
ToCharArray Method System.Char[] ToCharArray(), System.C...
ToLower Method System.String ToLower(), System.Strin...
ToLowerInvariant Method System.String ToLowerInvariant()
ToString Method System.String ToString(), System.Stri...
ToUpper Method System.String ToUpper(), System.Strin...
ToUpperInvariant Method System.String ToUpperInvariant()
Trim Method System.String Trim(Params Char[] trim...
TrimEnd Method System.String TrimEnd(Params Char[] t...
TrimStart Method System.String TrimStart(Params Char[]...
Chars ParameterizedProperty System.Char Chars(Int32 index) {get;}
Length Property System.Int32 Length {get;}

This concludes the procedure for using the Get-Member cmdlet.

Quick Check
Q. To retrieve a listing of aliases beginning with the letter g that is sorted on the -definition
property, what command would you use?

a. gal g* | Sort-Object -property definition

50 Windows PowerShell 3 Step by Step

Using the New-Object cmdlet

The use of objects in Windows PowerShell provides many exciting opportunities to do things that are
not built into the PowerShell. You may recall from using VBScript that there is an object called the
wshShell object. If you are not familiar with this object, see Figure 2-7, which shows a drawing of the
object model.

FIGURE 2-7 The VBScript wshShell object contributes many easy-to-use methods and properties for the network
administrator.

Creating and Using the wshShell Object
To create a new instance of the wshShell object, use the New-Object cmdlet while specifying the
-comobject argument and supplying the program ID of wscript.shell. Hold the object created in a vari-
able. Here’s an example:

$wshShell = New-Object -comobject "wscript.shell":

 CHAPTER 2 Using Windows PowerShell Cmdlets 51

After the object has been created and stored in a variable, you can directly use any of the methods
that are provided by the object. This is shown in the two lines of code that follow:

$wshShell = New-Object -comobject "wscript.shell"
$wshShell.run("calc.exe")

In this code, you use the New-Object cmdlet to create an instance of the wshShell object. You then
use the run method to launch Calculator. After the object is created and stored in the variable, you
can use tab completion to suggest the names of the methods contained in the object. This is shown in
Figure 2-8.

FIGURE 2-8 Tab completion enumerates methods provided by the object.

Creating the wshShell object

1. Open Windows PowerShell by choosing Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings folder.

2. Create an instance of the wshShell object by using the New-Object cmdlet. Supply the
-comobject argument to the cmdlet and specify the program ID for the wshShell object, which
is wscript.shell. Assign the result of the New-Object cmdlet to the variable $wshShell. The code
to do this is as follows:

$wshShell = New-Object -comobject "wscript.shell"

3. Launch an instance of Calculator by using the run method from the wshShell object. Use tab
completion to avoid having to type the entire name of the method. To use the method, begin
the line with the variable you used to hold the wshShell object, followed by a period and the
name of the method. Then supply the name of the program to run inside parentheses and
quotes, as shown here:

$wshShell.run("Calc.exe")

4. Use the ExpandEnvironmentStrings method to print out the path to the Windows directory. It
is stored in an environment variable called %windir%. The tab-completion feature of Windows
PowerShell is useful for this method name. The environment variable must be enclosed in
quotation marks, as shown here:

$wshShell.ExpandEnvironmentStrings("%windir%")

52 Windows PowerShell 3 Step by Step

5. This command reveals the full path to the Windows directory on your machine. On my com-
puter, the output looks like the following:

C:\WINDOWS

Using the Show-Command cmdlet

The Show-Command cmdlet displays a graphical command picker that enables you to select cmdlets
from a list. At first glance, the Show-Command cmdlet might appear to be a graphical version of the
Get-Command cmdlet, but it is actually much more. The first indication of this is that it blocks the
Windows PowerShell console—that is, control to the Windows PowerShell console does not return
until you have either selected a command from the picker or canceled the operation.

When you run the Show-Command cmdlet with no parameters, a window 600 pixels high and 300
pixels wide appears. You can control the size of the window by using the -Height and -Width param-
eters. The following command creates a command window 500 pixels high and 350 pixels wide.

Show-Command -Height 500 -Width 350

The command window created by the this command appears in Figure 2-9.

FIGURE 2-9 The Show-Command cmdlet displays all commands from all modules by default.

To retrieve a specific command, supply the name of a specific cmdlet when calling the Show-
Command cmdlet. This technique appears here:

Show-Command -Height 500 -Name Get-Process

 CHAPTER 2 Using Windows PowerShell Cmdlets 53

When the command dialog box appears, use the check boxes to enable switched parameters, and
the rectangular boxes to supply values for other parameters. This technique appears in Figure 2-10.

FIGURE 2-10 Use the check boxes to add switched parameters to a command and the rectangular boxes to add
values for parameters in the command dialog box.

Once you have the created the command you wish to use, you can either copy the command to
the clipboard or run the command. If you choose to run it, the Windows PowerShell console displays
both the created command and the output from the command. This appears in Figure 2-11.

FIGURE 2-11 Both the created command and the output from that command return to the Windows
PowerShell console when using the Show-Command cmdlet.

54 Windows PowerShell 3 Step by Step

Windows PowerShell cmdlet naming helps you learn

One of the great things about Windows PowerShell is the verb-noun naming convention. In Windows
PowerShell, the verbs indicate an action to perform, such as set to make a change or get to retrieve
a value. The noun indicates the item with which to work, such as a process or a service. By master-
ing the verb-noun naming convention, you can quickly hypothesize what a prospective command
might be called. For example, if you need to obtain information about a process, and you know that
Windows PowerShell uses the verb get to retrieve information, you can surmise that the command
might be called Get-Process. To obtain information about services, you could try Get-Service, and
once again you would be correct.

note When guessing Windows PowerShell cmdlet names, always try the singular form first.
Windows PowerShell convention uses the singular form of nouns. It is not a design require-
ment, but it is a strong preference. For example, the cmdlets are named Get-Service and
Get-Process, not Get-Services and Get-Processes.

To see the list of approved verbs, use the Get-Verb cmdlet:

Get-Verb

There are 98 approved verbs in Windows PowerShell 3.0. This number increases the 96 approved
verbs from Windows PowerShell 2.0 by only 2 new verbs. The new verbs are use and unprotect. This
appears in the command that follows, where the Measure-Object cmdlet returns the count of the dif-
ferent verbs.

PS C:\> (Get-Verb | Measure-Object).count
98

But you do not need to add the Measure-Object cmdlet to the previous command because the
Get-Verb cmdlet returns an array. Array objects always contain a count property. Therefore, an easier
form of the command appears here:

PS C:\> (Get-verb).count
98

Windows PowerShell verb grouping
While learning 100 different verbs might be difficult, the Windows PowerShell team grouped the
verbs together to make them easier to learn. For example, analyzing the common verbs reveals a
pattern. The common verbs appear here:

PS C:\> Get-Verb | where group -match 'common' | Format-Wide verb -auto
Add Clear Close Copy Enter Exit Find Format Get
Hide Join Lock Move New Open Optimize Pop Push
Redo Remove Rename Reset Resize Search Select Set Show
Skip Split Step Switch Undo Unlock Watch

 CHAPTER 2 Using Windows PowerShell Cmdlets 55

The pattern to the verbs emerges when you analyze them: Add/Remove, Enter/Exit, Get/Set, Select/
Skip, Lock/Unlock, Push/Pop, and so on. By learning the pattern of opposite verbs, you quickly gain a
handle on the Windows PowerShell naming convention. Not every verb has an opposite partner, but
there are enough that it makes sense to look for them.

By using the Windows PowerShell verb grouping, you can determine where to focus your efforts.
The PowerShell team separated the verbs into seven different groups based on common IT tasks,
such as working with data and performing diagnostics. The following command lists the Windows
PowerShell verb grouping:

PS C:\> Get-Verb | select group -Unique
Group

Common
Data
Lifecycle
Diagnostic
Communications
Security
Other

Windows PowerShell verb distribution
Another way to get a better handle on the Windows PowerShell cmdlets is to analyze the verb distri-
bution. While there are nearly 100 different approved verbs (as well as a variety of unapproved ones),
you’ll typically only use a fraction of them often in a standard Windows PowerShell installation, and
some not at all. If you use the Group-Object cmdlet (which has an alias of group) and the Sort-Object
cmdlet (which has an alias of sort), the distribution of the cmdlets quickly becomes evident. The fol-
lowing command shows the verb distribution:

Get-Command -CommandType cmdlet | group verb | sort count –Descending

note The exact number of Windows PowerShell cmdlets and the exact distribution of
Windows PowerShell cmdlet verbs and nouns depend on the version of the operating
system used, as well as which features are enabled on the operating system. In addition,
the installation of certain programs and applications adds additional Windows PowerShell
cmdlets. Therefore, when following along with this section, your numbers probably will not
exactly match what appears here. This is fine, and does not indicate a problem with the
command or your installation.

56 Windows PowerShell 3 Step by Step

Figure 2-12 shows the command and the associated output.

FIGURE 2-12 Using Get-Command to display the Windows PowerShell verbs.

The output shown in Figure 2-12 makes it clear that most cmdlets only use a few of the verbs. For
instance, of 436 cmdlets on my particular machines, 278 of the cmdlets use 1 of only 10 different
verbs. This appears here:

PS C:\> (Get-Command -CommandType cmdlet | measure).count
436
PS C:\> $count = 0 ; Get-Command -CommandType cmdlet | group verb | sort count -Descending
 | select -First 10 | % { $count += $_.count ; $count }
94
142
180
210
225
236
247
258
268
278

Therefore, all you need to do is master the 10 different verbs listed earlier and you will have a
good handle on more than one-half of the cmdlets that ship with Windows PowerShell 3.0.

 CHAPTER 2 Using Windows PowerShell Cmdlets 57

Creating a Windows PowerShell profile

As you create various aliases and functions, you may decide you like a particular keystroke combi-
nation and wish you could use your definition without always having to create it each time you run
Windows PowerShell.

tip I recommend reviewing the listing of all the aliases defined within Windows PowerShell
before creating very many new aliases. The reason is that it will be easy, early on, to create
duplicate settings (with slight variations).

Of course, you could create your own script that would perform your configuration if you remem-
ber to run it; however, what if you wish to have a more standardized method of working with your
profile? To do this, you need to create a custom profile that will hold your settings. The really useful
feature of creating a Windows PowerShell profile is that after the profile is created, it loads automati-
cally when PowerShell is launched.

note A Windows PowerShell profile is a Windows PowerShell script that runs each time
Windows PowerShell starts. Windows PowerShell does not enable script support by default.
In a network situation, the Windows PowerShell script execution policy may be determined
by your network administrator via group policy. In a workgroup, or at home, the execu-
tion policy is not determined via group policy. For information about enabling Windows
PowerShell script execution, see Chapter 5, “Using PowerShell Scripts.”

The steps for creating a Windows PowerShell profile appear next.

Creating a personal Windows PowerShell profile

1. In a Windows PowerShell console, check your script execution policy:

Get-ExecutionPolicy

2. If the script execution policy is restricted, change it to remotesigned, but only for the current
user:

Set-ExecutionPolicy -Scope currentuser -ExecutionPolicy remotesigned

3. Review the description about Windows PowerShell execution policies, and enter Y to agree to
make the change.

58 Windows PowerShell 3 Step by Step

4. In a Windows PowerShell prompt, determine whether a profile exists by using the following
command (by default, the Windows PowerShell profile does not exist):

 Test-Path $profile

5. If tests-profile returns false, create a new profile file by using the following command:

 New-Item -path $profile -itemtype file -force

6. Open the profile file in the Windows PowerShell ISE by using the following command:

 ise $profile

7. Create an alias in the profile named gh that resolves to the Get-Help cmdlet. This command
appears here:

 Set-Alias gh Get-Help

8. Create a function that edits your Windows PowerShell console profile. This function appears
here:

Function Set-Profile
{
 Ise $profile
}

9. Start the Windows PowerShell Transcript command via the Windows PowerShell profile. To do
this, add the Start-Transcript cmdlet as it appears here (the Start-Transcript cmdlet creates a
record of all Windows PowerShell commands, as well as the output from those commands).

Start-Transcript

10. Save the modifications to the Windows PowerShell console profile by pressing the Save icon in
the tool bar, or by choosing Save from the File menu.

11. Close the Windows PowerShell ISE and close the Windows PowerShell console.

12. Open the Windows PowerShell console. You should now see the output in the console from
starting the Windows PowerShell transcript utility.

13. Test the newly created gh alias.

14. Open the profile in the Windows PowerShell ISE by using the newly created Set-Profile
function.

15. Review the Windows PowerShell profile and close the Windows PowerShell ISE.

This concludes the exercise on creating a Windows PowerShell profile.

 CHAPTER 2 Using Windows PowerShell Cmdlets 59

Finding all aliases for a particular object
If you know the name of an object and you would like to retrieve all aliases for that object, you can
use the Get-Alias cmdlet to retrieve the list of all aliases. Then you need to pipe the results to the
Where-Object cmdlet and specify the value for the definition property. An example of doing this for
the Get-ChildItem cmdlet is as follows:

gal | Where definition -match "Get-ChildItem"

Working with cmdlets: step-by-step exercises

In the following exercise, you’ll explore the use of the Get-ChildItem and Get-Member cmdlets in
Windows PowerShell. You’ll see that it is easy to use these cmdlets to automate routine administrative
tasks. You’ll also continue to experiment with the pipelining feature of Windows PowerShell.

Working with the Get-ChildItem and Get-Member cmdlets

1. Open the Windows PowerShell console.

2. Use the Get-Alias cmdlet to retrieve a listing of all the aliases defined on the computer. Pipe
this output to a Where-Object cmdlet. Specify a -match argument against the definition
property that matches the name of the Get-ChildItem cmdlet. The code is as follows:

gal | Where definition -match "Get-ChildItem"

The results from the previous command show three aliases defined for the Get-ChildItem
cmdlet:

CommandType Name ModuleName
----------- ---- ----------
Alias dir -> Get-ChildItem
Alias gci -> Get-ChildItem
Alias ls -> Get-ChildItem

3. Using the gci alias for the Get-ChildItem cmdlet, obtain a listing of files and folders contained
in the root directory. Type gci at the prompt.

4. To identify large files more quickly, pipe the output to a Where-Object cmdlet, and specify the
-gt argument with a value of 1000 to evaluate the length property. This is shown here:

gci | Where length -gt 1000

5. To remove the data cluttering your Windows PowerShell window, use cls to clear the screen.

6. Use the Get-Alias cmdlet to resolve the cmdlet to which the cls alias points. You can use the
gal alias to avoid typing Get-Alias if you wish. This is shown here:

gal cls

60 Windows PowerShell 3 Step by Step

7. Use the Get-Alias cmdlet to resolve the cmdlet to which the mred alias points. This is shown
here:

gal mred

8. It is likely that no mred alias is defined on your machine. In this case, you will see the following
error message:

gal : This command cannot find a matching alias because an alias with the name
'mred' does not exist.
At line:1 char:1
+ gal mred
+ ~~~~~~~~
 + CategoryInfo : ObjectNotFound: (mred:String) [Get-Alias],
 ItemNotFoundException
 + FullyQualifiedErrorId : ItemNotFoundException,Microsoft.PowerShell.Commands.
GetAliasCommand

9. Use the Clear-Host cmdlet to clear the screen. This is shown here:

clear-host

10. Use the Get-Member cmdlet to retrieve a list of properties and methods from the
Get-ChildItem cmdlet. This is shown here:

Get-ChildItem | Get-Member -membertype property

11. The output from the preceding command is shown following. Examine the output, and
identify a property that could be used with a Where-Object cmdlet to find the date when files
were modified.

 TypeName: System.IO.DirectoryInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property datetime CreationTime {get;set;}
CreationTimeUtc Property datetime CreationTimeUtc {get;set;}
Exists Property bool Exists {get;}
Extension Property string Extension {get;}
FullName Property string FullName {get;}
LastAccessTime Property datetime LastAccessTime {get;set;}
LastAccessTimeUtc Property datetime LastAccessTimeUtc {get;set;}
LastWriteTime Property datetime LastWriteTime {get;set;}
LastWriteTimeUtc Property datetime LastWriteTimeUtc {get;set;}
Name Property string Name {get;}
Parent Property System.IO.DirectoryInfo Parent {get;}
Root Property System.IO.DirectoryInfo Root {get;}

12. Use the Where-Object cmdlet and include the LastWriteTime property, as follows:

Get-ChildItem | Where LastWriteTime

 CHAPTER 2 Using Windows PowerShell Cmdlets 61

13. Use the up arrow in the Windows PowerShell console and bring the previous command back
up on the command line. Now specify the -gt argument and choose a recent date from your
previous list of files, so you can ensure the query will return a result. My command looks like
the following:

Get-ChildItem | Where LastWriteTime -gt "12/25/2011"

14. Use the up arrow and retrieve the previous command. Now direct the Get-ChildItem cmdlet to
a specific folder on your hard drive, such as C:\fso, which may have been created in the step-
by-step exercise in Chapter 1. You can, of course, use any folder that exists on your machine.
This command will look like the following:

Get-ChildItem "C:\fso"| Where LastWriteTime -gt "12/25/2011"

15. Once again, use the up arrow and retrieve the previous command. Add the -recurse argu-
ment to the Get-ChildItem cmdlet. If your previous folder was not nested, then you may want
to change to a different folder. You can, of course, use your Windows folder, which is rather
deeply nested. I used my VBScript workshop folder, and the command is shown here:

Get-ChildItem -Recurse C:\Windows | where lastwritetime -gt "12/12/11"

This concludes this step-by-step exercise.

In the following exercise, you’ll create a couple of COM-based objects.

One step further: working with New-Object

1. Open the Windows PowerShell console.

2. Create an instance of the wshNetwork object by using the New-Object cmdlet. Use the
-comobject parameter and give it the program ID for the wshNetwork object, which is wscript.
network. Store the results in a variable called $wshnetwork. The code looks like the following:

$wshnetwork = New-Object -comobject "wscript.network"

3. Use the EnumPrinterConnections method from the wshNetwork object to print out a list of
printer connections that are defined on your local computer. To do this, use the wshNetwork
object that is contained in the $wshnetwork variable. The command for this is as follows:

$wshnetwork.EnumPrinterConnections()

4. Use the EnumNetworkDrives method from the wshNetwork object to print out a list of net-
work connections that are defined on your local computer. To do this, use the wshNetwork
object that is contained in the $wshnetwork variable. The command for this is as follows:

$wshnetwork.EnumNetworkDrives()

62 Windows PowerShell 3 Step by Step

5. Press the up arrow twice and retrieve the $wshnetwork.EnumPrinterConnections() command.
Use the $colPrinters variable to hold the collection of printers that is returned by the com-
mand. The code looks as follows:

$colPrinters = $wshnetwork.EnumPrinterConnections()

6. Use the up arrow and retrieve the $wshnetwork.EnumNetworkDrives() command. Use the
Home key to move the insertion point to the beginning of the line. Modify the command so
that it holds the collection of drives returned by the command in a variable called $colDrives.
This is shown here:

$colDrives = $wshnetwork.EnumNetworkDrives()

7. Use the $userName variable to hold the name that is returned by querying the username
property from the wshNetwork object. This is shown here:

$userName = $wshnetwork.UserName

8. Use the $userDomain variable to hold the name that is returned by querying the UserDomain
property from the wshNetwork object. This is shown here:

$userDomain = $wshnetwork.UserDomain

9. Use the $computerName variable to hold the name that is returned by querying the
ComputerName property from the wshNetwork object. This is shown here:

$computerName = $wshnetwork.ComputerName

10. Create an instance of the wshShell object by using the New-Object cmdlet. Use the -comobject
argument and give it the program ID for the wshShell object, which is wscript.shell. Store the
results in a variable called $wshShell. The code for this follows:

$wshShell = New-Object -comobject "wscript.shell"

11. Use the Popup method from the wshShell object to produce a pop-up box that displays the
domain name, user name, and computer name. The code for this follows:

$wshShell.Popup($userDomain+"\$userName on $computerName")

12. Use the Popup method from the wshShell object to produce a pop-up box that displays the
collection of printers held in the $colPrinters variable. The code is as follows:

$wshShell.Popup($colPrinters)

13. Use the Popup method from the wshShell object to produce a pop-up box that displays the
collection of drives held in the $colDrives variable. The code is as follows:

$wshShell.Popup($colDrives)

This concludes this exercise.

 CHAPTER 2 Using Windows PowerShell Cmdlets 63

Chapter 2 quick reference

To Do This

Produce a list of all the files in a folder Use the Get-ChildItem cmdlet and supply a value for the
folder.

Produce a list of all the files in a folder and in the
subfolders

Use the Get-ChildItem cmdlet, supply a value for the
folder, and specify the -recurse argument.

Produce a wide output of the results of a previous cmdlet Use the appropriate cmdlet and pipe the resulting object
to the Format-Wide cmdlet.

Produce a listing of all the methods available from the
Get-ChildItem cmdlet

Use the cmdlet and pipe the results into the Get-Member
cmdlet. Use the -membertype argument and supply the
Noun method.

Produce a pop-up box Create an instance of the wshShell object by using the
New-Object cmdlet. Use the Popup method.

Retrieve the name of the currently logged-on user Create an instance of the wshNetwork object by using the
New-Object cmdlet. Query the username property.

Retrieve a listing of all currently mapped drives Create an instance of the wshNetwork object by using
the New-Object cmdlet. Use the EnumNetworkDrives
method.

 65

C H A P T E R 3

Understanding and Using
PowerShell Providers

after completing this chapter, you will be able to:

■■ Understand the role of providers in Windows PowerShell.

■■ Use the Get-PSProvider cmdlet.

■■ Use the Get-PSDrive cmdlet.

■■ Use the New-PSDrive cmdlet.

■■ Use the Get-Item cmdlet.

■■ Use the Set-Location cmdlet.

■■ Use the file system model to access data from each of the built-in providers.

Microsoft Windows PowerShell provides a consistent way to access information external to the shell
environment. To do this, it uses providers. These providers are actually .NET programs that hide all
the ugly details to provide an easy way to access information. The beautiful thing about the way the
provider model works is that all the different sources of information are accessed in exactly the same
manner using a common set of cmdlets—Get-ChildItem, for example—to work with different types of
data. This chapter demonstrates how to leverage the PowerShell providers.

note All scripts and files mentioned in this chapter are available via the Microsoft TechNet
Script Center (http://aka.ms/powershellsbs_book).

Understanding PowerShell providers

By identifying the providers installed with Windows PowerShell, you can begin to understand the
capabilities intrinsic to a default installation. Providers expose information contained in differ-
ent data stores by using a drive-and-file-system analogy. An example of this is obtaining a listing
of registry keys—to do this, you would connect to the registry “drive” and use the Get-ChildItem
cmdlet, which is exactly the same method you would use to obtain a listing of files on the hard

66 Windows PowerShell 3 Step by Step

drive. The only difference is the specific name associated with each drive. Developers familiar with
Windows .NET programming can create new providers, but writing a provider can be complex. (See
http://msdn.microsoft.com/en-us/library/windows/desktop/ee126192(v=vs.85).aspx for more informa-
tion.) When a new provider is created, it might ship in a snap-in. A snap-in is a dynamic-link library
(DLL) file that must be installed into Windows PowerShell. After a snap-in has been installed, it cannot
be uninstalled unless the developer provides removal logic—however, the snap-in can be removed
from the current Windows PowerShell console. The preferred way to ship a provider is via a Windows
PowerShell module. Modules are installable via an Xcopy deployment, and therefore do not necessar-
ily require admin rights.

To obtain a listing of all the providers, use the Get-PSProvider cmdlet. This command produces
the following list on a default installation of Windows PowerShell (Windows 8 does not include the
WSMan provider):

Name Capabilities Drives
---- ------------ ------
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess, Crede... {C, A, D}
Function ShouldProcess {Function}
Registry ShouldProcess, Transactions {HKLM, HKCU}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {Cert}
WSMan Credentials {WSMan}

Understanding the alias provider
In Chapter 1, “Overview of Windows PowerShell 3.0,” I presented the various help utilities available
that show how to use cmdlets. The alias provider provides easy-to-use access to all aliases defined
in Windows PowerShell. To work with the aliases on your machine, use the Set-Location cmdlet and
specify the Alias:\ drive. You can then use the same cmdlets you would use to work with the file
system.

tip With the alias provider, you can use a Where-Object cmdlet and filter to search for an
alias by name or description.

Working with the alias provider

1. Open the Windows PowerShell console.

2. Obtain a listing of all the providers by using the Get-PSProvider cmdlet.

 CHAPTER 3 Understanding and Using PowerShell Providers 67

3. The PowerShell drive (PS drive) associated with the alias provider is called Alias. This is shown
in the listing produced by the Get-PSProvider cmdlet. Use the Set-Location cmdlet to change
to the Alias drive. Use the sl alias to reduce typing. This command is shown here:

sl alias:\

4. Use the Get-ChildItem cmdlet to produce a listing of all the aliases that are defined on the
system. To reduce typing, use the alias gci in place of Get-ChildItem. This is shown here:

gci

5. Use a Where-Object cmdlet filter to reduce the amount of information that is returned by
using the Get-ChildItem cmdlet. Produce a listing of all the aliases that begin with the letter s.
This is shown here:

gci | Where name -like "s*"

6. To identify other properties that could be used in the filter, pipeline the results of the Get-
ChildItem cmdlet into the Get-Member cmdlet. This is shown here (keep in mind that different
providers expose different objects that will have different properties):

Get-ChildItem | Get-Member

7. Press the up arrow key twice, and edit the previous filter to include only definitions that con-
tain the word set. The modified filter is shown here:

gci | Where definition -like "set*"

8. The results of this command are shown here:

CommandType Name ModuleName
----------- ---- ----------
Alias cd -> Set-Location
Alias chdir -> Set-Location
Alias sal -> Set-Alias
Alias sbp -> Set-PSBreakpoint
Alias sc -> Set-Content
Alias set -> Set-Variable
Alias si -> Set-Item
Alias sl -> Set-Location
Alias sp -> Set-ItemProperty
Alias sv -> Set-Variable
Alias swmi -> Set-WmiInstance

9. Press the up arrow key three times, and edit the previous filter to include only names of aliases
that are like the letter w. This revised command is shown here:

gci | Where name -like "*w*"

68 Windows PowerShell 3 Step by Step

The results from this command will be similar to those shown here:

CommandType Name ModuleName
----------- ---- ----------
Alias fw -> Format-Wide
Alias gwmi -> Get-WmiObject
Alias iwmi -> Invoke-WmiMethod
Alias iwr -> Invoke-WebRequest
Alias pwd -> Get-Location
Alias rwmi -> Remove-WmiObject
Alias swmi -> Set-WmiInstance
Alias where -> Where-Object
Alias wjb -> Wait-Job
Alias write -> Write-Output

10. In the preceding list, note that where is an alias for the Where-Object cmdlet. Press the up
arrow key one time to retrieve the previous command. Edit it to use the where alias instead of
spelling out the entire Where-Object cmdlet name. This revised command is shown here:

gci | where name -like "*w*"

Caution When using the Set-Location cmdlet to switch to a different PS drive, you must
follow the name of the PS drive with a colon. A trailing forward slash or backward slash is
optional. An error will be generated if the colon is left out, as shown in Figure 3-1. I pre-
fer to use the backward slash (\) because it is consistent with normal Windows file system
operations.

FIGURE 3-1 Using Set-Location without a colon results in an error.

Understanding the certificate provider
The preceding section explored working with the alias provider. Because the file system model applies
to the certificate provider in much the same way as it does the alias provider, many of the same
cmdlets can be used. To find information about the certificate provider, use the Get-Help cmdlet and
search for about_Providers. If you are unsure what articles in help may be related to certificates, you
can use the wildcard asterisk (*) parameter. This command is shown here:

Get-Help *cer*

 CHAPTER 3 Understanding and Using PowerShell Providers 69

In addition to allowing you to use the certificate provider, Windows PowerShell gives you the abil-
ity to sign scripts; Windows PowerShell can work with signed and unsigned scripts as well. The certifi-
cate provider gives you the ability search for, copy, move, and delete certificates. Using the certificate
provider, you can open the Certificates Microsoft Management Console (MMC). The commands used
in the following procedure use the certificate provider to obtain a listing of the certificates installed
on the local computer.

Obtaining a listing of certificates

1. Open the Windows PowerShell console.

2. Set your location to the cert PS drive. To do this, use the Set-Location cmdlet, as shown here:

Set-Location cert:\

3. Use the Get-ChildItem cmdlet to produce a list of the certificates, as shown here:

Get-ChildItem

The list produced is shown here:

Location : CurrentUser
StoreNames : {?, UserDS, AuthRoot, CA...}

Location : LocalMachine
StoreNames : {?, AuthRoot, CA, AddressBook...}

4. Use the -recurse argument to cause the Get-ChildItem cmdlet to produce a list of all the cer-
tificate stores and the certificates in those stores. To do this, press the up arrow key one time
and add the -recurse argument to the previous command. This is shown here:

Get-ChildItem -recurse

5. Use the -path argument for Get-ChildItem to produce a listing of certificates in another store,
without using the Set-Location cmdlet to change your current location. Use the gci alias, as
shown here:

GCI -path currentUser

Your listing of certificate stores will look similar to the one shown here:

Name : ?

Name : UserDS

Name : AuthRoot

Name : CA

Name : AddressBook

70 Windows PowerShell 3 Step by Step

Name : ?

Name : Trust

Name : Disallowed

Name : _NMSTR

Name : ?????k

Name : My

Name : Root

Name : TrustedPeople

Name : ACRS

Name : TrustedPublisher

Name : REQUEST

6. Change your working location to the currentuser\authroot certificate store. To do this, use the
sl alias followed by the path to the certificate store (sl is an alias for the Set-Location cmdlet).
This command is shown here:

sl currentuser\authroot

7. Use the Get-ChildItem cmdlet to produce a listing of certificates in the currentuser\authroot
certificate store that contain the name C&W in the subject field. Use the gci alias to reduce the
amount of typing. Pipeline the resulting object to a Where-Object cmdlet, but use the where
alias instead of typing Where-Object. The code to do this is shown here:

gci | where subject -like "*c&w*"

On my machine, there are four certificates listed. These are shown here:

Thumbprint Subject
---------- -------
F88015D3F98479E1DA553D24FD42BA3F43886AEF O=C&W HKT SecureNet CA SGC Root, C=hk
9BACF3B664EAC5A17BED08437C72E4ACDA12F7E7 O=C&W HKT SecureNet CA Class A, C=hk
4BA7B9DDD68788E12FF852E1A024204BF286A8F6 O=C&W HKT SecureNet CA Root, C=hk
47AFB915CDA26D82467B97FA42914468726138DD O=C&W HKT SecureNet CA Class B, C=hk

 CHAPTER 3 Understanding and Using PowerShell Providers 71

8. Use the up arrow key, and edit the previous command so that it will return only certificates
that contain the phrase SGC Root in the subject property. The revised command is shown
here:

gci | where subject -like "*SGC Root*"

9. The resulting output on my machine contains an additional certificate. This is shown here:

Thumbprint Subject
---------- -------
F88015D3F98479E1DA553D24FD42BA3F43886AEF O=C&W HKT SecureNet CA SGC Root, C=hk
687EC17E0602E3CD3F7DFBD7E28D57A0199A3F44 O=SecureNet CA SGC Root, C=au

10. Use the up arrow key and edit the previous command. This time, change the
Where-Object cmdlet so that it filters on the thumbprint attribute that is equal to
F88015D3F98479E1DA553D24FD42BA3F43886AEF. You do not have to type that, however;
to copy the thumbprint, you can highlight it and press Enter in Windows PowerShell, as
shown in Figure 3-2. The revised command is shown here:

gci | where thumbprint -eq "F88015D3F98479E1DA553D24FD42BA3F43886AEF"

FIGURE 3-2 Highlight items to copy using the mouse.

72 Windows PowerShell 3 Step by Step

troubleshooting If copying from inside the Windows PowerShell console window does not
work, then you may need to enable QuickEdit mode. To do this, right-click the PowerShell
icon in the upper-left corner of the Windows PowerShell window. Choose Properties, click
the Options tab, and then select QuickEdit Mode. This is shown in Figure 3-3.

FIGURE 3-3 Enable QuickEdit mode to enable clipboard support.

11. To see all the properties of the certificate, pipeline the certificate object to a Format-List
cmdlet and choose all the properties. The revised command is shown here:

gci | where thumbprint -eq " E0AB059420725493056062023670F7CD2EFC6666" |
Format-List *

The output contains all the properties of the certificate object and is shown here:

PSPath : Microsoft.PowerShell.Security\Certificate::currentuser\
 authroot\E0AB059420725493056062023670F7CD2EFC6666
PSParentPath : Microsoft.PowerShell.Security\Certificate::currentuser\
 authroot
PSChildName : E0AB059420725493056062023670F7CD2EFC6666
PSDrive : Cert
PSProvider : Microsoft.PowerShell.Security\Certificate
PSIsContainer : False
EnhancedKeyUsageList : {Server Authentication (1.3.6.1.5.5.7.3.1), Code Signing
 (1.3.6.1.5.5.7.3.3), Time Stamping (1.3.6.1.5.5.7.3.8)}
DnsNameList : {Thawte Premium Server CA}

 CHAPTER 3 Understanding and Using PowerShell Providers 73

SendAsTrustedIssuer : False
EnrollmentPolicyEndPoint : Microsoft.CertificateServices.Commands.EnrollmentEndPoint
 Property
EnrollmentServerEndPoint : Microsoft.CertificateServices.Commands.EnrollmentEndPoint
 Property
PolicyId :
Archived : False
Extensions : {System.Security.Cryptography.Oid}
FriendlyName : Thawte Premium Server CA (SHA1)
IssuerName : System.Security.Cryptography.X509Certificates.X500
 DistinguishedName
NotAfter : 1/1/2021 6:59:59 PM
NotBefore : 7/31/1996 8:00:00 PM
HasPrivateKey : False
PrivateKey :
PublicKey : System.Security.Cryptography.X509Certificates.PublicKey
RawData : {48, 130, 3, 54...}
SerialNumber : 36122296C5E338A520A1D25F4CD70954
SubjectName : System.Security.Cryptography.X509Certificates.X500
 DistinguishedName
SignatureAlgorithm : System.Security.Cryptography.Oid
Thumbprint : E0AB059420725493056062023670F7CD2EFC6666
Version : 3
Handle : 647835770000
Issuer : E=premium-server@thawte.com, CN=Thawte Premium Server
 CA, OU=Certification Services Division, O=Thawte
 Consulting cc, L=Cape Town, S=Western Cape, C=ZA
Subject : E=premium-server@thawte.com, CN=Thawte Premium Server
 CA, OU=Certification Services Division, O=Thawte
 Consulting cc, L=Cape Town, S=Western Cape, C=ZA

12. Open the Certificates MMC file. This MMC file is called Certmgr.msc; you can launch it by
simply typing the name inside Windows PowerShell, as shown here:

Certmgr.msc

13. But it is more fun to use the Invoke-Item cmdlet to launch the Certificates MMC. To do this,
supply the PS drive name of cert:\ to the Invoke-Item cmdlet. This is shown here:

Invoke-Item cert:\

14. Compare the information obtained from Windows PowerShell with the information displayed
in the Certificates MMC. It should be the same. The certificate is shown in Figure 3-4.

74 Windows PowerShell 3 Step by Step

FIGURE 3-4 Certmgr.msc can be used to examine certificate properties.

This concludes this procedure.

Searching for specific certificates
To search for specific certificates, you may want to examine the subject property. For example, the
following code examines the subject property of every certificate in the currentuser store beginning
at the root level. It does a recursive search, and returns only the certificates that contain the word test
in some form in the subject property. This command and associated output appear here:

PS C:\Users\administrator.IAMMRED> dir Cert:\CurrentUser -Recurse | ? subject -match
'test'

 Directory: Microsoft.PowerShell.Security\Certificate::CurrentUser\Root

Thumbprint Subject
---------- -------
8A334AA8052DD244A647306A76B8178FA215F344 CN=Microsoft Testing Root Certificate A...
2BD63D28D7BCD0E251195AEB519243C13142EBC3 CN=Microsoft Test Root Authority, OU=Mi...

To delete these test certificates simply requires pipelining the results of the previous command to
the Remove-Item cmdlet.

note When performing any operation that may alter system state, it is a good idea to use
the -whatif parameter to prototype the command prior to actually executing it.

 CHAPTER 3 Understanding and Using PowerShell Providers 75

The following command uses the -whatif parameter from Remove-Item to prototype the command
to remove all of the certificates from the currentuser store that contain the word test in the subject
property. Once completed, retrieve the command via the up arrow key and remove the -whatif
switched parameter from the command prior to actual execution. This technique appears here:

PS C:\Users\administrator.IAMMRED> dir Cert:\CurrentUser -Recurse | ? subject -match
'test' | Remove-Item -WhatIf
What if: Performing operation "Remove certificate" on Target "Item: CurrentUser\Root\
8A334AA8052DD244A647306A76B8178FA215F344 ".
What if: Performing operation "Remove certificate" on Target "Item: CurrentUser\Root\
2BD63D28D7BCD0E251195AEB519243C13142EBC3 ".
PS C:\Users\administrator.IAMMRED> dir Cert:\CurrentUser -Recurse | ? subject -match
'test' | Remove-Item

Finding expiring certificates
A common task in companies using certificates is to identify certificates that either have expired or
are about to expire. Using the certificate provider, it is simple to identify expired certificates. To do
this, use the notafter property from the certificate objects returned from the certificate drives. One
approach is to look for certificates that expire prior to a specific date. This technique appears here:

PS Cert:\> dir .\\CurrentUser -Recurse | where notafter -lt "5/1/2012"

A more flexible approach is to use the current date—therefore, each time the command runs, it
retrieves expired certificates. This technique appears here:

PS Cert:\> dir .\\CurrentUser -Recurse | where notafter -lt (Get-Date)

One problem with simply using the Get-ChildItem cmdlet on the currentuser store is that it returns
certificate stores as well as certificates. To obtain only certificates, you must filter out the psiscontainer
property. Because you will also need to filter based upon date, you can no longer use the simple
Where-Object syntax. The $_ character represents the current certificate as it comes across the pipe-
line. Because you’re comparing two properties, you must repeat the $_ character for each property.
The following command retrieves the expiration dates, thumbprints, and subjects of all expired cer-
tificates. It also creates a table displaying the information. (The command is a single logical command,
but it is broken at the pipe character to permit better display in the book.)

PS Cert:\> dir .\\CurrentUser -Recurse |
where { !$_.psiscontainer -AND $_.notafter -lt (Get-Date)} |
ft notafter, thumbprint, subject -AutoSize -Wrap

Caution All versions of Microsoft Windows ship with expired certificates to permit verifica-
tion of old executables that were signed with those certificates. Do not arbitrarily delete an
expired certificate—if you do, you could cause serious damage to your system.

76 Windows PowerShell 3 Step by Step

If you want to identify certificates that will expire in the next 30 days, you use the same technique
involving a compound Where-Object command. The command appearing here identifies certificates
expiring in the next 30 days:

PS Cert:\> dir .\\CurrentUser -Recurse |
where { $_.NotAfter -gt (Get-Date) -AND $_.NotAfter -le (Get-Date).Add(30) }

Understanding the environment provider
The environment provider in Windows PowerShell is used to provide access to the system environ-
ment variables. If you open a CMD (command) shell and type set, you will obtain a listing of all the
environment variables defined on the system. (You can run the old-fashioned command prompt
inside Windows PowerShell.)

note It is easy to forget you are running the CMD prompt when you are inside of the
Windows PowerShell console. Typing exit returns you to Windows PowerShell. The best
way to determine whether you are running the command shell or Windows PowerShell is to
examine the prompt. The default Windows PowerShell prompt is PS C:\>, assuming that you
are working on drive C.

If you use the echo command in the CMD interpreter to print out the value of %windir%, you will
obtain the results shown in Figure 3-5.

FIGURE 3-5 Use set at a CMD prompt to see environment variables.

 CHAPTER 3 Understanding and Using PowerShell Providers 77

Various applications and other utilities use environment variables as a shortcut to provide easy
access to specific files, folders, and configuration data. By using the environment provider in Windows
PowerShell, you can obtain a listing of the environment variables. You can also add, change, clear, and
delete these variables.

Obtaining a listing of environment variables

1. Open the Windows PowerShell console.

2. Obtain a listing of the PS drives by using the Get-PSDrive cmdlet. This is shown here:

Get-PSDrive

3. Note that the Environment PS drive is called Env. Use the Env name with the Set-Location
cmdlet and change to the Environment PS drive. This is shown here:

Set-Location Env:\

4. Use the Get-Item cmdlet to obtain a listing of all the environment variables on the system. This
is shown here:

Get-Item *

5. Use the Sort-Object cmdlet to produce an alphabetical listing of all the environment variables
by name. Use the up arrow key to retrieve the previous command, and pipeline the returned
object into the Sort-Object cmdlet. Use the -property argument, and supply name as the value.
This command is shown here:

Get-Item * | Sort-Object -property value

6. Use the Get-Item cmdlet to retrieve the value associated with the environment variable windir.
This is shown here:

Get-Item windir

7. Use the up arrow key and retrieve the previous command. Pipeline the object returned to the
Format-List cmdlet and use the wildcard character to print out all the properties of the object.
The modified command is shown here:

Get-Item windir | Format-List *

78 Windows PowerShell 3 Step by Step

8. The properties and their associated values are shown here:

PSPath : Microsoft.PowerShell.Core\Environment::windir
PSDrive : Env
PSProvider : Microsoft.PowerShell.Core\Environment
PSIsContainer : False
Name : windir
Key : windir
Value : C:\WINDOWS

This concludes this procedure. Do not close Windows PowerShell. Leave it open for the next
procedure.

Creating a temporary new environment variable

1. You should still be in the Environment PS drive from the previous procedure. If not, use the
Set-Location env:\ command).

2. Use the Get-Item cmdlet to produce a listing of all the environment variables. Pipeline the
returned object to the Sort-Object cmdlet using the property name. To reduce typing, use the
gi alias and the sort alias. This is shown here:

gi * | sort -property name

3. Use the New-Item cmdlet to create a new environment variable. The -path argument will be
dot (.) because you are already on the env:\ PS drive. The -Name argument will be admin, and
the -value argument will be your given name. The completed command is shown here:

New-Item -Path . -Name admin -Value mred

4. Use the Get-Item cmdlet to ensure the admin environment variable was properly created. This
command is shown here:

Get-Item admin

The results of the previous command are shown here:

Name Value
---- -----
admin mred

5. Use the up arrow key to retrieve the previous command. Pipeline the results to the Format-List
cmdlet and choose All Properties. This command is shown here:

Get-Item admin | Format-List *

The results of the previous command include the PS path, PS drive, and additional information
about the newly created environment variable. These results are shown here:

 CHAPTER 3 Understanding and Using PowerShell Providers 79

PSPath : Microsoft.PowerShell.Core\Environment::admin
PSDrive : Env
PSProvider : Microsoft.PowerShell.Core\Environment
PSIsContainer : False
Name : admin
Key : admin
Value : mred

The new environment variable exists until you close the Windows PowerShell console.

This concludes this procedure. Leave PowerShell open for the next procedure.

renaming an environment variable

1. Use the Get-ChildItem cmdlet to obtain a listing of all the environment variables. Pipeline the
returned object to the Sort-Object cmdlet and sort the list on the name property. Use the gci
and sort aliases to reduce typing. The code to do this is shown here:

gci | sort -property name

2. The admin environment variable should be near the top of the list of system variables. If it is
not, then create it by using the New-Item cmdlet. The -path argument has a value of dot (.);
the -name argument has the value of admin, and the -value argument should be the user’s
given name. If this environment variable was created in the previous exercise, then PowerShell
will report that it already exists. The command appearing here allows you to re-create the
admin environment variable:

New-Item -Path . -Name admin -Value mred

3. Use the Rename-Item cmdlet to rename the admin environment variable to super. The -path
argument combines the PS drive name with the environment variable name. The -NewName
argument is the desired new name without the PS drive specification. This command is shown
here:

Rename-Item -Path env:admin -NewName super

4. To verify that the old environment variable admin has been renamed super, press the up arrow
key two or three times to retrieve the gci | sort -property name command. This command is
shown here:

gci | sort -property name

This concludes this procedure. Do not close Windows PowerShell. Leave it open for the next
procedure.

80 Windows PowerShell 3 Step by Step

removing an environment variable

1. Use the Get-ChildItem cmdlet to obtain a listing of all the environment variables. Pipeline the
returned object to the Sort-Object cmdlet and sort the list on the name property. Use the gci
and sort aliases to reduce typing. The code to do this is shown here:

gci | sort -property name

2. The super environment variable should be in the list of system variables. If it is not, then create
it by using the New-Item cmdlet. The -path argument has a value of dot (.), the -name argu-
ment has a value of super, and the -value argument should be the user’s given name. If this
environment variable was created in the previous exercise, then PowerShell will report that it
already exists. If you have deleted the admin environment variable, the command appearing
here creates it:

New-Item -Path . -Name super -Value mred

3. Use the Remove-Item cmdlet to remove the super environment variable. The name of the item
to be removed is typed following the name of the cmdlet. If you are still in the env:\ PS drive,
you will not need to supply a -path argument. The command is shown here:

Remove-Item env:super

4. Use the Get-ChildItem cmdlet to verify that the environment variable super has been removed.
To do this, press the up arrow key two or three times to retrieve the gci | sort -property name
command. This command is shown here:

gci | sort -property name

This concludes this procedure.

Understanding the filesystem provider
The filesystem provider is the easiest Windows PowerShell provider to understand—it provides
access to the file system. When Windows PowerShell is launched, it automatically opens on the
user documents folder. Using the Windows PowerShell filesystem provider, you can create both
directories and files. You can retrieve properties of files and directories, and you can delete them
as well. In addition, you can open files and append or overwrite data to the files. This can be done
with inline code, or by using the pipelining feature of Windows PowerShell. The commands used
in the procedure are in the IdentifyingPropertiesOfDirectories.txt, CreatingFoldersAndFiles.txt,
and ReadingAndWritingForFiles.txt files and are available from the Technet Script Repository, at
http://aka.ms/powershellSBS_book.

 CHAPTER 3 Understanding and Using PowerShell Providers 81

Working with directory listings

1. Open the Windows PowerShell console.

2. Use the Get-ChildItem cmdlet to obtain a directory listing of drive C. Use the gci alias to
reduce typing. This is shown here:

GCI C:\

3. Use the up arrow key to retrieve the gci C:\ command. Pipeline the object created into a
Where-Object cmdlet and look for containers. This will reduce the output to only directories.
The modified command is shown here:

GCI C:\ | where psiscontainer

4. Use the up arrow key to retrieve the gci C:\ | where psiscontainer command, and use the
exclamation point (!) (meaning not) to retrieve only items in the PS drive that are not direc-
tories. The modified command is shown here. (The simplified Where-Object syntax does not
support using the not operator directly on the input property.)

gci | ? {!($psitem.psiscontainer)}

This concludes this procedure. Do not close Windows PowerShell. Leave it open for the next
procedure.

Identifying properties of directories

1. Use the Get-ChildItem cmdlet and supply a value of C:\ for the -path argument. Pipeline the
resulting object into the Get-Member cmdlet. Use the gci and gm aliases to reduce typing. This
command is shown here:

gci -path C:\ | gm

2. The resulting output contains methods, properties, and more. Filter the output by pipelining
it into a Where-Object cmdlet and specifying the membertype attribute as equal to property.
To do this, use the up arrow key to retrieve the previous gci -path C:\ | gm command. Pipeline
the resulting object into the Where-Object cmdlet and filter on the membertype attribute. The
resulting command is shown here:

gci -path C:\ | gm | Where {$_.membertype -eq "property"}

3. On Windows 8, you need to use the -force parameter to see hidden files. Here is the
command:

gci -path C:\ -force | gm | Where {$_.membertype -eq "property"}

82 Windows PowerShell 3 Step by Step

4. The preceding gci -path C:\ | gm | where {$_.membertype -eq "property"} command
returns information on both the System.IO.DirectoryInfo and System.IO.FileInfo objects (on
Windows 8, you need to use the -force switch to see hidden files). To reduce the output to
only the properties associated with the System.IO.FileInfo object, you need to use a com-
pound Where-Object cmdlet. Use the up arrow key to retrieve the gci -path C:\ | gm | where
{$_.membertype -eq "property"} command. Add the And conjunction and retrieve objects that
have a type name that is like *file*. The modified command is shown here:

gci -path C:\ | gm |
where {$_.membertype -eq "property" -AND $_.typename -like "*file*"}

5. On Windows 8, you need to use the -force parameter. Here is the command to do that:

gci -path C:\ -force | gm |
where {$_.membertype -eq "property" -AND $_.typename -like "*file*"}

6. The resulting output contains only the properties for a System.IO.FileInfo object. These prop-
erties are shown here:

TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property System.DateTime CreationTime {get;set;}
CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}
Directory Property System.IO.DirectoryInfo Directory {get;}
DirectoryName Property System.String DirectoryName {get;}
Exists Property System.Boolean Exists {get;}
Extension Property System.String Extension {get;}
FullName Property System.String FullName {get;}
IsReadOnly Property System.Boolean IsReadOnly {get;set;}
LastAccessTime Property System.DateTime LastAccessTime {get;set;}
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}
LastWriteTime Property System.DateTime LastWriteTime {get;set;}
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}
Length Property System.Int64 Length {get;}
Name Property System.String Name {get;}

This concludes this procedure. Do not close Windows PowerShell. Leave it open for the next
procedure.

Creating folders and files

1. Use the Get-Item cmdlet to obtain a listing of files and folders. Pipeline the resulting object
into the Where-Object cmdlet and use the PsisContainer property to look for folders. Use the
name property to find names that contain the word my in them. Use the gi alias and the where
alias to reduce typing. The command is shown here:

Set-Location c:\Mytest
GI * | Where {$_.PsisContainer -AND $_.name -Like "*my*"}

 CHAPTER 3 Understanding and Using PowerShell Providers 83

2. If you were following along in the previous chapters, you will have a folder called Mytest off
the root of drive C. Use the Remove-Item cmdlet to remove the Mytest folder. Specify the
-recurse argument to also delete files contained in the C:\Mytest folder. If your location is still
set to Env, then change it to C or search for C:\Mytest. The command is shown here:

RI mytest -recurse

3. Press the up arrow key twice and retrieve the gi * | where {$_.PsisContainer -AND $_.name
-Like "*my*"} command to confirm the folder was actually deleted. This command is shown
here:

gi * | where {$_.PsisContainer -AND $_.name -Like "*my*"}

4. Use the New-Item cmdlet to create a folder named Mytest. Use the -path argument to specify
the path of C:\. Use the -name argument to specify the name of Mytest, and use the -type
argument to tell Windows PowerShell the new item will be a directory. This command is shown
here:

New-Item -Path C:\ -name mytest -type directory

The resulting output, shown here, confirms the operation:

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 5/4/2012 2:43 AM mytest

5. Use the New-Item cmdlet to create an empty text file. To do this, use the up arrow key and
retrieve the previous New-Item -path C:\ -name Mytest -type directory command. Edit the
-path argument so that it is pointing to the C:\Mytest directory. Edit the -name argument to
specify a text file named Myfile, and specify the -type argument as file. The resulting com-
mand is shown here:

New-Item -path C:\mytest -name myfile.txt -type file

The resulting message, shown here, confirms the creation of the file:

Directory: Microsoft.PowerShell.Core\FileSystem::C:\mytest

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 5/4/2012 3:12 AM 0 myfile.txt

This concludes this procedure. Do not close Windows PowerShell. Leave it open for the next
procedure.

84 Windows PowerShell 3 Step by Step

Reading and writing for files

1. Delete Myfile.txt (created in the previous procedure). To do this, use the Remove-Item cmdlet
and specify the -path argument as C:\Mytest\Myfile.txt. This command is shown here:

RI -Path C:\mytest\myfile.txt

2. Use the up arrow key twice to retrieve the New-Item -path C:\Mytest -name Myfile.txt -type
command. Add the -value argument to the end of the command line and supply a value of
My file. This command is shown here:

New-Item -Path C:\mytest -Name myfile.txt -Type file -Value "My file"

3. Use the Get-Content cmdlet to read the contents of myfile.txt. This command is shown here:

Get-Content C:\mytest\myfile.txt

4. Use the Add-Content cmdlet to add additional information to the myfile.txt file. This command
is shown here:

Add-Content C:\mytest\myfile.txt -Value "ADDITIONAL INFORMATION"

5. Press the up arrow key twice and retrieve the Get-Content C:\mytest\myfile.txt command,
which is shown here:

Get-Content C:\mytest\myfile.txt

6. The output from the Get-Content C:\mytest\myfile.txt command is shown here:

My fileADDITIONAL INFORMATION

7. Press the up arrow key twice, and retrieve the Add-Content C:\mytest\myfile.txt -value
"ADDITIONAL INFORMATION" command to add additional information to the file. This
command is shown here:

Add-Content C:\mytest\myfile.txt -Value "ADDITIONAL INFORMATION"

8. Use the up arrow key to retrieve the Get-Content C:\mytest\myfile.txt command, which is
shown here:

Get-Content C:\mytest\myfile.txt

9. The output produced is shown here. Notice that the second time the command runs, the
"ADDITIONAL INFORMATION" string is added to a new line in the original file.

My fileADDITIONAL INFORMATION
ADDITIONAL INFORMATION

 CHAPTER 3 Understanding and Using PowerShell Providers 85

10. Use the Set-Content cmdlet to overwrite the contents of the Myfile.txt file. Specify the -value
argument as Setting information. This command is shown here:

Set-Content C:\mytest\myfile.txt -value "Setting information"

11. Use the up arrow key to retrieve the Get-Content C:\Mytest\Myfile.txt command, which is
shown here:

Get-Content C:\mytest\myfile.txt

The output from the Get-Content command is shown here:

Setting information

This concludes this procedure.

Understanding the function provider
The function provider provides access to the functions defined in Windows PowerShell. By using
the function provider, you can obtain a listing of all the functions on your system. You can also add,
modify, and delete functions. The function provider uses a file system–based model, and the cmdlets
described earlier apply to working with functions. The commands used in the following procedure are
in the ListingAllFunctionsOnTheSystem.txt file.

Listing all functions on the system

1. Open the Windows PowerShell console.

2. Use the Set-Location cmdlet to change the working location to the Function PS drive. This
command is shown here:

Set-Location function:\

3. Use the Get-ChildItem cmdlet to enumerate all the functions. Do this by using the gci alias, as
shown here:

gci

4. The resulting list contains many functions that use Set-Location to change the current location
to different drive letters. A partial view of this output is shown here:

CommandType Name ModuleName
----------- ---- ----------
Function A:
Function B:
Function C:
Function cd..
Function cd\
Function Clear-Host
<truncated...>

86 Windows PowerShell 3 Step by Step

Function Get-Verb
Function H:
Function help
Function I:
Function ImportSystemModules
<truncated...>
Function mkdir
Function more
Function N:
Function O:
Function oss
Function P:
Function Pause
Function prompt
<truncated ...>
Function TabExpansion2
<truncated ...>

5. To return only the functions that are used for drives, use the Get-ChildItem cmdlet and pipe
the object returned into a Where-Object cmdlet. Use the default $_ variable to filter on the
definition attribute. Use the -like argument to search for definitions that contain the word set.
The resulting command is shown here:

gci | Where definition -like "set*"

6. If you are more interested in functions that are not related to drive mappings, then you can
use the -notlike argument instead of -like. The easiest way to make this change is to use the up
arrow key and retrieve the gci | where {$_.definition -like "set*"} command, and then change
the filter from -like to -notlike. The resulting command is shown here:

gci | Where definition -notlike "set*"

The resulting listing of functions is shown here:

CommandType Name ModuleName
----------- ---- ----------
Function Clear-Host
Function Get-Verb
Function help
Function ImportSystemModules
Function mkdir
Function more
Function oss
Function Pause
Function prompt
Function TabExpansion2

 CHAPTER 3 Understanding and Using PowerShell Providers 87

7. Use the Get-Content cmdlet to retrieve the text of the pause function. This is shown here (gc is
an alias for the Get-Content cmdlet):

gc pause

The content of the pause function is shown here:

Read-Host 'Press Enter to continue...' | Out-Null

This concludes this procedure.

Using the registry provider to manage the Windows registry

In Windows PowerShell 1.0, the registry provider made it easy to work with the registry on the local
system. Unfortunately, without remoting, you were limited to working with the local computer or
using some other remoting mechanism (perhaps a log-on script) to make changes on remote systems.
Beginning with Windows PowerShell 2.0, the inclusion of remoting makes it possible to make remote
registry changes as easily as changing the local registry.

The registry provider permits access to the registry in the same manner that the filesystem pro-
vider permits access to a local disk drive. The same cmdlets used to access the file system—New-Item,
Get-ChildItem, Set-Item, Remove-Item, and so on—also work with the registry.

the two registry drives
By default, the registry provider creates two registry drives. To find all of the drives exposed by the
registry provider, use the Get-PSDrive cmdlet. These drives appear here:

PS C:\> Get-PSDrive -PSProvider registry | select name, root

Name Root
---- ----
HKCU HKEY_CURRENT_USER
HKLM HKEY_LOCAL_MACHINE

You can create additional registry drives by using the New-PSDrive cmdlet. For example, it is
common to create a registry drive for the HKEY_CLASSES_ROOT registry hive. The code to do this
appears here:

PS C:\> New-PSDrive -PSProvider registry -Root HKEY_CLASSES_ROOT -Name HKCR

WARNING: column "CurrentLocation" does not fit into the display and was removed.

Name Used (GB) Free (GB) Provider Root
---- --------- --------- -------- ----
HKCR Registry HKEY_CLASSES_ROOT

88 Windows PowerShell 3 Step by Step

Once created, the new HKCR drive is accessible in the same way as any other drive. For example, to
change the working location to the HKCR drive, use either the Set-Location cmdlet or one of its aliases
(such as cd). This technique appears here:

PS C:\> Set-Location HKCR:

To determine the current location, use the Get-Location cmdlet. This technique appears here:

PS HKCR:\> Get-Location

Path

HKCR:\

Once you’ve set the new working location, explore it by using the Get-ChildItem cmdlet (or one of
the aliases for that cmdlet, such as dir). This technique appears in Figure 3-6.

FIGURE 3-6 Creating a new registry drive for the HKEY_CLASSES_ROOT registry hive enables easy access to class
registration information.

 CHAPTER 3 Understanding and Using PowerShell Providers 89

retrieving registry values
To view the values stored in a registry key, use either the Get-Item or the Get-ItemProperty cmdlet.
Using the Get-Item cmdlet reveals there is one property (named default). This appears here:

PS HKCR:\> Get-Item .\.ps1 | fl *

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CLASSES_ROOT\.ps1
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CLASSES_ROOT
PSChildName : .ps1
PSDrive : HKCR
PSProvider : Microsoft.PowerShell.Core\Registry
PSIsContainer : True
Property : {(default)}
SubKeyCount : 1
ValueCount : 1
Name : HKEY_CLASSES_ROOT\.ps1

To access the value of the default property, you must use the Get-ItemProperty cmdlet, as shown
here:

PS HKCR:\> Get-ItemProperty .\.ps1 | fl *

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CLASSES_ROOT\.ps1
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CLASSES_ROOT
PSChildName : .ps1
PSDrive : HKCR
PSProvider : Microsoft.PowerShell.Core\Registry
(default) : Microsoft.PowerShellScript.1

The technique for accessing registry keys and the values associated with them appears in
Figure 3-7.

FIGURE 3-7 Use the Get-ItemProperty cmdlet to access registry property values.

90 Windows PowerShell 3 Step by Step

Returning only the value of the default property requires a bit of manipulation. The default prop-
erty requires using literal quotation marks to force the evaluation of the parentheses in the name.
This appears here:

PS HKCR:\> (Get-ItemProperty .\.ps1 -Name '(default)').'(default)'
Microsoft.PowerShellScript.1

The registry provider provides a consistent and easy way to work with the registry from within
Windows PowerShell. Using the registry provider, you can search the registry, create new registry
keys, delete existing registry keys, and modify values and access control lists (ACLs) from within
Windows PowerShell.

The commands used in the following procedure are in the UnderstandingTheRegistryProvider.txt
file. Two PS drives are created by default. To identify the PS drives that are supplied by the registry
provider, you can use the Get-PSDrive cmdlet, pipeline the resulting objects into the Where-Object
cmdlet, and filter on the provider property while supplying a value that is like the word registry. This
command is shown here:

PS C:\> Get-PSDrive | ? provider -match registry

Name Used (GB) Free (GB) Provider Root
---- --------- --------- -------- ----
HKCR Registry HKEY_CLASSES_ROOT
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE

Obtaining a listing of registry keys

1. Open the Windows PowerShell console.

2. Use the Get-ChildItem cmdlet and supply HKLM:\ PSDrive as the value for the -path argument.
Specify the software key to retrieve a listing of software applications on the local machine. The
resulting command is shown here:

GCI -path HKLM:\software

A partial listing of similar output is shown here. The corresponding keys, as displayed in
Regedit.exe, are shown in Figure 3-8.

 Hive: HKEY_LOCAL_MACHINE\SOFTWARE

Name Property
---- --------
ATI Technologies
Classes
Clients
Intel
Microsoft
ODBC
Policies

 CHAPTER 3 Understanding and Using PowerShell Providers 91

RegisteredApplications Paint : SOFTWARE\Microsoft\
 Windows\CurrentVersion\Applets\Paint\Capabilities
 Windows Search :
 Software\Microsoft\Windows Search\Capabilities
 Windows Disc Image Burner :
 Software\Microsoft\IsoBurn\Capabilities
 Windows File Explorer : SOFTWARE\Microsoft\
 Windows\CurrentVersion\Explorer\Capabilities
 Windows Photo Viewer :
 Software\Microsoft\Windows Photo Viewer\Capabilities
 Wordpad : Software\Microsoft\
 Windows\CurrentVersion\Applets\Wordpad\Capabilities
 Windows Media Player :
 Software\Clients\Media\Windows Media
 Player\Capabilities
 Internet Explorer :
 SOFTWARE\Microsoft\Internet Explorer\Capabilities
 Windows Address Book :
 Software\Clients\Contacts\Address Book\Capabilities

This concludes this procedure. Do not close Windows PowerShell. Leave it open for the next
procedure.

FIGURE 3-8 A Regedit.exe view of HKEY_LOCAL_MACHINE\SOFTWARE.

92 Windows PowerShell 3 Step by Step

Searching for software

1. Use the Get-ChildItem cmdlet and supply a value for the -path argument. Use the HKLM:\ PS
drive and supply a path of SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall. To make
the command easier to read, use a single quote (') to encase the string. You can use tab
completion to assist with the typing. The completed command is shown here:

gci -path 'HKLM:SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall'

The resulting listing of software is shown in the output here, in abbreviated fashion:

 Hive: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall

Name Property
---- --------
AddressBook
CNXT_AUDIO_HDA DisplayName : Conexant 20672 SmartAudio HD
 DisplayVersion : 8.32.23.2
 VersionMajor : 8
 VersionMinor : 0
 Publisher : Conexant
 DisplayIcon : C:\Program
 Files\CONEXANT\CNXT_AUDIO_HDA\UIU64a.exe
 UninstallString : C:\Program
 Files\CONEXANT\CNXT_AUDIO_HDA\UIU64a.exe -U -G
 -Ichdrt.inf
Connection Manager SystemComponent : 1
DirectDrawEx
DXM_Runtime
Fontcore
IE40
IE4Data
IE5BAKEX
IEData
MobileOptionPack
MPlayer2
Office15.PROPLUS Publisher : Microsoft Corporation
 CacheLocation : C:\MSOCache\All Users
 DisplayIcon : C:\Program Files\Common

2. To retrieve information on a single software package, you will need to add a Where-Object
cmdlet. You can do this by using the up arrow key to retrieve the previous gci -path
'HKLM:SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall' command and pipelining
the resulting object into the Where-Object cmdlet. Supply a value for the name property, as
shown in the code listed here. Alternatively, supply a name from the previous output.

PS C:\> gci -path 'HKLM:SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall' | where
name -match 'office'

This concludes this procedure.

 CHAPTER 3 Understanding and Using PowerShell Providers 93

Creating new registry keys
Creating a new registry key by using Windows PowerShell is the same as creating a new file or a new
folder—all three processes use the New-Item cmdlet. In addition to using the New-Item cmdlet, you
might use the Test-Path cmdlet to determine if the registry key already exists. You may also wish to
change your working location to one of the registry drives. If you do this, you might use the Push-
Location cmdlet, Set-Location and the Pop-Location cmdlets. This is, of course, the long way of doing
things. These steps appear next.

note The registry contains information vital to the operation and configuration of your
computer. Serious problems could arise if you edit the registry incorrectly. Therefore, it is
important to back up your system prior to attempting to make any changes. For informa-
tion about backing up your registry, see Microsoft TechNet article KB322756. For general
information about working with the registry, see Microsoft TechNet article KB310516.

1. Store the current working location by using the Push-Location cmdlet.

2. Change the current working location to the appropriate registry drive by using the Set-
Location cmdlet.

3. Use the Test-Path cmdlet to determine if the registry key already exists.

4. Use the New-Item cmdlet to create the new registry key.

5. Use the Pop-Location cmdlet to return to the starting working location.

The following example creates a new registry key named HSG off the HKEY_CURRENT_USERS soft-
ware registry hive. It illustrates each of the five steps detailed previously.

Push-Location
Set-Location HKCU:
Test-Path .\Software\test
New-Item -Path .\Software -Name test
Pop-Location

The commands and the associated output from the commands appear in Figure 3-9.

FIGURE 3-9 Creating a new registry key by using the New-Item cmdlet.

94 Windows PowerShell 3 Step by Step

the short way to create a new registry key
It is not always necessary to change the working location to a registry drive when creating a new
registry key. In fact, it is not even necessary to use the Test-Path cmdlet to determine if the registry
key exists. If the registry key already exists, an error is generated. If you want to overwrite the registry
key, use the -force parameter. This technique works for all the Windows PowerShell providers, not just
for the registry provider.

note How to deal with an already existing registry key is one of those design decisions that
confront IT professionals who venture far into the world of scripting. Software developers
are very familiar with these types of decisions and usually deal with them in the analyzing-
requirements portion of the development life cycle. IT professionals who open the
Windows PowerShell ISE first and think about the design requirements second can become
easily stymied, and possibly write in problems. For more information about this, see my
book Windows PowerShell 2.0 Best Practices (Microsoft Press, 2010).

The following example creates a new registry key named test in the HKCU:\SOFTWARE loca-
tion. Because the command includes the full path, it does not need to execute from the HKCU
drive. Because the command uses the -force switched parameter, the command overwrites the
HKCU:\SOFTWARE\TEST registry key if it already exists.

New-Item -Path HKCU:\Software -Name test -Force

note To see the New-Item cmdlet in action when using the -force switched parameter, use
the -verbose switched parameter. The command appears here:

New-Item -Path HKCU:\Software -Name test -Force -Verbose

1. Include the full path to the registry key to create.

2. Use the -force parameter to overwrite any existing registry key of the same name.

In Figure 3-10, the first attempt to create a test registry key fails because the key already exists. The
second command uses the -force parameter, causing the command to overwrite the existing registry
key, and therefore it succeeds without creating an error.

 CHAPTER 3 Understanding and Using PowerShell Providers 95

FIGURE 3-10 Use the -force parameter when creating a new registry key to overwrite the key if it already exists.

Setting the default value for the key
The previous examples do not set the default value for the newly created registry key. If the registry
key already exists (as it does in this specific case), you can use the Set-Item cmdlet to assign a default
value to the registry key. The steps to accomplish this appear here:

1. Use the Set-Item cmdlet and supply the complete path to the existing registry key.

2. Supply the default value in the value parameter of the Set-Item cmdlet.

The following command assigns the value test key to the default property value of the HSG
registry key contained in the HKCU:\SOFTWARE location:

Set-Item -Path HKCU:\Software\test -Value "test key"

Using New-Item to create and assign a value
It is not necessary to use the New-Item cmdlet to create a registry key and then to use the Set-Item
cmdlet to assign a default value. You can combine these steps into a single command. The following
command creates a new registry key with the name of HSG1 and assigns a default value of default
value to the registry key:

New-Item -Path HKCU:\Software\hsg1 -Value "default value"

Modifying the value of a registry property value
Modifying the value of a registry property value requires using the Set-PropertyItem cmdlet.

1. Use the Push-Location cmdlet to save the current working location.

2. Use the Set-Location cmdlet to change to the appropriate registry drive.

3. Use the Set-ItemProperty cmdlet to assign a new value to the registry property.

4. Use the Pop-Location cmdlet to return to the original working location.

96 Windows PowerShell 3 Step by Step

When you know that a registry property value exists, the solution is simple: you use the
Set-ItemProperty cmdlet and assign a new value. The code that follows saves the current working
location, changes the new working location to the registry key, uses the Set-ItemProperty cmdlet to
assign new values, and then uses the Pop-Location cmdlet to return to the original working location.

note The code that follows relies upon positional parameters for the Set-ItemProperty
cmdlet. The first parameter is -path. Because the Set-Location cmdlet set the work-
ing location to the registry key, a period identifies the path as the current directory. The
second parameter is the name of the registry property to change—in this example, it
is newproperty. The last parameter is -value, and that defines the value to assign to the
registry property. In this example, it is mynewvalue. The command with complete parameter
names would thus be Set-ItemProperty -Path . -name newproperty -value mynewvalue. The
quotation marks in the following code are not required, but do not harm anything either.

PS C:\> Push-Location
PS C:\> Set-Location HKCU:\Software\test
PS HKCU:\Software\test> Set-ItemProperty . newproperty "mynewvalue"
PS HKCU:\Software\test> Pop-Location
PS C:\>

Of course, all the pushing, popping, and setting of locations is not really required. It is entirely
possible to change the registry property value from any location within the Windows PowerShell
provider subsystem.

the short way to change a registry property value
To change a registry property value simply, use the Set-ItemProperty cmdlet to assign a new
value. Ensure you specify the complete path to the registry key. Here is an example of using the
Set-ItemProperty cmdlet to change a registry property value without first navigating to the registry
drive.

PS C:\> Set-ItemProperty -Path HKCU:\Software\test -Name newproperty -Value anewvalue

Dealing with a missing registry property
If you need to set a registry property value, you can set the value of that property easily by using the
Set-ItemProperty cmdlet. But what if the registry property does not exist? How do you set the prop-
erty value then? You can still use the Set-ItemProperty cmdlet to set a registry property value, even if
the registry property does not exist, as follows:

Set-ItemProperty -Path HKCU:\Software\test -Name missingproperty -Value avalue

To determine if a registry key exists, you can simply use the Test-Path cmdlet. It returns true if the
key exists and false if it does not exist. This technique appears here:

 CHAPTER 3 Understanding and Using PowerShell Providers 97

PS C:\> Test-Path HKCU:\Software\test
True
PS C:\> Test-Path HKCU:\Software\test\newproperty
False

Unfortunately, this technique does not work for a registry key property. It always returns false—
even if the registry property exists. This appears here:

PS C:\> Test-Path HKCU:\Software\test\newproperty
False
PS C:\> Test-Path HKCU:\Software\test\bogus
False

Therefore, if you do not want to overwrite a registry key property if it already exists, you need a
way to determine if the registry key property exists—and using the Test-Path cmdlet does not work.
The following procedure shows how to handle this.

testing for a registry key property prior to writing a new value

1. Use the if statement and the Get-ItemProperty cmdlet to retrieve the value of the registry key
property. Specify the erroraction (ea is an alias) of silentlycontinue (0 is the enumeration value
associated with silentlycontinue).

2. In the script block for the if statement, display a message that the registry property exists, or
simply exit.

3. In the else statement, call Set-ItemProperty to create and set the value of the registry key
property.

This technique appears here:

if(Get-ItemProperty HKCU:\Software\test -Name bogus -ea 0).bogus)
{'Propertyalready exists'}
 ELSE { Set-ItemProperty -Path HKCU:\Software\test -Name bogus -Value 'initial value'}

Understanding the variable provider

The variable provider provides access to the variables that are defined within Windows PowerShell.
These variables include both user-defined variables, such as $mred, and system-defined variables,
such as $host. You can obtain a listing of the cmdlets designed to work specifically with variables by
using the Get-Help cmdlet and specifying the asterisk (*) variable. The commands used in the proce-
dure are in the UnderstandingTheVariableProvider.txt and WorkingWithVariables.txt files. To return
only cmdlets, you use the Where-Object cmdlet and filter on the category that is equal to cmdlet. This
command is shown here:

Get-Help *variable | Where-Object category -eq “cmdlet”

98 Windows PowerShell 3 Step by Step

The resulting list contains five cmdlets, but is a little jumbled and difficult to read. So let’s modify
the preceding command and specify the properties to return. To do this, use the up arrow key and
pipeline the returned object into the Format-List cmdlet. Add the three properties you are interested
in: name, category, and synopsis. The revised command is shown here:

Get-Help *variable | Where-Object {$_.category -eq "cmdlet"} |
Format-List name, category, synopsis

note You will not get this output from Windows PowerShell 3.0 if you have not run the
Update-Help cmdlet.

The resulting output is much easier to read and understand; it is shown here:

Name : Get-Variable
Category : Cmdlet
Synopsis : Gets the variables in the current console.

Name : New-Variable
Category : Cmdlet
Synopsis : Creates a new variable.

Name : Set-Variable
Category : Cmdlet
Synopsis : Sets the value of a variable. Creates the variable if one with the requested
name does not exist.

Name : Remove-Variable
Category : Cmdlet
Synopsis : Deletes a variable and its value.

Name : Clear-Variable
Category : Cmdlet
Synopsis : Deletes the value of a variable.

Working with variables

1. Open the Windows PowerShell console.

2. Use the Set-Location cmdlet to set the working location to the Variable PS drive. Use the sl
alias to reduce typing needs. This command is shown here:

SL variable:\

3. Produce a complete listing of all the variables currently defined in Windows PowerShell. To do
this, use the Get-ChildItem cmdlet. You can use the alias gci to produce this list. The command
is shown here:

Get-ChildItem

 CHAPTER 3 Understanding and Using PowerShell Providers 99

4. The resulting list is jumbled. Press the up arrow key to retrieve the Get-ChildItem command,
and pipeline the resulting object into the Sort-Object cmdlet. Sort on the name property. This
command is shown here:

Get-ChildItem | Sort Name

The output from the previous command is shown here:

Name Value
---- -----
$ variable:
? True
^ sl
args {}
ConfirmPreference High
ConsoleFileName
DebugPreference SilentlyContinue
Error {Failed to update Help for the module(s) 'Schedule...
ErrorActionPreference Continue
ErrorView NormalView
ExecutionContext System.Management.Automation.EngineIntrinsics
false False
FormatEnumerationLimit 4
HOME C:\Users\administrator
Host System.Management.Automation.Internal.Host.Interna...
input System.Collections.ArrayList+ArrayListEnumeratorSi...
MaximumAliasCount 4096
MaximumDriveCount 4096
MaximumErrorCount 256
MaximumFunctionCount 4096
MaximumHistoryCount 4096
MaximumVariableCount 4096
MyInvocation System.Management.Automation.InvocationInfo
NestedPromptLevel 0
null
OutputEncoding System.Text.ASCIIEncoding
PID 3308
PROFILE C:\Users\administrator\Documents\WindowsPowerShell...
ProgressPreference Continue
PSBoundParameters {}
PSCommandPath
PSCulture en-US
PSDefaultParameterValues {}
PSEmailServer
PSHOME C:\Windows\System32\WindowsPowerShell\v1.0
PSScriptRoot
PSSessionApplicationName wsman
PSSessionConfigurationName http://schemas.microsoft.com/powershell/Microsoft...
PSSessionOption System.Management.Automation.Remoting.PSSessionOption
PSUICulture en-US
PSVersionTable {PSVersion, WSManStackVersion, SerializationVersio...
PWD Variable:\

100 Windows PowerShell 3 Step by Step

ShellId Microsoft.PowerShell
StackTrace at System.Management.Automation.CommandDiscover...
true True
VerbosePreference SilentlyContinue
WarningPreference Continue
WhatIfPreference False

5. Use the Get-Variable cmdlet to retrieve a specific variable. Use the ShellId variable. You can use
tab completion to speed up typing. The command is shown here:

Get-Variable ShellId

6. Press the up arrow key to retrieve the previous Get-Variable ShellId command. Pipeline the
object returned into a Format-List cmdlet and return all properties. This is shown here:

Get-Variable ShellId | Format-List *

The resulting output includes the description of the variable, value, and other information
shown here:

PSPath : Microsoft.PowerShell.Core\Variable::shellid
PSDrive : Variable
PSProvider : Microsoft.PowerShell.Core\Variable
PSIsContainer : False
Name : ShellId
Description : The ShellID identifies the current shell. This is used by
 #Requires.
Value : Microsoft.PowerShell
Visibility : Public
Module :
ModuleName :
Options : Constant, AllScope
Attributes : {}

7. Create a new variable called administrator. To do this, use the New-Variable cmdlet. This com-
mand is shown here:

New-Variable administrator

8. Use the Get-Variable cmdlet to retrieve the new administrator variable. This command is
shown here:

Get-Variable administrator

The resulting output is shown here. Notice that there is no value for the variable.

Name Value
---- -----
administrator

 CHAPTER 3 Understanding and Using PowerShell Providers 101

9. Assign a value to the new administrator variable. To do this, use the Set-Variable cmdlet.
Specify the administrator variable name, and supply your given name as the value for the
variable. This command is shown here:

Set-Variable administrator -value mred

10. Press the up arrow key one time to retrieve the previous Get-Variable administrator command.
This command is shown here:

Get-Variable administrator

The output displays both the variable name and the value associated with the variable. This is
shown here:

Name Value
---- -----
administrator mred

11. Use the Remove-Variable cmdlet to remove the administrator variable you previously created.
This command is shown here:

Remove-Variable administrator

You could also use the Del alias, as follows:

Del variable:administrator

12. Press the up arrow key one time to retrieve the previous Get-Variable administrator command.
This command is shown here:

Get-Variable administrator

The variable is deleted. The resulting output is shown here:

Get-Variable : Cannot find a variable with name 'administrator'.
At line:1 char:13
+ Get-Variable <<<< administrator

This concludes this procedure.

Exploring PowerShell providers: step-by-step exercises

In this exercise, you’ll explore the use of the certificate provider in Windows PowerShell. You will navi-
gate the certificate provider by using the same types of commands used with the file system. You will
then explore the environment provider by using the same methodology.

102 Windows PowerShell 3 Step by Step

Exploring the certificate provider

1. Open the Windows PowerShell console.

2. Obtain a listing of all the properties available for use with the Get-ChildItem cmdlet by piping
the results into the Get-Member cmdlet. To filter out only the properties, pipeline the results
into a Where-Object cmdlet and specify the membertype to be equal to property. This com-
mand is shown here:

Get-ChildItem |Get-Member | Where-Object {$_.membertype -eq "property"}

3. Set your location to the Certificate drive. To identify the Certificate drive, use the Get-PSDrive
cmdlet. Use the Where-Object cmdlet and filter on names that begin with the letter c. This is
shown here:

Get-PSDrive |where name -like "c*"

The results of this command are shown here:

 Name Used (GB) Free (GB) Provider Root

---- --------- --------- -------- ----

C 110.38 38.33 FileSystem C:\

Cert Certificate \

4. Use the Set-Location cmdlet to change to the Certificate drive:

Sl cert:\

5. Use the Get-ChildItem cmdlet to produce a listing of all the certificates on the machine:

GCI

The output from the previous command is shown here:

Location : CurrentUser
StoreNames : {?, UserDS, AuthRoot, CA...}

Location : LocalMachine
StoreNames : {?, AuthRoot, CA, AddressBook...}

6. The listing seems somewhat incomplete. To determine whether there are additional certifi-
cates installed on the machine, use the Get-ChildItem cmdlet again, but this time specify the
-recurse argument. Modify the previous command by using the up arrow key. The command is
shown here:

GCI -recurse

 CHAPTER 3 Understanding and Using PowerShell Providers 103

7. The output from the previous command seems to take a long time to run and produces hun-
dreds of lines of output. To make the listing more readable, pipe the output to a text file, and
then open the file in Notepad. The command to do this is shown here:

GCI -recurse >C:\a.txt;notepad.exe a.txt

This concludes this step-by-step exercise.

In the following exercise, you’ll work with the Windows PowerShell environment provider.

Examining the environment provider

1. Open the Windows PowerShell console.

2. Use the New-PSDrive cmdlet to create a drive mapping to the alias provider. The name of the
new PS drive will be al. The -PSProvider parameter is alias, and the root will be dot (.). This
command is shown here:

New-PSDrive -name al -PSProvider alias -Root .

3. Change your working location to the new PS drive you called al. To do this, use the sl alias for
the Set-Location cmdlet. This is shown here:

SL al:\

4. Use the gci alias for the Get-ChildItem cmdlet, and pipeline the resulting object into the
Sort-Object cmdlet by using the sort alias. Supply name as the property to sort on. This com-
mand is shown here:

GCI | Sort -property name

5. Press the up arrow key to retrieve the previous gci | sort -property name command, and mod-
ify it to use a Where-Object cmdlet to return aliases only when the name begins with a letter
after t in the alphabet. Use the where alias to avoid typing the entire name of the cmdlet. The
resulting command is shown here:

GCI | sort -property name | Where Name -gt "t"

6. Change your location back to drive C. To do this, use the sl alias and supply the C:\ argument.
This is shown here:

SL C:\

7. Remove the PS drive mapping for al. To do this, use the Remove-PSDrive cmdlet and supply
the name of the PS drive to remove. Note that this command does not take a trailing colon (:)
or colon with backslash (:\). The command is shown here:

Remove-PSDrive al

104 Windows PowerShell 3 Step by Step

8. Use the Get-PSDrive cmdlet to ensure the al drive has been removed. This is shown here:

Get-PSDrive

9. Use the Get-Item cmdlet to obtain a listing of all the environment variables. Use the -path
argument and supply env:\ as the value. This is shown here:

Get-Item -path env:\

10. Press the up arrow key to retrieve the previous command and pipeline the resulting object
into the Get-Member cmdlet. This is shown here:

Get-Item -path env:\ | Get-Member

The results from the previous command are shown here:

TypeName: System.Collections.Generic.Dictionary'2+ValueCollection[[System.
String, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e0
89],[System.Collections.DictionaryEntry, mscorlib, Version=2.0.0.0, Culture=
neutral, PublicKeyToken=b77a5c561934e089]]

Name MemberType Definition
---- ---------- ----------
CopyTo Method System.Void CopyTo(DictionaryEntry[] array, Int32...
Equals Method System.Boolean Equals(Object obj)
GetEnumerator Method System.Collections.Generic.Dictionary'2+ValueColl...
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
get_Count Method System.Int32 get_Count()
ToString Method System.String ToString()
PSDrive NoteProperty System.Management.Automation.PSDriveInfo PSDrive=Env
PSIsContainer NoteProperty System.Boolean PSIsContainer=True
PSPath NoteProperty System.String PSPath=Microsoft.PowerShell.Core\En...
PSProvider NoteProperty System.Management.Automation.ProviderInfo PSProvi...
Count Property System.Int32 Count {get;}

11. Press the up arrow key twice to return to the Get-Item -path env:\ command. Use the Home
key to move your insertion point to the beginning of the line. Add a variable called $objEnv
and use it to hold the object returned by the Get-Item -path env:\ command. The completed
command is shown here:

$objEnv=Get-Item -path env:\

12. From the listing of members of the environment object, find the count property. Use this
property to print out the total number of environment variables. As you type $o, try to use
tab completion to avoid typing. Also try to use tab completion as you type the c in count. The
completed command is shown here:

$objEnv.Count

 CHAPTER 3 Understanding and Using PowerShell Providers 105

13. Examine the methods of the object returned by Get-Item -path env:\. Notice there is a
Get_Count method. Let’s use that method. The code is shown here:

$objEnv.Get_count

When this code is executed, however, the results define the method rather than execute the
Get_Count method. These results are shown here:

MemberType : Method
OverloadDefinitions : {System.Int32 get_Count()}
TypeNameOfValue : System.Management.Automation.PSMethod
Value : System.Int32 get_Count()
Name : get_Count
IsInstance : True

14. To retrieve the actual number of environment variables, you need to use empty parentheses
at the end of the method. This is shown here:

$objEnv.Get_count()

15. If you want to know exactly what type of object is contained in the $objEnv variable, you can
use the GetType method, as shown here:

$objEnv.GetType()

This command returns the results shown here:

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
False True ValueCollection System.Object

This concludes this exercise.

106 Windows PowerShell 3 Step by Step

Chapter 3 quick reference

To Do this

Produce a listing of all variables defined in a Windows
PowerShell session

Use the Set-Location cmdlet to change location to the
Variable PS drive, and then use the Get-ChildItem cmdlet.

Obtain a listing of all the aliases Use the Set-Location cmdlet to change location to the
Alias PS drive, and then use the Get-ChildItem cmdlet to
produce a listing of aliases. Pipeline the resulting object
into the Where-Object cmdlet and filter on the name
property for the appropriate value.

Delete a directory that is empty Use the Remove-Item cmdlet and supply the name of the
directory.

Delete a directory that contains other items Use the Remove-Item cmdlet and supply the name of the
directory and specify the -recurse argument.

Create a new text file Use the New-Item cmdlet and specify the -path argument
for the directory location. Supply the -name argument
and specify the -type argument as file.
Example: New-Item -path C:\Mytest -name Myfile.txt
-type file.

Obtain a listing of registry keys from a registry hive Use the Get-ChildItem cmdlet and specify the appropriate
PS drive name for the -path argument. Complete the path
with the appropriate registry path.
Example: gci -path HKLM:\software

Obtain a listing of all functions on the system Use the Get-ChildItem cmdlet and supply the PS drive
name of function:\ to the -path argument.
Example: gci -path function:\

 107

C H A P T E R 4

Using PowerShell
remoting and Jobs

after completing this chapter, you will be able to:

■■ Use Windows PowerShell remoting to connect to a remote system.

■■ Use Windows PowerShell remoting to run commands on a remote system.

■■ Use Windows PowerShell jobs to run commands in the background.

■■ Receive the results of background jobs.

■■ Keep the results from background jobs.

Understanding Windows PowerShell remoting

One of the great improvements in Microsoft Windows PowerShell 3.0 is the change surrounding
remoting. The configuration is easier than it was in Windows PowerShell 2.0, and in most cases,
Windows PowerShell remoting just works. When talking about Windows PowerShell remoting, a
bit of confusion can arise because there are several different ways of running commands against
remote servers. Depending on your particular network configuration and security needs, one or more
methods of remoting may not be appropriate.

Classic remoting
Classic remoting in Windows PowerShell relies on protocols such as DCOM and RPC to make connec-
tions to remote machines. Traditionally, these protocols require opening many ports in the firewall
and starting various services that the different cmdlets utilize. To find the Windows PowerShell
cmdlets that natively support remoting, use the Get-Help cmdlet. Specify a value of computername
for the -parameter parameter of the Get-Help cmdlet. This command produces a nice list of all
cmdlets that have native support for remoting. The command and associated output appear here:

108 Windows PowerShell 3 Step by Step

PS C:\> get-help * -Parameter computername | sort name | ft name, synopsis -auto -wrap

Name Synopsis
---- --------
Add-Computer Add the local computer to a domain or workgroup.
Add-Printer Adds a printer to the specified computer.
Add-PrinterDriver Installs a printer driver on the specified
 computer.
Add-PrinterPort Installs a printer port on the specified computer.
Clear-EventLog Deletes all entries from specified event logs on
 the local or remote computers.
Connect-PSSession Reconnects to disconnected sessions.
Connect-WSMan Connects to the WinRM service on a remote
 computer.
Disconnect-PSSession Disconnects from a session.
Disconnect-WSMan Disconnects the client from the WinRM service on
 a remote computer.
Enter-PSSession Starts an interactive session with a remote
 computer.
Get-CimAssociatedInstance
 Get-CimAssociatedInstance [-InputObject]
 <ciminstance> [[-Association] <string>]
 [-ResultClassName <string>] [-Namespace <string>]
 [-OperationTimeoutSec <uint32>] [-ResourceUri
 <uri>] [-ComputerName <string[]>] [-KeyOnly]
 [<CommonParameters>]

 Get-CimAssociatedInstance [-InputObject]
 <ciminstance> [[-Association] <string>]
 -CimSession <CimSession[]> [-ResultClassName
 <string>] [-Namespace <string>]
 [-OperationTimeoutSec <uint32>] [-ResourceUri
 <uri>] [-KeyOnly] [<CommonParameters>]

Get-CimClass
 Get-CimClass [[-ClassName] <string>]
 [[-Namespace] <string>] [-OperationTimeoutSec
 <uint32>] [-ComputerName <string[]>] [-MethodName
 <string>] [-PropertyName <string>]
 [-QualifierName <string>] [<CommonParameters>]

 Get-CimClass [[-ClassName] <string>]
 [[-Namespace] <string>] -CimSession
 <CimSession[]> [-OperationTimeoutSec <uint32>]
 [-MethodName <string>] [-PropertyName <string>]
 [-QualifierName <string>] [<CommonParameters>]

Write-EventLog Writes an event to an event log.

As you can see, many of the Windows PowerShell cmdlets that have the -computername param-
eter relate to Web Services Management (WSMAN), Common Information Model (CIM), or sessions.
To remove these cmdlets from the list, modify the command a bit to use Where-Object (? Is an alias
for Where-Object). The revised command and associated output appear here:

 CHAPTER 4 Using PowerShell Remoting and Jobs 109

PS C:\> Get-Help * -Parameter computername -Category cmdlet | ? modulename -match
'PowerShell.Management' | sort name | ft name, synopsis -AutoSize -Wrap

Name Synopsis
---- --------
Add-Computer Add the local computer to a domain or workgroup.
Clear-EventLog Deletes all entries from specified event logs on the local or
 remote computers.
Get-EventLog Gets the events in an event log, or a list of the event logs, on
 the local or remote computers.
Get-HotFix Gets the hotfixes that have been applied to the local and remote
 computers.
Get-Process Gets the processes that are running on the local computer or a
 remote computer.
Get-Service Gets the services on a local or remote computer.
Get-WmiObject Gets instances of Windows Management Instrumentation (WMI)
 classes or information about the available classes.
Invoke-WmiMethod Calls Windows Management Instrumentation (WMI) methods.
Limit-EventLog Sets the event log properties that limit the size of the event
 log and the age of its entries.
New-EventLog Creates a new event log and a new event source on a local or
 remote computer.
Register-WmiEvent Subscribes to a Windows Management Instrumentation (WMI) event.
Remove-Computer Removes the local computer from its domain.
Remove-EventLog Deletes an event log or unregisters an event source.
Remove-WmiObject Deletes an instance of an existing Windows Management
 Instrumentation (WMI) class.
Rename-Computer Renames a computer.
Restart-Computer Restarts ("reboots") the operating system on local and remote
 computers.
Set-Service Starts, stops, and suspends a service, and changes its properties.
Set-WmiInstance Creates or updates an instance of an existing Windows Management
 Instrumentation (WMI) class.
Show-EventLog Displays the event logs of the local or a remote computer in
 Event Viewer.
Stop-Computer Stops (shuts down) local and remote computers.
Test-Connection Sends ICMP echo request packets ("pings") to one or more
 computers.

<-- output truncated -->

Some of the cmdlets provide the ability to specify credentials. This allows you to use a different
user account to make the connection and to retrieve the data. Figure 4-1 displays the credential dia-
log box that appears when the cmdlet runs.

110 Windows PowerShell 3 Step by Step

FIGURE 4-1 Cmdlets that support the -credential parameter prompt for credentials when supplied with
a user name.

This technique of using the -computername and -credential parameters in a cmdlet appears here:

PS C:\> Get-WinEvent -LogName application -MaxEvents 1 -ComputerName ex1 -Credential
nwtraders\administrator

TimeCreated ProviderName Id Message
----------- ------------ -- -------
7/1/2012 11:54:14 AM MSExchange ADAccess 2080 Process MAD.EXE (...

However, as mentioned earlier, use of these cmdlets often requires opening holes in the firewall
or starting specific services. By default, these types of cmdlets fail when run against remote machines
that don’t have relaxed access rules. An example of this type of error appears here:

PS C:\> Get-WinEvent -LogName application -MaxEvents 1 -ComputerName dc1 -Credential
nwtraders\administrator
Get-WinEvent : The RPC server is unavailable
At line:1 char:1
+ Get-WinEvent -LogName application -MaxEvents 1 -ComputerName dc1 -Credential iam
...
+ ~~
 + CategoryInfo : NotSpecified: (:) [Get-WinEvent], EventLogException
 + FullyQualifiedErrorId : System.Diagnostics.Eventing.Reader.EventLogException,
 Microsoft.PowerShell.Commands.GetWinEventCommand

Other cmdlets, such as Get-Service and Get-Process, do not have a -credential parameter, and
therefore the commands associated with cmdlets such as Get-Service or Get-Process impersonate the
logged-on user. Such a command appears here:

PS C:\> Get-Service -ComputerName hyperv -Name bits

Status Name DisplayName
------ ---- -----------
Running bits Background Intelligent Transfer Ser...

PS C:\>

 CHAPTER 4 Using PowerShell Remoting and Jobs 111

Just because the cmdlet does not support alternate credentials does not mean that the cmdlet
must impersonate the logged-on user. Holding down the Shift key and right-clicking the Windows
PowerShell icon from the taskbar brings up an action menu that allows you to run the program as a
different user. This menu appears in Figure 4-2.

FIGURE 4-2 The menu from the Windows PowerShell console permits running with different security credentials.

The Run As Different User dialog box appears in Figure 4-3.

FIGURE 4-3 The Run As Different User dialog box permits entering a different user context.

Using the Run As Different User dialog box makes alternative credentials available for Windows
PowerShell cmdlets that do not support the -credential parameter.

112 Windows PowerShell 3 Step by Step

WinrM
Windows Server 2012 installs with Windows Remote Management (WinRM) configured and running
to support remote Windows PowerShell commands. WinRM is Microsoft’s implementation of the
industry standard WS-Management protocol. As such, WinRM provides a firewall-friendly method of
accessing remote systems in an interoperable manner. It is the remoting mechanism used by the new
CIM cmdlets. As soon as Windows Server 2012 is up and running, you can make a remote connection
and run commands, or open an interactive Windows PowerShell console. Windows 8 Client, on the
other hand, ships with WinRM locked down. Therefore, the first step is to use the Enable-PSRemoting
function to configure Windows PowerShell remoting on the client machine. When running the
Enable-PSRemoting function, the function performs the following steps:

1. Starts or restarts the WinRM service

2. Sets the WinRM service startup type to Automatic

3. Creates a listener to accept requests from any Internet Protocol (IP) address

4. Enables inbound firewall exceptions for WSMAN traffic

5. Sets a target listener named Microsoft.powershell

6. Sets a target listener named Microsoft.powershell.workflow

7. Sets a target listener named Microsoft.powershell32

During each step of this process, the function prompts you to agree to performing the specified
action. If you are familiar with the steps the function performs and you do not make any changes
from the defaults, you can run the command with the -force switched parameter, and it will not
prompt prior to making the changes. The syntax of this command appears here:

Enable-PSRemoting -force

The use of the Enable-PSRemoting function in interactive mode appears here, along with all associ-
ated output from the command:

PS C:\> Enable-PSRemoting

WinRM Quick Configuration
Running command "Set-WSManQuickConfig" to enable remote management of this computer
by using the Windows Remote Management (WinRM) service.
 This includes:
 1. Starting or restarting (if already started) the WinRM service
 2. Setting the WinRM service startup type to Automatic
 3. Creating a listener to accept requests on any IP address
 4. Enabling Windows Firewall inbound rule exceptions for WS-Management traffic
(for http only).

 CHAPTER 4 Using PowerShell Remoting and Jobs 113

Do you want to continue?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
WinRM has been updated to receive requests.
WinRM service type changed successfully.
WinRM service started.

WinRM has been updated for remote management.
Created a WinRM listener on HTTP://* to accept WS-Man requests to any IP on this machine.
WinRM firewall exception enabled.

Confirm
Are you sure you want to perform this action?
Performing operation "Set-PSSessionConfiguration" on Target "Name:
microsoft.powershell SDDL:
O:NSG:BAD:P(A;;GA;;;BA)(A;;GA;;;RM)S:P(AU;FA;GA;;;WD)(AU;SA;GXGW;;;WD). This will
allow selected users to remotely run Windows PowerShell commands on this computer".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y

Confirm
Are you sure you want to perform this action?
Performing operation "Set-PSSessionConfiguration" on Target "Name:
microsoft.powershell.workflow SDDL:
O:NSG:BAD:P(A;;GA;;;BA)(A;;GA;;;RM)S:P(AU;FA;GA;;;WD)(AU;SA;GXGW;;;WD). This will
allow selected users to remotely run Windows PowerShell commands on this computer".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y

Confirm
Are you sure you want to perform this action?
Performing operation "Set-PSSessionConfiguration" on Target "Name:
microsoft.powershell32 SDDL:
O:NSG:BAD:P(A;;GA;;;BA)(A;;GA;;;RM)S:P(AU;FA;GA;;;WD)(AU;SA;GXGW;;;WD). This will
allow selected users to remotely run Windows PowerShell commands on this computer".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
PS C:\>

Once Windows PowerShell remoting is configured, use the Test-WSMan cmdlet to ensure that
the WinRM remoting is properly configured and is accepting requests. A properly configured system
replies with the information appearing here:

PS C:\> Test-WSMan -ComputerName w8c504

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 3.0

114 Windows PowerShell 3 Step by Step

This cmdlet works with Windows PowerShell 2.0 remoting as well. The output appearing here is
from a domain controller running Windows 2008 with Windows PowerShell 2.0 installed and WinRM
configured for remote access:

PS C:\> Test-WSMan -ComputerName dc1}
wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 2.0

If WinRM is not configured, an error returns from the system. Such an error from a Windows 8
client appears here:

PS C:\> Test-WSMan -ComputerName w8c10
Test-WSMan : <f:WSManFault
xmlns:f="http://schemas.microsoft.com/wbem/wsman/1/wsmanfault" Code="2150859046"
Machine="w8c504.iammred.net"><f:Message>WinRM cannot complete the operation. Verify
that the specified computer name is valid, that the computer is accessible over the
network, and that a firewall exception for the WinRM service is enabled and allows
access from this computer. By default, the WinRM firewall exception for public
profiles limits access to remote computers within the same local subnet.
</f:Message></f:WSManFault>
At line:1 char:1
+ Test-WSMan -ComputerName w8c10
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidOperation: (w8c10:String) [Test-WSMan], Invalid
 OperationException
 + FullyQualifiedErrorId : WsManError,Microsoft.WSMan.Management.TestWSManCommand

Keep in mind that configuring WinRM via the Enable-PSRemoting function does not enable the
Remote Management firewall exception, and therefore PING commands will not work by default when
pinging to a Windows 8 client system. This appears here:

PS C:\> ping w8c504

Pinging w8c504.iammred.net [192.168.0.56] with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 192.168.0.56:
 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss).

Pings to a Windows 2012 server, do however, work. This appears here:

PS C:\> ping w8s504

Pinging w8s504.iammred.net [192.168.0.57] with 32 bytes of data:
Reply from 192.168.0.57: bytes=32 time<1ms TTL=128
Reply from 192.168.0.57: bytes=32 time<1ms TTL=128
Reply from 192.168.0.57: bytes=32 time<1ms TTL=128
Reply from 192.168.0.57: bytes=32 time<1ms TTL=128

 CHAPTER 4 Using PowerShell Remoting and Jobs 115

Ping statistics for 192.168.0.57:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

Creating a remote Windows PowerShell session
For simple configuration on a single remote machine, entering a remote Windows PowerShell session
is the answer. To enter a remote Windows PowerShell session, use the Enter-PSSession cmdlet. This
creates an interactive remote Windows PowerShell session on a target machine and uses the default
remote endpoint. If you do not supply credentials, the remote session impersonates the currently
logged on user The output appearing here illustrates connecting to a remote computer named dc1.
Once the connection is established, the Windows PowerShell prompt changes to include the name
of the remote system. Set-Location (which has an alias of sl) changes the working directory on the
remote system to C:\. Next, the Get-WmiObject cmdlet retrieves the BIOS information on the remote
system. The exit command exits the remote session, and the Windows PowerShell prompt returns to
the prompt configured previously.

PS C:\> Enter-PSSession -ComputerName dc1
[dc1]: PS C:\Users\Administrator\Documents> sl c:\
[dc1]: PS C:\> gwmi win32_bios

SMBIOSBIOSVersion : A01
Manufacturer : Dell Computer Corporation
Name : Default System BIOS
SerialNumber : 9HQ1S21
Version : DELL - 6

[dc1]: PS C:\> exit
PS C:\>

The good thing is that when using the Windows PowerShell transcript tool via Start-Transcript,
the transcript tool captures output from the remote Windows PowerShell session, as well as output
from the local session. Indeed, all commands typed appear in the transcript. The following commands
illustrate beginning a transcript, entering a remote Windows PowerShell session, typing a command,
exiting the session, and stopping the transcript:

PS C:\> Start-Transcript
Transcript started, output file is C:\Users\administrator.IAMMRED\Documents\PowerShell_
transcript.20120701124414.txt
PS C:\> Enter-PSSession -ComputerName dc1
[dc1]: PS C:\Users\Administrator\Documents> gwmi win32_bios

SMBIOSBIOSVersion : A01
Manufacturer : Dell Computer Corporation
Name : Default System BIOS
SerialNumber : 9HQ1S21
Version : DELL - 6

116 Windows PowerShell 3 Step by Step

[dc1]: PS C:\Users\Administrator\Documents> exit
PS C:\> Stop-Transcript
Transcript stopped, output file is C:\Users\administrator.IAMMRED\Documents\PowerShell_
transcript.20120701124414.txt
PS C:\>

Figure 4-4 displays a copy of the transcript from the previous session.

FIGURE 4-4 The Windows PowerShell transcript tool records commands and output received from a remote
Windows PowerShell session.

If you anticipate making multiple connections to a remote system, use the New-PSSession cmdlet
to create a remote Windows PowerShell session. New-PSSession permits you to store the remote ses-
sion in a variable and provides you with the ability to enter and to leave the remote session as often
as required—without the additional overhead of creating and destroying remote sessions. In the
commands that follow, a new Windows PowerShell session is created via the New-PSSession cmdlet.
The newly created session is stored in the $dc1 variable. Next, the Enter-PSSession cmdlet is used to
enter the remote session by using the stored session. A command retrieves the remote hostname, and
the remote session is exited via the exit command. Next, the session is reentered, and the last process
is retrieved. The session is exited once again. Finally, the Get-PSSession cmdlet retrieves Windows
PowerShell sessions on the system, and all sessions are removed via the Remove-PSSession cmdlet.

 CHAPTER 4 Using PowerShell Remoting and Jobs 117

PS C:\> $dc1 = New-PSSession -ComputerName dc1 -Credential iammred\administrator
PS C:\> Enter-PSSession $dc1
[dc1]: PS C:\Users\Administrator\Documents> hostname
dc1
[dc1]: PS C:\Users\Administrator\Documents> exit
PS C:\> Enter-PSSession $dc1
[dc1]: PS C:\Users\Administrator\Documents> gps | select -Last 1

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 292 9 39536 50412 158 1.97 2332 wsmprovhost

[dc1]: PS C:\Users\Administrator\Documents> exit
PS C:\> Get-PSSession

 Id Name ComputerName State ConfigurationName Availability
 -- ---- ------------ ----- ----------------- ------------
 8 Session8 dc1 Opened Microsoft.PowerShell Available

PS C:\> Get-PSSession | Remove-PSSession
PS C:\>

running a single Windows PowerShell command
If you have a single command to run, it does not make sense to go through all the trouble of build-
ing and entering an interactive remote Windows PowerShell session. Instead of creating a remote
Windows PowerShell console session, you can run a single command by using the Invoke-Command
cmdlet. If you have a single command to run, use the cmdlet directly and specify the computer name
as well as any credentials required for the connection. You are still creating a remote session, but you
are also removing the session. Therefore, if you have a lot of commands to run against the remote
machine, a performance problem could arise. But for single commands, this technique works well. The
technique is shown here, where the last process running on the Ex1 remote server appears:

PS C:\> Invoke-Command -ComputerName ex1 -ScriptBlock {gps | select -Last 1}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName PSComputerNa
 me
------- ------ ----- ----- ----- ------ -- ----------- ------------
 224 34 47164 51080 532 0.58 10164 wsmprovhost ex1

If you have several commands, or if you anticipate making multiple connections, the Invoke-
Command cmdlet accepts a session name or a session object in the same manner as the Enter-
PSSession cmdlet. In the output appearing here, a new PSSession is created to a remote computer
named dc1. The remote session is used to retrieve two different pieces of information. Once the
Windows PowerShell remote session is completed, the session stored in the $dc1 variable is explicitly
removed.

118 Windows PowerShell 3 Step by Step

PS C:\> $dc1 = New-PSSession -ComputerName dc1 -Credential iammred\administrator
PS C:\> Invoke-Command -Session $dc1 -ScriptBlock {hostname}
dc1
PS C:\> Invoke-Command -Session $dc1 -ScriptBlock {Get-EventLog application -Newest 1}

 Index Time EntryType Source InstanceID Message PSCompu
 terName
 ----- ---- --------- ------ ---------- ------- -------
 17702 Jul 01 12:59 Information ESENT 701 DFSR... dc1

PS C:\> Remove-PSSession $dc1

Using Invoke-Command, you can run the same command against a large number of remote sys-
tems. The secret behind this power is that the -computername parameter from the Invoke-Command
cmdlet accepts an array of computer names. In the output appearing here, an array of computer
names is stored in the variable $cn. Next, the $cred variable holds the PSCredential object for the
remote connections. Finally, the Invoke-Command cmdlet is used to make connections to all of
the remote machines and to return the BIOS information from the systems. The nice thing about this
technique is that an additional parameter, PSComputerName, is added to the returning object, per-
mitting easy identification of which BIOS is associated with which computer system. The commands
and associated output appear here:

PS C:\> $cn = "dc1","dc3","ex1","sql1","wsus1","wds1","hyperv1","hyperv2","hyperv3"
PS C:\> $cred = get-credential iammred\administrator
PS C:\> Invoke-Command -cn $cn -cred $cred -ScriptBlock {gwmi win32_bios}

SMBIOSBIOSVersion : BAP6710H.86A.0072.2011.0927.1425
Manufacturer : Intel Corp.
Name : BIOS Date: 09/27/11 14:25:42 Ver: 04.06.04
SerialNumber :
Version : INTEL - 1072009
PSComputerName : hyperv3

SMBIOSBIOSVersion : A11
Manufacturer : Dell Inc.
Name : Phoenix ROM BIOS PLUS Version 1.10 A11
SerialNumber : BDY91L1
Version : DELL - 15
PSComputerName : hyperv2

SMBIOSBIOSVersion : A01
Manufacturer : Dell Computer Corporation
Name : Default System BIOS
SerialNumber : 9HQ1S21
Version : DELL - 6
PSComputerName : dc1

 CHAPTER 4 Using PowerShell Remoting and Jobs 119

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 3692-0963-1044-7503-9631-2546-83
Version : VRTUAL - 3000919
PSComputerName : wsus1

SMBIOSBIOSVersion : V1.6
Manufacturer : American Megatrends Inc.
Name : Default System BIOS
SerialNumber : To Be Filled By O.E.M.
Version : 7583MS - 20091228
PSComputerName : hyperv1

SMBIOSBIOSVersion : 080015
Manufacturer : American Megatrends Inc.
Name : Default System BIOS
SerialNumber : None
Version : 091709 - 20090917
PSComputerName : sql1

SMBIOSBIOSVersion : 080015
Manufacturer : American Megatrends Inc.
Name : Default System BIOS
SerialNumber : None
Version : 091709 - 20090917
PSComputerName : wds1

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 8994-9999-0865-2542-2186-8044-69
Version : VRTUAL - 3000919
PSComputerName : dc3

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 2301-9053-4386-9162-8072-5664-16
Version : VRTUAL - 3000919
PSComputerName : ex1

PS C:\>

Using Windows PowerShell jobs

Windows PowerShell jobs permit you to run one or more commands in the background. Once you
start the Windows PowerShell job, the Windows PowerShell console returns immediately for further
use. This permits you to accomplish multiple tasks at the same time. You can begin a new Windows

120 Windows PowerShell 3 Step by Step

PowerShell job by using the Start-Job cmdlet. The command to run as a job is placed in a script block,
and the jobs are sequentially named Job1, Job2, and so on. This is shown here:

PS C:\> Start-Job -ScriptBlock {get-process}

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
10 Job10 BackgroundJob Running True localhost

PS C:\>

The jobs receive job IDs that are also sequentially numbered. The first job created in a Windows
PowerShell console always has a job ID of 1. You can use either the job ID or the job name to obtain
information about the job. This is shown here:

PS C:\> Get-Job -Name job10

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
10 Job10 BackgroundJob Completed True localhost

PS C:\> Get-Job -Id 10

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
10 Job10 BackgroundJob Completed True localhost

PS C:\>

Once you see that the job has completed, you can receive the job. The Receive-Job cmdlet returns
the same information that returns if a job is not used. The Job1 output is shown here (truncated to
save space):

PS C:\> Receive-Job -Name job10

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 62 9 1672 6032 80 0.00 1408 apdproxy
 132 9 2316 5632 62 1364 atieclxx
 122 7 1716 4232 32 948 atiesrxx
 114 9 14664 15372 48 1492 audiodg
 556 62 53928 5368 616 3.17 3408 CCC
 58 8 2960 7068 70 0.19 928 conhost
 32 5 1468 3468 52 0.00 5068 conhost
 784 14 3284 5092 56 416 csrss
 529 27 2928 17260 145 496 csrss
 182 13 8184 11152 96 0.50 2956 DCPSysMgr
 135 11 2880 7552 56 2056 DCPSysMgrSvc
 ... (truncated output)

 CHAPTER 4 Using PowerShell Remoting and Jobs 121

Once a job has been received, that is it—the data is gone, unless you saved it to a variable or
you call the Receive-Job cmdlet with the -keep switched parameter. The following code attempts to
retrieve the information stored from job10, but as appears here, no data returns:

PS C:\> Receive-Job -Name job10
PS C:\>

What can be confusing about this is that the job still exists, and the Get-Job cmdlet continues to
retrieve information about the job. This is shown here:

PS C:\> Get-Job -Id 10

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
10 Job10 BackgroundJob Completed False localhost

As a best practice, use the Remove-Job cmdlet to delete remnants of completed jobs when you are
finished using the job object. This will avoid confusion regarding active jobs, completed jobs, and jobs
waiting to be processed. Once a job has been removed, the Get-Job cmdlet returns an error if you
attempt to retrieve information about the job—because it no longer exists. This is illustrated here:

PS C:\> Remove-Job -Name job10
PS C:\> Get-Job -Id 10
Get-Job : The command cannot find a job with the job ID 10. Verify the value of the
Id parameter and then try the command again.
At line:1 char:1
+ Get-Job -Id 10
+ ~~~~~~~~~~~~~~
 + CategoryInfo : ObjectNotFound: (10:Int32) [Get-Job], PSArgumentException
 + FullyQualifiedErrorId : JobWithSpecifiedSessionNotFound,Microsoft.PowerShell.
 Commands.GetJobCommand

When working with the job cmdlets, I like to give the jobs their own name. A job that returns
process objects via the Get-Process cmdlet might be called getProc. A contextual naming scheme
works better than trying to keep track of names such as Job1 and Job2. Do not worry about making
your job names too long, because you can use wildcard characters to simplify the typing requirement.
When you receive a job, make sure you store the returned objects in a variable. This is shown here:

PS C:\> Start-Job -Name getProc -ScriptBlock {get-process}

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
12 getProc BackgroundJob Running True localhost

PS C:\> Get-Job -Name get*

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
12 getProc BackgroundJob Completed True localhost

122 Windows PowerShell 3 Step by Step

PS C:\> $procObj = Receive-Job -Name get*
PS C:\>

Once you have the returned objects in a variable, you can use the objects with other Windows
PowerShell cmdlets. One thing to keep in mind is that the object is deserialized. This is shown here,
where I use gm as an alias for the Get-Member cmdlet:

PS C:\> $procObj | gm

 TypeName: Deserialized.System.Diagnostics.Process

This means that not all the standard members from the System.Diagnostics.Process .NET
Framework object are available. The default methods are shown here (gps is an alias for the
Get-Process cmdlet, gm is an alias for Get-Member, and -m is enough of the -membertype parameter
to distinguish it on the Windows PowerShell console line):

PS C:\> gps | gm -m method

 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
BeginErrorReadLine Method System.Void BeginErrorReadLine()
BeginOutputReadLine Method System.Void BeginOutputReadLine()
CancelErrorRead Method System.Void CancelErrorRead()
CancelOutputRead Method System.Void CancelOutputRead()
Close Method System.Void Close()
CloseMainWindow Method bool CloseMainWindow()
CreateObjRef Method System.Runtime.Remoting.ObjRef CreateObjRef(type
 requestedType)
Dispose Method System.Void Dispose()
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetLifetimeService Method System.Object GetLifetimeService()
GetType Method type GetType()
InitializeLifetimeService Method System.Object InitializeLifetimeService()
Kill Method System.Void Kill()
Refresh Method System.Void Refresh()
Start Method bool Start()
ToString Method string ToString()
WaitForExit Method bool WaitForExit(int milliseconds), System.Void
 WaitForExit()
WaitForInputIdle Method bool WaitForInputIdle(int milliseconds), bool
 WaitForInputIdle()

Methods from the deserialized object are shown here, where I use the same command I used
previously:

 CHAPTER 4 Using PowerShell Remoting and Jobs 123

PS C:\> $procObj | gm -m method

 TypeName: Deserialized.System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
ToString Method string ToString(), string ToString(string format, System.IFormatProvider
formatProvider)

PS C:\>

A listing of the cmdlets that use the noun job is shown here:

PS C:\> Get-Command -Noun job | select name

Name

Get-Job
Receive-Job
Remove-Job
Resume-Job
Start-Job
Stop-Job
Suspend-Job
Wait-Job

When starting a Windows PowerShell job via the Start-Job cmdlet, you can specify a name to hold
the returned job object. You can also assign the returned job object in a variable by using a straight-
forward value assignment. If you do both, you end up with two copies of the returned job object. This
is shown here:

PS C:\> $rtn = Start-Job -Name net -ScriptBlock {Get-Net6to4Configuration}
PS C:\> Get-Job -Name net

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
18 net BackgroundJob Completed True localhost

PS C:\> $rtn

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
18 net BackgroundJob Completed True localhost

Retrieving the job via the Receive-Job cmdlet consumes the data. You cannot come back and
retrieve the returned data again. This code shown here illustrates this concept:

124 Windows PowerShell 3 Step by Step

PS C:\> Receive-Job $rtn

RunspaceId : e8ed4ab6-eb88-478c-b2de-5991b5636ef1
Caption :
Description : 6to4 Configuration
ElementName :
InstanceID : ActiveStore
AutoSharing : 0
PolicyStore : ActiveStore
RelayName : 6to4.ipv6.microsoft.com.
RelayState : 0
ResolutionInterval : 1440
State : 0

PS C:\> Receive-Job $rtn
PS C:\>

The next example illustrates examining the command and cleaning up the job. When you use
Receive-Job, an error message is displayed. To find additional information about the code that trig-
gered the error, use the job object stored in the $rtn variable or the Get-Net6to4Configuration job.
You may prefer using the job object stored in the $rtn variable, as shown here:

PS C:\> $rtn.Command
Get-Net6to4Configuration

To clean up first, remove the leftover job objects by getting the jobs and removing the jobs. This is
shown here:

PS C:\> Get-Job | Remove-Job
PS C:\> Get-Job
PS C:\>

When you create a new Windows PowerShell job, it runs in the background. There is no indica-
tion as the job runs whether it ends in an error or it’s successful. Indeed, you do not have any way
to tell when the job even completes, other than to use the Get-Job cmdlet several times to see when
the job state changes from running to completed. For many jobs, this may be perfectly acceptable. In
fact, it may even be preferable, if you wish to regain control of the Windows PowerShell console as
soon as the job begins executing. On other occasions, you may wish to be notified when the Windows
PowerShell job completes. To accomplish this, you can use the Wait-Job cmdlet. You need to give the
Wait-Job cmdlet either a job name or a job ID. Once you have done this, the Windows PowerShell
console will pause until the job completes. The job, with its completed status, displays on the console.
You can then use the Receive-Job cmdlet to receive the deserialized objects and store them in a vari-
able (cn is a parameter alias for the -computername parameter used in the Get-WmiObject command).
The command appearing here starts a job to receive software products installed on a remote server
named hyperv1. It impersonates the currently logged-on user and stores the returned object in a
variable named $rtn.

 CHAPTER 4 Using PowerShell Remoting and Jobs 125

PS C:\> $rtn = Start-Job -ScriptBlock {gwmi win32_product -cn hyperv1}
PS C:\> $rtn

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
22 Job22 BackgroundJob Running True localhost

PS C:\> Wait-Job -id 22

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
22 Job22 BackgroundJob Completed True localhost

PS C:\> $prod = Receive-Job -id 22
PS C:\> $prod.Count
2

In a newly open Windows PowerShell console, the Start-Job cmdlet is used to start a new job. The
returned job object is stored in the $rtn variable. You can pipeline the job object contained in the $rtn
variable to the Stop-Job cmdlet to stop the execution of the job. If you try to use the job object in the
$rtn variable directly to get job information, an error will be generated. This is shown here:

PS C:\> $rtn = Start-Job -ScriptBlock {gwmi win32_product -cn hyperv1}
PS C:\> $rtn | Stop-Job
PS C:\> Get-Job $rtn
Get-Job : The command cannot find the job because the job name
System.Management.Automation.PSRemotingJob was not found. Verify the value of the
Name parameter, and then try the command again.
At line:1 char:1
+ Get-Job $rtn
+ ~~~~~~~~~~~~
 + CategoryInfo : ObjectNotFound: (System.Manageme...n.PSRemotingJob:
 String) [Get-Job], PSArgumentException
 + FullyQualifiedErrorId : JobWithSpecifiedNameNotFound,Microsoft.PowerShell.
 Commands.GetJobCommand

You can pipeline the job object to the Get-Job cmdlet and see that the job is in a stopped state.
Use the Receive-Job cmdlet to receive the job information and the count property to see how many
software products are included in the variable, as shown here:

PS C:\> $rtn | Get-Job

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
2 Job2 BackgroundJob Stopped False localhost

PS C:\> $products = Receive-Job -Id 2
PS C:\> $products.count
0

126 Windows PowerShell 3 Step by Step

In the preceding list you can see that no software packages were enumerated. This is because the
Get-WmiObject command to retrieve information from the Win32_Product class did not have time
to finish.

If you want to keep the data from your job so that you can use it again later, and you do not want
to bother storing it in an intermediate variable, use the -keep parameter. In the command that fol-
lows, the Get-NetAdapter cmdlet is used to return network adapter information.

PS C:\> Start-Job -ScriptBlock {Get-NetAdapter}

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
4 Job4 BackgroundJob Running True localhost

When checking on the status of a background job, and you are monitoring a job you just created,
use the -newest parameter instead of typing a job number, as it is easier to remember. This technique
appears here:

PS C:\> Get-Job -Newest 1

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
4 Job4 BackgroundJob Completed True localhost

Now, to retrieve the information from the job and to keep the information available, use the -keep
switched parameter as illustrated here:

PS C:\> Receive-Job -Id 4 -Keep

ifAlias : Ethernet
InterfaceAlias : Ethernet
ifIndex : 12
ifDesc : Microsoft Hyper-V Network Adapter
ifName : Ethernet_7
DriverVersion : 6.2.8504.0
LinkLayerAddress : 00-15-5D-00-2D-07
MacAddress : 00-15-5D-00-2D-07
LinkSpeed : 10 Gbps
MediaType : 802.3
PhysicalMediaType : Unspecified
AdminStatus : Up
MediaConnectionState : Connected
DriverInformation : Driver Date 2006-06-21 Version
 6.2.8504.0 NDIS 6.30
DriverFileName : netvsc63.sys
NdisVersion : 6.30
ifOperStatus : Up
RunspaceId : 9ce8f8e6-1a09-4103-a508-c60398527
<output truncated>

 CHAPTER 4 Using PowerShell Remoting and Jobs 127

You can continue to work directly with the output in a normal Windows PowerShell fashion, like so:

PS C:\> Receive-Job -Id 4 -Keep | select name

name

Ethernet

PS C:\> Receive-Job -Id 4 -Keep | select transmitlinksp*

 TransmitLinkSpeed

 10000000000

Using Windows PowerShell remoting: step-by-step exercises

In this exercise, you will practice using Windows PowerShell remoting to run remote commands.
For the purpose of this exercise, you can use your local computer. First, you will open the Windows
PowerShell console, supply alternate credentials, create a Windows PowerShell remote session, and
run various commands. Next, you will create and receive Windows PowerShell jobs.

Supplying alternate credentials for remote Windows PowerShell sessions

1. Log on to your computer with a user account that does not have administrator rights.

2. Open the Windows PowerShell console.

3. Notice the Windows PowerShell console prompt. An example of such a prompt appears here:

PS C:\Users\ed.IAMMRED>

4. Use a variable named $cred to store the results of using the Get-Credential cmdlet. Specify
administrator credentials to store in the $cred variable. An example of such a command
appears here:

$cred = Get-Credential iammred\administrator

5. Use the Enter-PSSession cmdlet to open a remote Windows PowerShell console session. Use
the credentials stored in the $cred variable, and use localhost as the name of the remote com-
puter. Such a command appears here:

Enter-PSSession -ComputerName localhost -Credential $cred

6. Notice how the Windows PowerShell console prompt changes to include the name of the
remote computer, and also changes the working directory. Such a changed prompt appears
here:

[localhost]: PS C:\Users\administrator\Documents>

128 Windows PowerShell 3 Step by Step

7. Use the whoami command to verify the current context. The results of the command appear
here:

[localhost]: PS C:\Users\administrator\Documents> whoami

iammred\administrator

8. Use the exit command to exit the remote session. Use the whoami command to verify that the
user context has changed.

9. Use WMI to retrieve the BIOS information on the local computer. Use the alternate credentials
stored in the $cred variable. This command appears here:

gwmi -Class win32_bios -cn localhost -Credential $cred

The previous command fails and produces the following error. This error comes from WMI and
states that you are not permitted to use alternate credentials for a local WMI connection.

gwmi : User credentials cannot be used for local connections
At line:1 char:1
+ gwmi -Class win32_bios -cn localhost -Credential $cred
+ ~~
 + CategoryInfo : InvalidOperation: (:) [Get-WmiObject], ManagementException
 + FullyQualifiedErrorId : GetWMIManagementException,Microsoft.PowerShell.Commands.
 GetWmiObjectCommand

10. Put the WMI command into the -scriptblock parameter for Invoke-Command. Specify the local
computer as the value for computername and use the credentials stored in the $cred variable.
The command appears here (using -script as a shortened version of -scriptblock):

Invoke-Command -cn localhost -script {gwmi -Class win32_bios} -cred $cred

11. Press the up arrow key to retrieve the previous command and erase the credential parameter.
The revised command appears here:

Invoke-Command -cn localhost -script {gwmi -Class win32_bios}

When you run the command, it generates the error appearing here because a normal user
does not have remote access by default (if you have admin rights, then the command works):

[localhost] Connecting to remote server localhost failed with the following error

message : Access is denied. For more information, see the about_Remote_Troubleshooting

Help topic.

 + CategoryInfo : OpenError: (localhost:String) [], PSRemotingTransport

 Exception

 + FullyQualifiedErrorId : AccessDenied,PSSessionStateBroken

 CHAPTER 4 Using PowerShell Remoting and Jobs 129

12. Create an array of computer names. Store the computer names in a variable named $cn. Use
the array appearing here:

$cn = $env:COMPUTERNAME,"localhost","127.0.0.1"

13. Use Invoke-Command to run the WMI command against all three computers at once. The
command appears here:

Invoke-Command -cn $cn -script {gwmi -Class win32_bios}

This concludes this step-by-step exercise.

In the following exercise, you will create and receive Windows PowerShell jobs.

Creating and receiving jobs

1. Open the Windows PowerShell console as a non-elevated user.

2. Start a job named Get-Process that uses a -scriptblock parameter that calls the Get-Process
cmdlet (gps is an alias for Get-Process). The command appears here:

Start-Job -Name gps -ScriptBlock {gps}

3. Examine the output from starting the job. It lists the name, state, and other information about
the job. Sample output appears here:

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
9 gps BackgroundJob Running True localhost

4. Use the Get-Process cmdlet to determine if the job has completed. The command appears
here:

Get-Job gps

5. Examine the output from the previous command. The state reports completed when the job
has completed. If data is available, the hasmoredata property reports true. Sample output
appears here:

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
9 gps BackgroundJob Completed True localhost

6. Receive the results from the job. To do this, use the Receive-Job cmdlet as shown here:

Receive-Job gps

130 Windows PowerShell 3 Step by Step

7. Press the up arrow key to retrieve the Get-Job command. Run it. Note that the hasmoredata
property now reports false, as shown here:

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
9 gps BackgroundJob Completed False localhost

8. Create a new job with the same name as the previous job: gps. This time, change the -script-
block parameter value to gsv (the alias for Get-Service). The command appears here:

Start-Job -Name gps -ScriptBlock {gsv}

9. Now use the Get-Job cmdlet to retrieve the job with the name gps. Note that the command
retrieves both jobs, as shown here:

Get-Job -name gps

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
9 gps BackgroundJob Completed False localhost
11 gps BackgroundJob Completed True localhost

10. Use the Receive-Job cmdlet to retrieve the job ID associated with your new job. This time, use
the -keep switch, as shown here:

Receive-Job -Id 11 -keep

11. Use the Get-Job cmdlet to retrieve your job. Note that the hasmoredata property still reports
true because you’re using the -keep switch.

This concludes this exercise.

Chapter 4 quick reference

To Do this

Work interactively on a remote system Use the Enter-PSSession cmdlet to create a remote
session.

Configure Windows PowerShell remoting Use the Enable-PSRemoting function.

Run a command on a remote system Use the Invoke-Command cmdlet and specify the com-
mand in a -scriptblock parameter.

Run a command as a job Use the Start-Job cmdlet to execute the command.

Check on the progress of a job Use the Get-Job cmdlet and specify either the job ID or
the job name.

Check on the progress of the newest job Use the Get-Job cmdlet and specify the -newest param-
eter, and supply the number of new jobs to monitor.

Retrieve the results from a job Use the Receive-Job cmdlet and specify the job ID.

 131

C H A P T E R 5

Using PowerShell Scripts

after completing this chapter, you will be able to:

■■ Understand the reasons for writing Windows PowerShell scripts.

■■ Make the configuration changes required to run Windows PowerShell scripts.

■■ Understand how to run Windows PowerShell scripts.

■■ Understand how to break lines in a script.

■■ Understand the use of variables and constants in a script.

■■ Create objects in a Windows PowerShell script.

■■ Call methods in a Windows PowerShell script.

With the ability to perform so many actions from inside Microsoft Windows PowerShell in an inter-
active fashion, you may wonder, “Why do I need to write scripts?” For many network administrators,
one-line PowerShell commands will indeed solve many routine problems. This can become extremely
powerful when the commands are combined into batch files and perhaps called from a login script.
However, there are some very good reasons to write Windows PowerShell scripts. We will examine
them as we move into this chapter.

Why write Windows PowerShell scripts?

Perhaps the number-one reason to write a Windows PowerShell script is to address recurring needs.
As an example, consider the activity of producing a directory listing. The simple Get-ChildItem cmdlet
does a good job, but after you decide to sort the listing and filter out only files of a certain size, you
end up with the command shown here:

Get-ChildItem c:\fso | Where-Object Length -gt 1000 | Sort-Object -Property name

Even using tab completion, the previous command requires a bit of typing. One way to shorten
it would be to create a user-defined function (a technique that I’ll discuss later). For now, the easi-
est solution is to write a Windows PowerShell script. The DirectoryListWithArguments.ps1 script is
shown here:

132 Windows PowerShell 3 Step by Step

DirectoryListWithArguments.ps1
foreach ($i in $args)
 {Get-ChildItem $i | Where-Object length -gt 1000 |
 Sort-Object -property name}

The DirectoryListWithArguments.ps1 script takes a single, unnamed argument that allows the
script to be modified when it is run. This makes the script much easier to work with and adds
flexibility.

An additional reason that network administrators write Windows PowerShell scripts is to run the
scripts as scheduled tasks. In the Windows world, there are multiple task-scheduler engines. Using the
WIN32_ScheduledJob Windows Management Instrumentation (WMI) class, you can create, monitor,
and delete scheduled jobs. This WMI class has been available since the Windows NT 4 days.

The ListProcessesSortResults.ps1 script, shown following, is a script that a network administrator
may want to schedule to run several times a day. It produces a list of currently running processes and
writes the results out to a text file as a formatted and sorted table.

ListProcessesSortResults.ps1
$args = "localhost","loopback","127.0.0.1"

foreach ($i in $args)
 {$strFile = "c:\mytest\"+ $i +"Processes.txt"
 Write-Host "Testing" $i "please wait ...";
 Get-WmiObject -computername $i -class win32_process |
 Select-Object name, processID, Priority, ThreadCount, PageFaults, PageFileUsage |
 Where-Object {!$_.processID -eq 0} | Sort-Object -property name |
 Format-Table | Out-File $strFile}

One other reason for writing Windows PowerShell scripts is that it makes it easy to store and share
both the “secret commands” and the ideas behind the scripts. For example, suppose you develop a
script that will connect remotely to workstations on your network and search for user accounts that
do not require a password. Obviously, an account without a password is a security risk! After some
searching around, you discover the WIN32_UserAccount WMI class and develop a script that performs
to your expectation. Because this is likely a script you would want to use on a regular basis, and per-
haps share with other network administrators in your company, it makes sense to save it as a script. A
sample of such a script is AccountsWithNoRequiredPassword.ps1, which is shown here:

AccountsWithNoRequiredPassword.ps1
$args = "localhost"

foreach ($i in $args)
 {Write-Host "Connecting to" $i "please wait ...";
 Get-WmiObject -computername $i -class win32_UserAccount |
 Select-Object Name, Disabled, PasswordRequired, SID, SIDType |
 Where-Object {$_.PasswordRequired -eq 0} |
 Sort-Object -property name | Write-Host}

 CHAPTER 5 Using PowerShell Scripts 133

Scripting fundamentals

In its most basic form, a Windows PowerShell script is a collection of PowerShell commands. Here’s an
example:

Get-Process notepad | Stop-Process

You can put a command into a Windows PowerShell script and run it directly as it written.

To create a Windows PowerShell script, you simply have to copy the command in a text file and
save the file by using a .ps1 extension. If you create the file in the Windows PowerShell ISE and save
the file, the .ps1 extension will be added automatically. If you double-click the file, it will open in
Notepad by default.

running Windows PowerShell scripts
To run the script, you can open the Windows PowerShell console and drag the file to the console. If
you first copy the path of the script, and later right-click inside the Windows PowerShell console to
paste the path of your script there, and then press Enter, you will print out a string that represents the
path of the script, as shown here:

PS C:\> "C:\fso\test.ps1"
C:\fso\test.ps1

In Windows PowerShell, when you want to print a string in the console, you put it inside quotation
marks. You do not have to use Wscript.Echo or similar commands such as those used in VBScript. This
method is easier and simpler, but takes some getting used to. For example, say you figure out that
your previous attempts to run a Windows PowerShell script just displayed a string—the path to the
script—instead of running the script. Therefore, you remove the quotation marks and press Enter, and
this time, you receive a real error message. "What now?" you may ask. The error message shown in
Figure 5-1 relates to the script execution policy that disallows the running of scripts.

FIGURE 5-1 By default, an attempt to run a Windows PowerShell script generates an error message.

134 Windows PowerShell 3 Step by Step

Enabling Windows PowerShell scripting support
By default, Windows PowerShell disallows the execution of scripts. Script support can be controlled by
using group policy, but if it is not, and if you have administrator rights on your computer, you can use
the Set-ExecutionPolicy Windows PowerShell cmdlet to turn on script support. There are six levels that
can be enabled by using the Set-ExecutionPolicy cmdlet. These options are displayed here:

■■ Restricted Does not load configuration files such as the Windows PowerShell profile or run
other scripts. Restricted is the default.

■■ AllSigned Requires that all scripts and configuration files be signed by a trusted publisher,
including scripts that you write on the local computer.

■■ RemoteSigned Requires that all scripts and configuration files downloaded from the
Internet zone be signed by a trusted publisher.

■■ Unrestricted Loads all configuration files and runs all scripts. If you run an unsigned script
that was downloaded from the Internet, you are prompted for permission before it runs.

■■ Bypass Blocks nothing and issues no warnings or prompts.

■■ Undefined Removes the currently assigned execution policy from the current scope. This
parameter will not remove an execution policy that is set in a group policy scope.

In addition to six levels of execution policy, there are three different scopes:

■■ Process The execution policy affects only the current Windows PowerShell process.

■■ CurrentUser The execution policy affects only the current user.

■■ LocalMachine The execution policy affects all users of the computer. Setting the
LocalMachine execution policy requires administrator rights on the local computer. By default,
a non-elevated user has rights to set the script execution policy for the CurrentUser user scope
that affects their own execution policy.

With so many choices available to you for script execution policy, you may be wondering which
one is appropriate for you. The Windows PowerShell team recommends the RemoteSigned setting,
stating that it is “appropriate for most circumstances.” Remember that, even though descriptions of
the various policy settings use the term Internet, this may not always refer to the World Wide Web,
or even to locations outside your own firewall. This is because Windows PowerShell obtains its script
origin information by using the Internet Explorer zone settings. This basically means anything that
comes from a computer other than your own is in the Internet zone. You can change the Internet
Explorer zone settings by using Internet Explorer, the registry, or group policy.

If you do not want to see the confirmation message when you change the script execution policy
on Windows PowerShell 3.0, use the -force parameter.

 CHAPTER 5 Using PowerShell Scripts 135

To view the execution policy for all scopes, use the -list parameter when calling the
Get-ExecutionPolicy cmdlet. This technique appears here:

PS C:\> Get-ExecutionPolicy -List

 Scope ExecutionPolicy
 ----- ---------------
 MachinePolicy Undefined
 UserPolicy Undefined
 Process Undefined
 CurrentUser RemoteSigned
 LocalMachine Restricted

retrieving script execution policy

1. Open Windows PowerShell.

2. Use the Get-ExecutionPolicy cmdlet to retrieve the effective script execution policy. This is
shown here:

Get-ExecutionPolicy

This concludes this procedure. Leave Windows PowerShell open for the next procedure.

Quick check
Q. Do Windows PowerShell scripts work by default?

a. No. Windows PowerShell scripts must be explicitly enabled.

Q. What cmdlet can be used to retrieve the resultant execution policy?

a. The Get-ExecutionPolicy cmdlet can retrieve the resultant execution policy.

Q. What cmdlet can be used to set the script execution policy?

a. The Set-ExecutionPolicy cmdlet can be used to set the script execution policy.

Setting script execution policy

1. Use the Set-ExecutionPolicy cmdlet to change the script execution policy to unrestricted. This
command is shown here:

Set-ExecutionPolicy unrestricted

136 Windows PowerShell 3 Step by Step

2. Use the Get-ExecutionPolicy cmdlet to retrieve the current effective script execution policy.
This command is shown here:

Get-ExecutionPolicy

3. The result prints out to the Windows PowerShell console, as shown here:

Unrestricted

This concludes this procedure.

tip If the execution policy on Windows PowerShell is set to restricted, how can you use a
script to determine the execution policy? One method is to use the bypass parameter when
calling Windows PowerShell to run the script. The bypass parameter bypasses the script
execution policy for the duration of the script when it is called.

transitioning from command line to script
Now that you have everything set up to enable script execution, you can run your StopNotepad.ps1
script. This is shown here:

StopNotepad.ps1
Get-Process Notepad | Stop-Process

If an instance of the Notepad process is running, everything is successful. However, if there is no
instance of Notepad running, the error shown here is generated:

Get-Process : Cannot find a process with the name 'Notepad'. Verify the process
 name and call the cmdlet again.
At C:\Documents and Settings\ed\Local Settings\Temp\tmp1DB.tmp.ps1:14 char:12
+ Get-Process <<<< Notepad | Stop-Process

It is important to get into the habit of reading the error messages. The first part of the error mes-
sage gives a description of the problem. In this example, it could not find a process with the name
of Notepad. The second part of the error message shows the position in the code where the error
occurred. This is known as the position message. The first line of the position message states the error
occurred on line 14. The second portion has a series of arrows that point to the command that failed.
The Get-Process cmdlet command is the one that failed. This is shown here:

At C:\Documents and Settings\ed\Local Settings\Temp\tmp1DB.tmp.ps1:14 char:12
+ Get-Process <<<< Notepad | Stop-Process

The easiest way to eliminate this error message is to use the -erroraction parameter and specify the
silentlycontinue value. You can also use the -ea alias and avoid having to type out -erroraction. This is
basically the same as using the On Error Resume Next command from VBScript (but not exactly the
same, as it only handles nonterminating errors). The really useful feature of the -erroraction parameter
is that it can be specified on a cmdlet-by-cmdlet basis. In addition, there are five enumeration names

 CHAPTER 5 Using PowerShell Scripts 137

or values that can be used. The allowed names and values for the -erroraction parameter are shown in
Table 5-1.

TABLE 5-1 Names and values for -erroraction

Enumeration Value

Ignore 4

Inquire 3

Continue 2

Stop 1

SilentlyContinue 0

In the StopNotepadSilentlyContinue.ps1 script, you add the -erroraction parameter to the
Get-Process cmdlet to skip past any error that may arise if the Notepad process does not exist. To
make the script easier to read, you break the code at the pipe character. The pipe character is not
the line-continuation character. The backtick (`) character, also known as the grave character, is used
when a line of code is too long and must be broken into two physical lines of code. The key thing to
be aware of is that the two physical lines form a single logical line of code. An example of how to use
line continuation is shown here:

Write-Host -foregroundcolor green "This is a demo " `
 "of the line continuation character"

The StopNotepadSilentlyContinue.ps1 script is shown here:

StopnotepadSilentlyContinue.ps1

Get-Process -name Notepad -erroraction silentlycontinue |
Stop-Process

Because you are writing a script, you can take advantage of some features of a script. One of the
first things you can do is use a variable to hold the name of the process to be stopped. This has the
advantage of enabling you to easily change the script to allow for stopping of processes other than
Notepad. All variables begin with the dollar sign. The line that holds the name of the process in a vari-
able is shown here:

$process= "notepad"

Another improvement to the script is one that provides information about the process that is
stopped. The Stop-Process cmdlet returns no information when it is used. But by using the -passthru
parameter of the Stop-Process cmdlet, the process object is passed along in the pipeline. You use
this parameter and pipeline the process object to the ForEach-Object cmdlet. You use the $_ auto-
matic variable to refer to the current object on the pipeline and select the name and the process ID
of the process that is stopped. The concatenation operator in Windows PowerShell is the plus sign (+),
and you use it to display the values of the selected properties in addition to the strings completing
you sentence. This line of code is shown here:

ForEach-Object { $_.name + ' with process ID: ' + $_.ID + ' was stopped.'}

138 Windows PowerShell 3 Step by Step

The complete StopNotepadSilentlyContinuePassThru.ps1 script is shown here:

StopnotepadSilentlyContinuePassthru.ps1

$process = "notepad"
Get-Process -name $Process -erroraction silentlycontinue |
Stop-Process -passthru |
ForEach-Object { $_.name + ' with process ID: ' + $_.ID + ' was stopped.'}

When you run the script with two instances of Notepad running, the following output is shown:

notepad with process ID: 2088 was stopped.
notepad with process ID: 2568 was stopped.

An additional advantage of the StopNotepadSilentlyContinuePassThru.ps1 script is that you can
use it to stop different processes. You can assign multiple process names (an array) to the $process
variable, and when you run the script, each process will be stopped. In this example, you assign the
Notepad the Calc processes to the $process variable. This is shown here:

$process= "notepad", "calc"

When you run the script, both processes are stopped, as shown here:

calc with process ID: 3428 was stopped.
notepad with process ID: 488 was stopped.

You could continue changing your script. You could put the code in a function, write command-
line help, and change the script so that it accepts command-line input or even reads a list of processes
from a text file. As soon as you move from the command line to script, such options suddenly become
possible. These topics are covered in Chapter 6, “Working with Functions,” and Chapter 7, “Creating
Advanced Functions and Modules.”

running Windows PowerShell scripts
You cannot simply double-click a Windows PowerShell script and have it run (unless you change the
file association, but that is not supported or recommended). You cannot type the name in the Run
dialog box either. If you are inside Windows PowerShell, you can run scripts if you have enabled the
execution policy, but you need to type the entire path to the script you wish to run and make sure
you include the ps1 extension.

To run a Windows PowerShell script from inside the Windows PowerShell console, type the full
path to the script. Include the name of the script. Ensure you include the ps1 extension.

If you need to run a script from outside Windows PowerShell, you need to type the full path to the
script, but you must feed it as an argument to the PowerShell.exe program. In addition, you probably
want to specify the -noexit argument so that you can read the output from the script. This is shown in
Figure 5-2.

 CHAPTER 5 Using PowerShell Scripts 139

FIGURE 5-2 Use the -noexit argument for the PowerShell.exe program to keep the console open after a
script runs.

To run a Windows PowerShell script from outside PowerShell, type the full path to the script.
Include the name of the script. Ensure you include the ps1 extension. Feed this to the PowerShell.exe
program. Use the -noexit argument to keep the PowerShell console after script execution.

The RetrieveAndSortServiceState.ps1 script uses the Get-WmiObject cmdlet to make a connec-
tion and retrieve service information. Chapter 10, “Using WMI,” and Chapter 11, “Querying WMI,”
examine WMI as it relates to Windows PowerShell, but because of the way Windows PowerShell
uses cmdlets, you do not need to know everything about the technology to use it in your script. The
RetrieveAndSortServiceState.ps1 script creates a list of all the services that are defined on a machine.
It then checks to see if they are running, stopped, or disabled, and reports the status of the service.
The script also collects the service account that the service is running under.

In this script, the Sort-Object cmdlet is used to perform three sorts on the data: it sorts first by the
start mode of the service (that is, automatic, manual, disabled); it sorts next by the state of the service
(that is, running, stopped, and so forth); and it then alphabetizes the list by the name of each service
in the two previous categories. After the sorting process, the script uses a Format-Table cmdlet and
produces table output in the console window. The RetrieveAndSortServiceState.ps1 script is shown
following, and the “Running scripts inside Windows PowerShell” procedure, which examines running
this script, follows that.

The script is designed to run against multiple remote machines, and it holds the names of the
destination machines in the system variable $args. As written, it uses two computer names that always
refer to the local machine: localhost and loopback. By using these two names, you can simulate the
behavior of connecting to networked computers.

retrieveandSortServiceState.ps1

$args = "localhost","loopback"

 foreach ($i in $args)
 {Write-Host "Testing" $i "..."
 Get-WmiObject -computer $args -class win32_service |
 Select-Object -property name, state, startmode, startname |
 Sort-Object -property startmode, state, name |
 Format-Table *}

140 Windows PowerShell 3 Step by Step

note For the following procedure, I copied the RetrieveAndSortServiceState.ps1 script
to the C:\Mytest directory created in Chapter 3, “Understanding and Using PowerShell
Providers.” This makes it much easier to type the path and has the additional benefit of
making the examples clearer. To follow the procedures, you will need to either modify
the path to the script or copy the RetrieveAndSortServiceState.ps1 script to the C:\Mytest
directory.

running scripts inside Windows PowerShell

1. Open the Windows PowerShell console.

2. Type the full path to the script you wish to run (for example, C:\Mytest). You can use tab
completion. On my system, I only had to type C:\My and then press Tab. Add a backslash
(\), and type the script name. You can use tab completion for this as well. If you copied the
RetrieveAndSortServiceState.ps1 into the C:\Mytest directory, then simply typing r and press-
ing Tab should retrieve the script name. The completed command is shown here:

C:\mytest\RetrieveAndSortServiceState.ps1

Partial output from the script is shown here:

Testing loopback ...

name state startmode startname
---- ----- --------- ---------
Alerter Running Auto NT AUTHORITY\Loc...
Alerter Running Auto NT AUTHORITY\Loc...
AudioSrv Running Auto LocalSystem
AudioSrv Running Auto LocalSystem

This concludes this procedure. Please close Windows PowerShell.

tip Add a shortcut to Windows PowerShell in your SendTo folder. This folder is located
in the Documents and Settings\%username% folder. When you create the shortcut,
make sure you specify the -noexit switch for PowerShell.exe, or else the output will
scroll by so fast that you will not be able to read it. You can do this by hand, or modify
the CreateShortCutToPowerShell.vbs script from Chapter 1, “Overview of Windows
PowerShell 3.0.”

 CHAPTER 5 Using PowerShell Scripts 141

running scripts outside Windows PowerShell

1. Open the Run dialog box (Choose Start | Run, or press the Windows flag key + R, or press
Ctrl+Esc and then R).

2. Type PowerShell and use the -noexit switch. Type the full path to the script. The command for
this is shown here:

Powershell -noexit C:\mytest\RetrieveAndSortServiceState.ps1

This concludes this procedure.

Quick check
Q. Which command can you use to sort a list?

a. The Sort-Object cmdlet can be used to sort a list.

Q. How do you use the Sort-Object cmdlet to sort a list?

a. To use the Sort-Object cmdlet to sort a list, specify the property to sort on in the -property
argument.

Understanding variables and constants
Understanding the use of variables and constants in Windows PowerShell is fundamental to much
of the flexibility of the PowerShell scripting language. Variables are used to hold information for use
later in the script. Variables can hold any type of data, including text, numbers, and even objects.

Use of variables
By default, when working with Windows PowerShell, you do not need to declare variables before use.
When you use a variable to hold data, it is declared. All variable names must be preceded with a dol-
lar sign ($) when they are referenced. There are a number of special variables in Windows PowerShell.
These variables are created automatically and have a special meaning. A listing of the special variables
and their associated meaning appears in Table 5-2.

142 Windows PowerShell 3 Step by Step

TABLE 5-2 Use of special variables

Name Use

$^ This contains the first token of the last line input into the shell.

$$ This contains the last token of the last line input into the shell.

$_ This is the current pipeline object; it’s used in script blocks, filters, Where-Object,
ForEach-Object, and Switch.

$? This contains the success/fail status of the last statement.

$Args This is used with functions or scripts requiring parameters that do not have a param
block.

$Error This saves the error object in the $error variable if an error occurs.

$ExecutionContext This contains the execution objects available to cmdlets.

$foreach This refers to the enumerator in a foreach loop.

$HOME This is the user‘s home directory (set to %HOMEDRIVE%\%HOMEPATH%).

$Input This is input that is piped to a function or code block.

$Match This is a hash table consisting of items found by the -match operator.

$MyInvocation This contains information about the currently executing script or command line.

$PSHome This is the directory where PowerShell is installed.

$Host This contains information about the currently executing host.

$LastExitCode This contains the exit code of the last native application to run.

$true This is used for Boolean TRUE.

$false This is used for Boolean FALSE.

$null This represents a null object.

$this In the Types.ps1xml file and some script block instances, this represents the current
object.

$OFS This is the output field separator used when converting an array to a string.

$ShellID This is the identifier for the shell; this value is used by the shell to determine the ex-
ecution policy and what profiles are run at startup.

$StackTrace This contains detailed stack trace information about the last error.

In the ReadUserInfoFromReg.ps1 script that follows, there are five variables used. These are listed
in Table 5-3.

TABLE 5-3 ReadUserInfoFromReg.ps1 variables

Name Use

$strUserPath This is for the path to registry subkey SOFTWARE\MICROSOFT\WINDOWS\
CURRENTVERSION\EXPLORER.

$strUserName This is for the registry value Logon User Name.

$strPath This is for the path to registry subkey VOLATILE ENVIRONMENT.

$strName This contains an array of registry values: LOGONSERVER, HOMEPATH, APPDATA,
HOMEDRIVE.

$i This holds a single registry value name from the $strName array of registry values; $i
gets assigned the value by using the ForEach alias.

 CHAPTER 5 Using PowerShell Scripts 143

The ReadUserInfoFromReg.ps1 script uses the Set-Location cmdlet to change to the HKCU PS
drive. This makes it easier to work with the registry. After the location has been set to the HKCU
drive, the script uses the Get-ItemProperty cmdlet to retrieve the data stored in the specified registry
key. The Get-ItemProperty cmdlet needs two arguments to be supplied: -path and -name. The -path
argument receives the registry path that is stored in the $strUserPath variable, whereas the -name
argument receives the string stored in the $strUserName variable.

tip Because the $strUserPath registry subkey was rather long, I used the grave accent (`)
to continue the subkey on the next line. In addition, because I had to close out the string
with quotation marks, I used the plus symbol (+) to concatenate (glue) the two pieces of the
string back together.

After the value is retrieved from the registry, the object is pipelined to the Format-List cmdlet,
which once again uses the string contained in the $strUserName variable as the property to display.

note The Format-List cmdlet is required in the ReadUserInfoFromReg.ps1 script because
of the way the Get-ItemProperty cmdlet displays the results of its operation—it returns
information about the object as well as the value contained in the registry key. The use of
Format-List mitigates this behavior.

The really powerful aspect of the ReadUserInfoFromReg.ps1 script is that it uses the array of strings
contained in the $strName variable. To read the values out of the registry, you need to singularize
the strings contained within the $strName variable. To do this, you use the ForEach-Object cmdlet
(however, you reference it by the alias foreach). After you have an individual value from the $strName
array, you store the string in a variable called $i. The Get-ItemProperty cmdlet is used in exactly the
same manner as it was used earlier. However, this time, you use the string contained in the $strPath
variable, and the name of the registry key to read is contained in the $i variable, whose value will
change four times with the execution of each pass through the array.

When the ReadUserInfoFromReg.ps1 script is run, it reads five pieces of information from the
registry: the logon user name, the logon server name, the user’s home path location, the user’s
application data store, and the user’s home drive mapping. The ReadUserInfoFromReg.ps1 script is
shown here:

ReadUserInfoFromReg.ps1
$strUserPath = "\Software\Microsoft\Windows\CurrentVersion\" `
 + "Explorer"
$strUserName = "Logon User Name"
$strPath = "\Volatile Environment"
$strName = "LOGONSERVER","HOMEPATH", "APPDATA","HOMEDRIVE"

144 Windows PowerShell 3 Step by Step

Set-Location HKCU:\
 Get-ItemProperty -path $strUserPath -name $strUserName |
 Format-List $strUserName
foreach ($i in $strName)
 {Get-ItemProperty -path $strPath -name $i |
 Format-List $i}

Quick check
Q. To read a value from the registry, which provider is used?

a. The registry provider is used to read from the registry.

Q. Which cmdlet is used to retrieve a registry key value from the registry?

a. The Get-ItemProperty cmdlet is used to retrieve a registry key value from the registry.

Q. How do you concatenate two string values?

a. You can use the plus symbol (+) to concatenate two string values.

Exploring strings

1. Open Windows PowerShell.

2. Create a variable called $a and assign the value this is the beginning to it. The code for this is
shown here:

$a = "this is the beginning"

3. Create a variable called $b and assign the number 22 to it. The code for this is shown here:

$b = 22

4. Create a variable called $c and make it equal to $a + $b. The code for this is shown here:

$c = $a + $b

5. Print out the value of $c. The code for this is shown here:

$c

6. The results of printing out c$ are shown here:

this is the beginning22

 CHAPTER 5 Using PowerShell Scripts 145

7. Modify the value of $a. Assign the string this is a string to the variable $a. This is shown here:

$a = "this is a string"

8. Press the up arrow key and retrieve the $c = $a + $b command:

$c = $a + $b

9. Now print out the value of $c. The command to do this is shown here:

$c

10. Assign the string this is a number to the variable $b. The code to do this is shown here:

$b = "this is a number"

11. Press the up arrow key to retrieve the $c = $a + $b command. This will cause Windows
PowerShell to reevaluate the value of $c. This command is shown here:

$c = $a + $b

12. Print out the value of $c. This command is shown here:

$c

13. Change the $b variable so that it can only contain an integer. (Data type aliases are shown in
Table 5-4.) Use the $b variable to hold the number 5. This command is shown here:

[int]$b = 5

14. Print out the value contained in the $c variable, as shown here:

$c

15. Assign the string this is a string to the $b variable. This command is shown here:

$b = "this is a string"

Attempting to assign a string to a variable that has an [int] constraint placed on it results in
the error shown here (these results are wrapped for readability):

Cannot convert value "this is a number" to type "System.Int32".
Error: "Input string was not in a correct format."
At line:1 char:3
+ $b <<<< = "this is a string"

This concludes this procedure.

146 Windows PowerShell 3 Step by Step

TABLE 5-4 Data type aliases

Alias Type

[int] A 32-bit signed integer

[long] A 64-bit signed integer

[string] A fixed-length string of Unicode characters

[char] A Unicode 16-bit character, UTF-16

[bool] A true/false value

[byte] An 8-bit unsigned integer

[double] A double-precision 64-bit floating-point number

[decimal] An 128-bit decimal value

[single] A single-precision 32-bit floating-point number

[array] An array of values

[xml] An XML document

[hashtable] A hashtable object (similar to a dictionary object)

Use of constants
Constants in Windows PowerShell are like variables, with two important exceptions: their value never
changes, and they cannot be deleted. Constants are created by using the Set-Variable cmdlet and
specifying the -option argument to be equal to constant.

note When referring to a constant in the body of the script, you must prefix it with the
dollar sign ($), just like any other variable. However, when creating the constant (or variable
for that matter) by using the Set-Variable cmdlet, when you specify the -name argument,
you do not use the dollar sign.

In the GetHardDiskDetails.ps1 script, you create a constant called $intDriveType and assign the
value of 3 to it because the WIN32_LogicalDisk WMI class uses a value of 3 in the disktype property
to describe a local fixed disk. Because you are not interested in network drives, removable drives, or
RAM drives, you use the Where-Object to return only items that have a drive type of 3.

 CHAPTER 5 Using PowerShell Scripts 147

Quick check
Q. How do you create a constant in a script?

a. You create a constant in a script by using Set-Variable and specifying a value of constant for
the -option argument.

Q. How do you indicate that a variable will only hold integers?

a. To indicate that a variable will only contain integers, use [int] in front of the variable name
when assigning a value to the variable.

In looking at the GetHardDiskDetails.ps1 script, the value of $intDriveType is never changed. It
is assigned the value of 3 on the Set-Variable line. The $intDriveType constant is only used with the
Where filter line. The value of $strComputer, however, will change once for each computer name that
is specified in the array $aryComputers. In this script, it will change twice. The first time through the
loop, it will be equal to loopback, and the second time through the loop, it will be equal to localhost.
However, if you added 250 different computer names, the effect would be the same—the value of
$strComputer would change each time through the loop.

GetHardDiskDetails.ps1

$aryComputers = "loopback", "localhost"
Set-Variable -name intDriveType -value 3 -option constant

foreach ($strComputer in $aryComputers)

 {"Hard drives on: " + $strComputer
 Get-WmiObject -class win32_logicaldisk -computername $strComputer|
 Where {$_.drivetype -eq $intDriveType}}

Using the While statement

In VBScript, you had the While...Wend loop. An example of using the While...Wend loop is the
WhileReadLineWend.vbs script that follows. The first thing you do in the script is create an instance
of the FileSystemObject and store it in the objFSO variable. You then use the OpenTextFile method
to open a test file, and store that object in the objFile variable. You then use the While...Not ...Wend
construction to read one line at a time from the text stream and display it on the screen. You continue
to do this until you are at the end of the text stream object. A While...Wend loop continues to oper-
ate as long as a condition is evaluated as true. In this example, as long as you are not at the end of
the stream, you will continue to read the line from the text file. The WhileReadLineWend.vbs script is
shown here:

148 Windows PowerShell 3 Step by Step

WhileReadLineWend.vbs
Set objFSO = CreateObject("Scripting.FileSystemObject")
Set objFile = objFSO.OpenTextFile("C:\fso\testfile.txt")

While Not objFile.AtEndOfStream
 WScript.Echo objFile.ReadLine
Wend

Constructing the While statement in PowerShell
As you probably have already guessed, you have the same kind of construction available to you in
Windows PowerShell. The While statement in Windows PowerShell is used in the same way that the
While...Wend statement is used in VBScript. In the DemoWhileLessThan.ps1 script that follows, you
first initialize the variable $i to be equal to 0. You then use the while keyword to begin the while loop.
In Windows PowerShell, you must include the condition that will be evaluated inside a set of paren-
theses. For this example, you determine the value of the $i variable with each pass through the loop.
If the value of $i is less than the number 5, you will perform the action that is specified inside the
braces (curly brackets) to delimit the script block. In VBScript, the condition that is evaluated is posi-
tioned on the same line with the While statement, but no parentheses are required. Although this is
convenient from a typing perspective, it actually makes the code a bit confusing to read. In Windows
PowerShell, the statement is outside the parentheses and the condition is clearly delimited by the
parentheses. In VBScript, the action that is performed is added between two words: While and Wend.
In Windows PowerShell, there is no Wend statement, and the action to be performed is positioned
inside a pair of braces. Although shocking at first to users coming from a VBScript background, the
braces are always used to contain code. This is what is called a script block, and it is used everywhere.
As soon as you are used to seeing script blocks here, you will find them with other language state-
ments also. The good thing is that you do not have to look for items such as the keyword Wend or the
keyword Loop (of Do...Loop fame).

Understanding expanding strings
In Windows PowerShell, there are two kinds of strings: literal strings and expanding strings. In the
DemoWhileLessThan.ps1 script, you use the expanding string, signified when you use the double quo-
tation mark, " (the literal string uses the single quotation mark, '). You want to display the name of the
variable, and you want to display the value that is contained in the variable. This is a perfect place to
showcase the expanding string. In an expanding string, the value that is contained in a variable is dis-
played to the screen when a line is evaluated. As an example, consider the following code. You assign
the value 12 to the variable $i. You then put $i inside a pair of double quotation marks, making an
expanding string. When the line "$i is equal to $i" is evaluated, you obtain “12 is equal to 12,” which
while true is barely illuminating. This is shown here:

PS C:\> $i = 12
PS C:\> "$i is equal to $i"
12 is equal to 12
PS C:\>

 CHAPTER 5 Using PowerShell Scripts 149

Understanding literal strings
What you probably want to do is display both the name of the variable and the value that is con-
tained inside it. In VBScript, you would have to use concatenation. For this example to work, you have
to use the literal string as shown here:

PS C:\> $i = 12
PS C:\> '$i is equal to ' + $i
$i is equal to 12
PS C:\>

If you want to use the advantage of the expanding string, you have to suppress the expand-
ing nature of the expanding string for the first variable (escape the variable). To do this, you use the
escape character, which is the backtick (or grave character). This is shown here:

PS C:\> $i = 12
PS C:\> "`$i is equal to $i"
$i is equal to 12
PS C:\>

In the DemoWhileLessThan.ps1 script, you use the expanding string to print the status message
of the value of the $i variable during each trip through the While loop. You suppress the expanding
nature of the expanding string for the first $i variable so you can see which variable you are talking
about. As soon as you have done this, you increment the value of the $i variable by one. To do this,
you use the $i++ syntax. This is identical to saying the following:

$i = $i + 1

The advantage is that the $i++ syntax requires less typing. The DemoWhileLessThan.ps1 script is
shown here:

DemoWhileLessthan.ps1

$i = 0
While ($i -lt 5)
 {
 "`$i equals $i. This is less than 5"
 $i++
 } #end while $i lt 5

When you run the DemoWhileLessThan.ps1 script, you receive the following output:

$i equals 0. This is less than 5
$i equals 1. This is less than 5
$i equals 2. This is less than 5
$i equals 3. This is less than 5
$i equals 4. This is less than 5
PS C:\>

150 Windows PowerShell 3 Step by Step

a practical example of using the While statement
Now that you know how to use the While loop, let’s examine the WhileReadLine.ps1 script. The first
thing you do is initialize the $i variable and set it equal to 0. You then use the Get-Content cmdlet to
read the contents of testfile.txt and to store the contents into the $fileContents variable.

Use the While statement to loop through the contents of the text file. You do this as long as the
value of the $i variable is less than or equal to the number of lines in the text file. The number of lines
in the text file is represented by the length property. Inside the script block, you treat the contents of
the $fileContents variable like it is an array (which it is), and you use the $i variable to index into the
array to print the value of each line in the $fileContents variable. You then increment the value of the
$i variable by one. The WhileReadLine.ps1 script is shown here:

WhilereadLine.ps1

$i = 0
$fileContents = Get-Content -path C:\fso\testfile.txt
While ($i -le $fileContents.length)
 {
 $fileContents[$i]
 $i++
 }

Using special features of Windows PowerShell
If you are thinking the WriteReadLine.ps1 script is a bit difficult, note that it is not really any more
difficult than the VBScript version. The difference is you resorted to using arrays to work with the
content you received from the Get-Content cmdlet. The VBScript version uses a FileSystemObject and
a TextStreamObject to work with the data. In reality, you would not have to use a script exactly like the
WhileReadLine.ps1 script to read the contents of the text file. This is because the Get-Content cmdlet
does this for you automatically. All you really have to do to display the contents of TestFile.txt is use
Get-Content. This command is shown here:

Get-Content -path c:\fso\TestFile.txt

Because the results of the command are not stored in a variable, the contents are automatically
emitted to the screen. You can further shorten the Get-Content command by using the gc alias and
by omitting the name of the -path parameter (which is the default parameter). When you do this, you
create a command that resembles the following:

gc c:\fso\TestFile.txt

To find the available aliases for the Get-Content cmdlet, you use the Get-Alias cmdlet with the
-definition parameter. The Get-Alias cmdlet searches for aliases that have a definition that matches
Get-Content. Here is the command, including the output you receive:

 CHAPTER 5 Using PowerShell Scripts 151

PS C:\> Get-Alias -Definition Get-Content

CommandType Name Definition
----------- ---- ----------
Alias cat Get-Content
Alias gc Get-Content
Alias type Get-Content

This section showed that you can use the While statement in Windows PowerShell to perform
looping. It also showed that activities in VBScript that require looping do not always require you to
use the looping behavior in Windows PowerShell because some cmdlets automatically display infor-
mation. Finally, it discussed how to find aliases for cmdlets you frequently use.

Using the Do...While statement

The Do While...Loop statement was often used when working with VBScript. This section covers some
of the advantages of the similar Do...While statement in Windows PowerShell.

The DemoDoWhile.vbs script illustrates using the Do...While statement in VBScript. The first thing
you do is assign a value of 0 to the variable i. You then create an array. To do this, you use the Array
function, and assign the numbers 1 through 5 to the variable ary. You then use the Do While...Loop
construction to walk through the array of numbers. As long as the value of the variable i is less than
the number 5, you display the value of the variable i. You then increment the value of the variable and
loop back around. The DemoDoWhile.vbs script is shown here:

DemoDoWhile.vbs

i = 0
ary = Array(1,2,3,4,5)
Do While i < 5
 WScript.Echo ary(i)
 i = i + 1
Loop

When you run the DemoDoWhile.vbs script in Cscript at the command prompt, you see the num-
bers 1 through 5 displayed at the command prompt.

You can achieve the same thing by using Windows PowerShell. The DemoDoWhile.ps1 and
DemoDoWhile.vbs scripts are essentially the same. The differences between the two scripts are due to
syntax differences between Windows PowerShell and VBScript. With the Windows PowerShell script,
the first thing you do is assign a value of 1 to the variable $i. You then create an array of the numbers
1 through 5 and store that array in the $ary variable. You use a shortcut in Windows PowerShell to
make this a bit easier. Actually, arrays in Windows PowerShell are fairly easy anyway. If you want to
create an array, you just have to assign multiple pieces of data to the variable. To do this, you separate
each piece of data by a comma. This is shown here:

$ary = 1,2,3,4,5

152 Windows PowerShell 3 Step by Step

Using the range operator
If you needed to create an array with 32,000 numbers in it, it would be impractical to type each
number and separate it with a comma. In VBScript, you would have to use a For...Next loop to add the
numbers to the array. You can write a loop in Windows PowerShell as well, but it is easier to use the
range operator. To do this, you use a variable to hold the array of numbers that is created, and type
the beginning and the ending number separated by two periods. This is shown here:

$ary = 1..5

Unfortunately, the range operator does not work for letters. But there is nothing to prevent you
from creating a range of numbers that represent the ASCII value of each letter, and then casting it to
a string later.

Operating over an array
You are now ready for the Do...While loop in Windows PowerShell. You use the Do statement and
open a set of braces (curly brackets). Inside these curly brackets you have a script block. The first thing
you do is index into the array. On your first pass through the array, the value of $i is equal to 0. You
therefore display the first element in the $ary array. You next increment the value of the $i variable
by one. You are now done with the script block, so you look at the While statement. The condition
you are examining is the value of the $i variable. As long as it is less than 5, you will continue to loop
around. As soon as the value of $i is no longer less than 5, you stop looping. This is shown here:

DemoDoWhile.ps1

$i = 0
$ary = 1..5
do
{
 $ary[$i]
 $i++
} while ($i -lt 5)

One thing to be aware of, because it can be a bit confusing, is that you are evaluating the value
of $i. You initialized $i at 0. The first number in your array was 1. But the first element number in the
array is always 0 in Windows PowerShell (unlike VBScript, in which arrays can start with 0 or 1). The
While statement evaluates the value contained in the $i variable, not the value that is contained in the
array. That is why you see the number 5 displayed.

Casting to aSCII values
You can change the DemoDoWhile.ps1 script to display uppercase letters from A to Z. To do this, you
first initialize the $i variable and set it to 0. You then create a range of numbers from 65 through 91.
These are the ASCII values for the capital letter A through the capital letter Z. Then you begin the
Do statement and open your script block. To this point, the script is identical to the previous one. To

 CHAPTER 5 Using PowerShell Scripts 153

obtain letters from numbers, cast the integer to a char. To do this, you use the char data type and put
it inside square brackets. You then use this to convert an integer to an uppercase letter. The code to
display the uppercase letter B from the ASCII value 66 would resemble the following:

PS C:\> [char]66
B

Because you know that the $caps variable contains an array of numbers from 65 through 91, and
that the variable $i will hold numbers from 0 through 26, you index into the $caps array, cast the inte-
ger to a char, and display the results, as follows:

[char]$caps[$i]

You then increment the value of $i by one, close the script block, and enter the While statement,
where you check the value of $i to make sure it is less than 26. As long as $i is less than 26, you con-
tinue to loop around. The complete DisplayCapitalLetters.ps1 script is shown here:

DisplayCapitalLetters.ps1

$i = 0
$caps = 65..91
do
{
 [char]$caps[$i]
 $i++
} while ($i -lt 26)

This section explored the Do...While construction from Windows PowerShell by comparing it to
the similar construction from VBScript. In addition, the use of the range operator and casting was also
examined.

Using the Do...Until statement

Looping technology is something that is essential to master. It occurs everywhere, and should be a
tool that you can use without thought. When you are confronted with a collection of items, an array,
or another bundle of items, you have to know how to easily walk through the mess without resorting
to research, panic, or hours searching the Internet. This section examines the Do...Until construction.
Most of the scripts that do looping at the Microsoft Technet Script Center seem to use Do...While. The
scripts that use Do...Until...Loop are typically used to read through a text file (do something until the
end of the stream) or to read through an ActiveX Data Object (ADO) recordset (do something until
the end of the file). As you will see here, these are not required coding conventions and are not meant
to be limitations. You can frequently perform the same thing by using any of the different looping
constructions.

154 Windows PowerShell 3 Step by Step

Comparing the PowerShell Do...Until statement with VBScript
Before you get too far into this topic, consider the DemoDoUntil.vbs script. In this script, you first
assign a value of 0 to the variable i. You then create an array with the numbers 1 through 5 contained
in it. You use the Do...Until construction to walk through the array until the value of the variable i
is equal to 5. The script will continue to run until the value of the variable i is equal to 5. This is what
a Do...Until construction does—it runs until a condition is met. The difference between Do...Until
and Do...While, examined in the previous section, is that Do...While runs while a condition is true and
Do...Until runs until a condition becomes true. In VBScript, this means that Do...Until will always run at
least once, because the condition is evaluated at the bottom of the loop, whereas Do...While is evalu-
ated at the top of the loop, and therefore will never run if the condition is not true. This is not true for
Windows PowerShell, however, as will be shown later in this section.

Inside the loop, you first display the value that is contained in the array element 0 on the first
pass through the loop. This is because you first set the value of the variable i equal to 0. You next
increment the value of the variable i by one and loop around until the value of i is equal to 5. The
DemoDoUntil.vbs script is shown here:

DemoDoUntil.vbs

i = 0
ary = array(1,2,3,4,5)
Do Until i = 5
 wscript.Echo ary(i)
 i = i+1
Loop

Using the Windows PowerShell Do statement
You can write the same script using Windows PowerShell. In the DemoDoUntil.ps1 script, you first
set the value of the $i variable to 0. You then create an array with the numbers 1 through 5 in it. You
store that array in the $ary variable. You then arrive at the Do (do-until) construction. After the Do
keyword, you open a set of curly brackets. Inside the curly brackets, you use the $i variable to index
into the $ary array and to retrieve the value that is stored in the first element (element 0) of the array.
You then increment the value of the $i variable by one. You continue to loop through the elements
in the array until the value of the $i variable is equal to 5. At that time, you end the script. This script
resembles the DemoDoWhile.ps1 script examined in the previous section.

DemoDoUntil.ps1

$i = 0
$ary = 1..5

Do
{
 $ary[$i]
 $i ++
} Until ($i -eq 5)

 CHAPTER 5 Using PowerShell Scripts 155

the Do...While and Do...Until statements always run once
In VBScript, if a Do...While...Loop condition was never true, the code inside the loop would never
execute. In Windows PowerShell, the Do...While and Do...Until constructions always run at least once.
This can be unexpected behavior, and is something that you should focus on. This is illustrated in
the DoWhileAlwaysRuns.ps1 script. The script assigns a value of 1 to the variable $i. Inside the script
block for the Do...While loop, you print out a message that states you are inside the Do loop. The
loop condition is “while the variable $i is equal to 5.” As you can see, the value of the $i variable is 1.
Therefore, the value of the $i variable will never reach 5, because you are not incrementing it. The
DoWhileAlwaysRuns.ps1 script is shown here:

DoWhilealwaysruns.ps1

$i = 1

Do
{
 "inside the do loop"
} While ($i -eq 5)

When you run the script, the text “inside the do loop” is printed out once.

What about a similar script that uses the Do...Until construction? The EndlessDoUntil.ps1 script
is the same as the DoWhileAlwaysRuns.ps1 script, except for one small detail. Instead of using
Do...While, you are using Do...Until. The rest of the script is the same. The value of the $i variable is
equal to 1, and in the script block for the Do...Until loop, you print the string inside the do loop. This
line of code should execute once for each Do loop until the value of $i is equal to 5. Because the
value of $i is never increased to 5, the script will continue to run. The EndlessDoUntil.ps1 script is
shown here:

EndlessDoUntil.ps1

$i = 1

Do
{
 "inside the do loop"
} Until ($i -eq 5)

Before you run the EndlessDoUntil.ps1 script, you should know how to interrupt the running of
the script. You hold down the Ctrl key and press C (Ctrl+C). This is the same keystroke sequence that
would break a runaway VBScript that was run in Cscript.

the While statement is used to prevent unwanted execution
If you have a situation where the script block must not execute if the condition is not true, you
should use the While statement. The use of the While statement was examined in an earlier section.
Again, you have the same kind of script. You assign the value of 0 to the variable $i, and instead
of using a Do... kind of construction, you use the While statement. The condition you are looking

156 Windows PowerShell 3 Step by Step

at is the same condition you used for the other scripts (do something while the value of $i is equal
to 5). Inside the script block, you display a string that states you are inside the While loop. The
WhileDoesNotRun.ps1 script is shown here:

WhileDoesnotrun.ps1

$i = 0

While ($i -eq 5)
{
 "Inside the While Loop"
}

It is perhaps a bit anticlimactic, but go ahead and run the WhileDoesNotRun.ps1 script. There
should be no output displayed to the console.

The For statement

In VBScript, a For...Next loop was somewhat easy to create. An example of a simple For...Next loop is
shown in DemoForLoop.vbs. You use the For keyword, define a variable to keep track of the count,
indicate how far you will go, define your action, and ensure that you specify the Next keyword. That
is about all there is to it. The DemoForLoop.vbs is shown here:

DemoForLoop.vbs

For i = 1 To 5
 WScript.Echo i
Next

Using the For statement
You can achieve the same thing in Windows PowerShell. The structure of the For loop in Windows
PowerShell resembles the structure for VBScript. They both begin with the keyword For, they both
initialize the variable, and they both specify how far the loop will progress. One thing that is differ-
ent is that a For...Next loop in VBScript automatically increments the counter variable. In Windows
PowerShell, the variable is not automatically incremented; instead, you add $i++ to increment the $i
variable by one. Inside the script block (curly brackets), you display the value of the $i variable. The
DemoForLoop.ps1 script is shown here:

DemoForLoop.ps1

For($i = 0; $i -le 5; $i++)
{
 '$i equals ' + $i
}

The Windows PowerShell For statement is very flexible, and you can leave one or more elements
of it out. In the DemoForWithoutInitOrRepeat.ps1 script, you exclude the first and the last sections of
the For statement. You set the $i variable equal to 0 on the first line of the script. You next come to

 CHAPTER 5 Using PowerShell Scripts 157

the For statement. In the DemoForLoop.ps1 script, the $i = 0 was moved from inside the For state-
ment to the first line of the script. The semicolon is still required because it is used to separate the
three sections of the statement. The condition portion, $i -le 5, is the same as in the previous script.
The repeat section, $i ++, is not used.

In the script section of the For statement, you display the value of the $i variable, and you also
increment the value of $i by one. There are two kinds of Windows PowerShell strings: expanding and
literal. These two types of strings were examined earlier in this chapter. The DemoForLoop.ps1 script
demonstrates an example of a literal string—what is entered is what is displayed. This is shown here:

'$i equals ' + $i

In the DemoForWithoutInitOrRepeat.ps1 script is an example of an expanding string. The value
of the variable is displayed—not the variable name itself. To suppress the expanding nature of the
expanding string, escape the variable by using the backtick character. When you use the expanding
string in this manner, it enables you to avoid concatenating the string and the variable, as you did in
the DemoForLoop.ps1 script. This is shown here:

"`$i is equal to $i"

The value of $i must be incremented somewhere. Because it was not incremented in the repeat
section of the For statement, you have to be able to increment it inside the script block. The
DemoForWithoutInitOrRepeat.ps1 script is shown here:

DemoForWithoutInitOrrepeat.ps1

$i = 0
For(;$i -le 5;)
{
 "`$i is equal to $i"
 $i++
}

When you run the DemoForWithoutInitOrRepeat.ps1 script, the output that is displayed resembles
the output produced by DemoForLoop.ps1. You would never be able to tell it was missing two-thirds
of the parameters.

You can make your For statement into an infinite loop by omitting all three sections of the For
statement. You must leave the semicolons as position holders. When you omit the three parts of the
For statement, it will resemble the following:

for(;;)

While you can create an endless loop with the ForEndlessLoop.ps1 script, you do not have to do
this if this is not your desire. You could use an If statement to evaluate a condition and take action
when the condition is met. If statements will be covered in the section “The If statement” later in this
chapter. In the ForEndlessLoop.ps1 script, you display the value of the $i variable and increment it by
one. The semicolon is used to represent a new line. You could therefore write the For statement on
three lines if you wanted to. This would be useful if you had a very complex For statement, as it would

158 Windows PowerShell 3 Step by Step

make the code easier to read. The script block for the ForEndlessLoop.ps1 script could be written on
different lines and exclude the semicolon. This is shown here:

{
 $i
 $i++
}
ForEndlessLoop.ps1
for(;;)
{
 $i ; $i++
}

When you run the ForEndlessLoop.ps1 script, you are greeted with a long line of numbers. To
break out of the endless loop, press Ctrl+C inside the Windows PowerShell prompt.

You can see that working with Windows PowerShell is all about choices: how you want to work and
the things that you want to try to achieve. The For statement in Windows PowerShell is very flexible,
and maybe one day, you will find just the problem waiting for the solution that you have.

Using the Foreach statement
The Foreach statement resembles the For...Each...Next construction from VBScript. In the
DemoForEachNext.vbs script you create an array of five numbers, 1 through 5. You then use the
For...Each...Next statement to walk your way through the array that is contained in the variable ary.
The variable i is used iterate through the elements of the array. The For...Each block is entered as long
as there is at least one item in the collection or array. When the loop is entered, all statements inside
the loop are executed for the first element. In the DemoForEachNext.vbs script, this means that the
following command is executed for each element in the array:

Wscript.Echo i

As long as there are more elements in the collection or array, the statements inside the loop
continue to execute for each element. When there are no more elements in the collection or array,
the loop is exited, and execution continues with the statement following the Next statement. This is
shown in DemoForEachNext.vbs:

DemoForEachnext.vbs

ary = Array(1,2,3,4,5)
For Each i In ary
 WScript.Echo i
Next
Wscript.echo "All done"

The DemoForEachNext.vbs script works exactly like the DemoForEach.ps1 script. In the
DemoForEach.ps1 PowerShell script, you first create an array that contains the numbers 1 through 5,
and then store that array in the $ary variable. This is shown here:

$ary = 1..5

 CHAPTER 5 Using PowerShell Scripts 159

Then you use the Foreach statement to walk through the array contained in the $ary variable. Use
the $i variable to keep track of your progress through the array. Inside the script block, you display
the value of each variable. The DemoForEach.ps1 script is shown here:

DemoForEach.ps1

$ary = 1..5
Foreach ($i in $ary)
{
 $i
}

Using the Foreach statement from the Windows PowerShell console
The great thing about Windows PowerShell is that you can also use the Foreach statement from inside
the Windows PowerShell console. This is shown here:

PS C:\> $ary = 1..5
PS C:\> foreach($i in $ary) { $i }
1
2
3
4
5

The ability to use the Foreach statement from inside the Windows PowerShell console can give
you excellent flexibility when you are working interactively. However, much of the work done at the
Windows PowerShell console consists of using pipelining. When you are working with the pipeline,
you can use the ForEach-Object cmdlet. This cmdlet behaves in a similar manner to the Foreach
statement but is designed to handle pipelined input. The difference is that you do not have to use an
intermediate variable to hold the contents of the array. You can create the array and send it across the
pipeline. The other difference is that you do not have to create a variable to use for the enumerator.
You use the $_ automatic variable (which represents the current item on the pipeline) instead. This is
shown here:

PS C:\> 1..5 | ForEach-Object { $_ }
1
2
3
4
5

Exiting the Foreach statement early
Suppose that you do not want to work with all the numbers in the array. In VBScript terms, leaving a
For...Each...Loop early is done with an Exit For statement. You have to use an If statement to perform
the evaluation of the condition. When the condition is met, you call Exit For. In the DemoExitFor.vbs
script, you use an inline If statement to make this determination. The inline syntax is more efficient
for these kinds of things than spreading the statement across three different lines. The key thing to

160 Windows PowerShell 3 Step by Step

remember about the inline If statement is it does not conclude with the final End If statement. The
DemoExitFor.vbs script is shown here:

DemoExitFor.vbs

ary = Array(1,2,3,4,5)
For Each i In ary
 If i = 3 Then Exit For
 WScript.Echo i
Next
WScript.Echo "Statement following Next"

Using the Break statement
In Windows PowerShell terms, you use the Break statement to leave the loop early. Inside the script
block, you use an If statement to evaluate the value of the $i variable. If it is equal to 3, you call the
Break statement and leave the loop. This line of code is shown here:

if($i -eq 3) { break }

The complete DemoBreakFor.ps1 script is shown here:

DemoBreakFor.ps1

$ary = 1..5
ForEach($i in $ary)
{
 if($i -eq 3) { break }
 $i
}
"Statement following foreach loop"

When the DemoBreakFor.ps1 script runs, it displays the numbers 1 and 2. Then it leaves the
Foreach loop and runs the line of code following the Foreach loop. This is shown here:

1
2
Statement following foreach loop

Using the Exit statement
If you did not want to run the line of code after the loop statement, you would use the exit statement
instead of the Break statement. This is shown in the DemoExitFor.ps1 script.

DemoExitFor.ps1

$ary = 1..5
ForEach($i in $ary)
{
 if($i -eq 3) { exit }
 $i
}
"Statement following foreach loop"

 CHAPTER 5 Using PowerShell Scripts 161

When the DemoExitFor.ps1 script runs, the line of code following the Foreach loop never exe-
cutes. This is because the exit statement ends the script (In the Windows PowerShell ISE, discussed
in Chapter 8, “Using the Windows PowerShell ISE,” the exit command attempts to close the ISE). The
results of running the DemoExitF0r.ps1 script are shown here:

1
2

You could achieve the same thing in VBScript by using the Wscript.Quit statement instead of
Exit For. As with the DemoExitFor.ps1 script, the DemoQuitFor.vbs script never comes to the line
of code following the For...Each loop. This is shown in DemoQuitFor.vbs here:

DemoQuitFor.vbs

ary = Array(1,2,3,4,5)
For Each i In ary
 If i = 3 Then WScript.Quit
 WScript.Echo i
Next
WScript.Echo "Statement following Next"

In this section, the use of the Foreach statement was examined. It is used when you do not know
how many items are contained within a collection. It allows you to walk through the collection and to
work with items from that collection on an individual basis. In addition, two techniques for exiting a
Foreach statement were also examined.

The If statement

In VBScript, the If...Then...End If statement was somewhat straightforward. There were several things to
be aware of:

■■ The If and the Then statements must be on the same line.

■■ The If...Then...End If statement must conclude with End If.

■■ End If is two words, not one.

The VBScript If...Then...End If statement is shown in the DemoIf.vbs script:

DemoIf.vbs

a = 5
If a = 5 Then
 WScript.Echo "a equals 5"
End If

In the Windows PowerShell version of the If...Then...End If statement, there is no Then keyword,
nor is there an End If statement. The PowerShell If statement is easier to type. This simplicity, how-
ever, comes with a bit of complexity. The condition that is evaluated in the If statement is positioned
between a set of parentheses. In the DemoIf.ps1 script, you are checking whether the variable $a is
equal to 5. This is shown here:

162 Windows PowerShell 3 Step by Step

If ($a -eq 5)

The code that is executed when the condition is true is positioned inside a script block. The script
block for the DemoIf.ps1 script is shown here:

{
 '$a equals 5'
}

The Windows PowerShell version of the DemoIf.vbs script is the DemoIf.ps1 script:

DemoIf.ps1
$a = 5
If($a -eq 5)
 {
 '$a equals 5'
 }

The one thing that is different about the Windows PowerShell If statement is the comparison
operators. In VBScript, the equal sign (=) is used as an assignment operator. It is also used as an equal-
ity operator for comparison. On the first line of code, the variable $a is assigned the value 5. This uses
the equal sign as an assignment. On the next line of code, the If statement is used to see whether the
value of a is equal to 5. On this line of code, the equal sign is used as the equality operator. This is
shown here:

a = 5
If a = 5 Then

In simple examples such as this, it is fairly easy to tell the difference between an equality operator
and an assignment operator. In more complex scripts, however, things could be confusing. Windows
PowerShell removes that confusion by having special comparison operators. One thing that might
help is to realize that the main operators are two letters long. Common comparison operators are
shown in Table 5-5.

TABLE 5-5 Common comparison operators

Operator Description Example Result

-eq Equals $a = 5 ; $a -eq 4 False

-ne Not equal $a = 5 ; $a -ne 4 True

-gt Greater than $a = 5 ; $a -gt 4 True

-ge Greater than or equal to $a = 5 ; $a -ge 5 True

-lt Less than $a = 5 ; $a -lt 5 False

-le Less than or equal to $a = 5 ; $a -le 5 True

-like Wildcard comparison $a = "This is Text" ; $a -like "Text" False

-notlike Wildcard comparison $a = "This is Text" ; $a -notlike "Text" True

-match Regular expression comparison $a = "Text is Text" ; $a -match "Text" True

-notmatch Regular expression comparison $a = "This is Text" ; $a -notmatch "Text$" False

 CHAPTER 5 Using PowerShell Scripts 163

Using assignment and comparison operators
Any value assignment in a condition block will evaluate to true, and therefore the script block is
executed. In this example, you assign the value 1 to the variable $a. In the condition for the If state-
ment, you assign the value of 12 to the variable $a. Any assignment evaluates to true, and the script
block executes.

PS C:\> $a = 1 ; If ($a = 12) { "its true" }
its true

Rarely do you test a condition and perform an action. Sometimes, you have to perform one
action if the condition is true and another action if the condition is false. In VBScript, you used the
If...Else...End If construction. The Else clause went immediately after the first action to be performed if
the condition was true. This is shown in the DemoIfElse.vbs script.

DemoIfElse.vbs

a = 4
If a = 5 Then
 WScript.Echo "a equals 5"
Else
 WScript.Echo "a is not equal to 5"
End If

In Windows PowerShell, the syntax is not surprising. Following the closing curly bracket from the If
statement script block, you add the Else keyword and open a new script block to hold the alternative
outcome. This is shown here:

DemoIfElse.ps1

$a = 4
If ($a -eq 5)
{
 '$a equals 5'
}
Else
{
 '$a is not equal to 5'
}

Things become confusing with VBScript when you want to evaluate multiple conditions and have
multiple outcomes. The Else If clause provides for the second outcome. You have to evaluate the
second condition. The Else If clause receives its own condition, which is followed by the Then keyword.
Following the Then keyword, you list the code that you want to execute. This is followed by the Else
keyword and a pair of End If statements. This is shown in the DemoIfElseIfElse.vbs script:

164 Windows PowerShell 3 Step by Step

DemoIfElseIfElse.vbs

a = 4
If a = 5 Then
 WScript.Echo "a equals 5"
Else If a = 3 Then
 WScript.Echo "a equals 3"
Else
 WScript.Echo "a does not equal 3 or 5"
End If
End If

Evaluating multiple conditions
The Windows PowerShell demoIfElseIfElse.ps1 script is a bit easier to understand because it avoids the
double–End If kind of scenario. For each condition that you want to evaluate, you use ElseIf (be aware
that it is a single word). You put the condition inside a pair of parentheses and open your script block.
Here is the demoIfElseIfElse.ps1 script:

demoIfElseIfElse.ps1

$a = 4
If ($a -eq 5)
{
 '$a equals 5'
}
ElseIf ($a -eq 3)
{
 '$a is equal to 3'
}
Else
{
 '$a does not equal 3 or 5'
}

In this section, the use of the If statement was examined. Comparison operators and assignment
operators were also covered.

The Switch statement

As a best practice, you generally avoid using the ElseIf type of construction from either VBScript or
Windows PowerShell because there is a better way to write the same code.

In VBScript, you would use the Select Case statement to evaluate a condition and select one
outcome from a group of potential statements. In the DemoSelectCase.vbs script, the value of the
variable a is assigned the value of 2. The Select Case statement is used to evaluate the value of
the variable a. The syntax is shown here:

Select Case testexpression

 CHAPTER 5 Using PowerShell Scripts 165

The test expression that is evaluated is the variable a. Each of the different cases contains potential
values for the test expression. If the value of the variable a is equal to 1, the code Wscript.Echo "a = 1"
is executed. This is shown here:

Case 1
 WScript.Echo "a = 1"

Each of the different cases is evaluated in the same manner. The Case Else expression is run if none
of the previous expressions evaluate to true. The complete DemoSelectCase.vbs script is shown here:

DemoSelectCase.vbs

a = 2
Select Case a
 Case 1
 WScript.Echo "a = 1"
 Case 2
 WScript.Echo "a = 2"
 Case 3
 WScript.Echo "a = 3"
 Case Else
 WScript.Echo "unable to determine value of a"
End Select
WScript.Echo "statement after select case"

Using the Switch statement
In Windows PowerShell, there is no Select Case statement. There is, however, the Switch statement.
The Switch statement is the most powerful statement in the Windows PowerShell language. The basic
Switch statement begins with the Switch keyword, followed by the condition to be evaluated posi-
tioned inside a pair of parentheses. This is shown here:

Switch ($a)

Next, a script block is used to mark off the script block for the Switch statement. Inside this outer
script block, you will find an inner script block to be executed. Each condition to be evaluated begins
with a value, followed by the script block to be executed in the event the value matches the condition.
This is shown here:

1 { '$a = 1' }
2 { '$a = 2' }
3 { '$a = 3' }

Defining the default condition
If no match is found in the script block and the Default statement is not used, the Switch state-
ment exits and the line of code that follows the Switch statement is executed. The Default statement
performs a function similar to the Case Else statement from the Select Case statement. The Default
statement is shown here:

Default { 'unable to determine value of $a' }

166 Windows PowerShell 3 Step by Step

The complete DemoSwitchCase.ps1 script is shown here:

DemoSwitchCase.ps1

$a = 2
Switch ($a)
{
 1 { '$a = 1' }
 2 { '$a = 2' }
 3 { '$a = 3' }
 Default { 'unable to determine value of $a' }
}
"Statement after switch"

Understanding matching with the Switch statement
With the Select Case statement, the first matching case is the one that is executed. As soon as that
code executes, the line following the Select Case statement is executed. If the condition matches
multiple cases in the Select Case statement, only the first match in the list is executed. Matches from
lower in the list are not executed. Therefore, make sure that the most desirable code to execute is
positioned highest in the Select Case order.

With the Switch statement in Windows PowerShell, order is not a major design concern. This is
because every match from inside the Switch statement will be executed by default. An example of this
is shown in the DemoSwitchMultiMatch.ps1 script.

DemoSwitchMultiMatch.ps1

$a = 2
Switch ($a)
{
 1 { '$a = 1' }
 2 { '$a = 2' }
 2 { 'Second match of the $a variable' }
 3 { '$a = 3' }
 Default { 'unable to determine value of $a' }
}
"Statement after switch"

When the DemoSwitchMultiMatch.ps1 script runs, the second and third conditions will both be
matched, and therefore their associated script blocks will be executed. The DemoSwitchMultiMatch.ps1
script produces the output shown here:

$a = 2
Second match of the $a variable
Statement after switch

Evaluating an array
If an array is stored in the variable a in the DemoSelectCase.vbs script, a type-mismatch error will be
produced. This error is shown here:

Microsoft VBScript runtime error: Type mismatch

 CHAPTER 5 Using PowerShell Scripts 167

The Windows PowerShell Switch statement can handle an array in the variable $a without any
modification. The array is shown here:

$a = 2,3,5,1,77

The complete DemoSwitchArray.ps1 script is shown here:

DemoSwitcharray.ps1

$a = 2,3,5,1,77
Switch ($a)
{
 1 { '$a = 1' }
 2 { '$a = 2' }
 3 { '$a = 3' }
 Default { 'unable to determine value of $a' }
}
"Statement after switch"

Controlling matching behavior
If you do not want the multimatch behavior of the Switch statement, you can use the Break statement
to change the behavior. In the DemoSwitchArrayBreak.ps1 script, the Switch statement will be exited
when the first match occurs because each of the match condition script blocks contains the Break
statement. This is shown here:

 1 { '$a = 1' ; break }
 2 { '$a = 2' ; break }
 3 { '$a = 3' ; break }

You are not required to include the Break statement with each condition; instead, you could use it to
exit the switch only after a particular condition is matched. The complete DemoSwitchArrayBreak.ps1
script is shown here:

DemoSwitcharrayBreak.ps1

$a = 2,3,5,1,77
Switch ($a)
{
 1 { '$a = 1' ; break }
 2 { '$a = 2' ; break }
 3 { '$a = 3' ; break }
 Default { 'unable to determine value of $a' }
}
"Statement after switch"

In this section, the use of Windows PowerShell Switch statement was examined. The matching
behavior of the Switch statement and the use of Break was also discussed.

168 Windows PowerShell 3 Step by Step

Creating multiple folders: step-by-step exercises

In this exercise, you’ll explore the use of constants, variables, concatenation, decision-making, and
looping as you create 10 folders in the C:\Mytest directory. This directory was created earlier. If you
do not have this folder on your machine, you can either create it manually or modify the following
two exercises to use a folder that exists on your machine. In the second exercise in this section, you
will modify the script to delete the 10 folders.

Creating multiple folders via PowerShell scripting

1. Open the Windows PowerShell ISE.

2. Create a variable called $intFolders and have it hold the value 10. The code to do this is shown
here:

$intFolders = 10

3. Create a variable called $intPad. Do not put anything in the variable yet. This code is shown
here:

$intPad

4. Create a variable called $i and put the value 1 in it. The code to do this is shown here:

$i = 1

5. Use the New-Variable cmdlet to create a variable named strPrefix. Use the -value argument of
the cmdlet to assign a value of testFolder to the variable. Use the -option argument to make
$strPrefix into a constant. The code to do this is shown here:

New-Variable -Name strPrefix -Value "testFolder" -Option constant

6. Begin a Do...Until statement. Include the opening curly bracket for the script block. This code
is shown here:

do {

7. Begin an If...Else statement. The condition to be evaluated is if the variable $i is less than 10.
The code that does this is shown here:

if ($i -lt 10)

8. Open the script block for the If statement. Assign the value 0 to the variable $intPad. This is
shown here:

{$intPad=0

 CHAPTER 5 Using PowerShell Scripts 169

9. Use the New-Item cmdlet to create a new folder. The new folder will be created in the
C:\Mytest directory. The name of the new folder will comprise the $strPrefix constant test-
Folder, the number 0 from the $intPad variable, and the number contained in the $i variable.
The code that does this is shown here:

New-Item -path c:\mytest -name $strPrefix$intPad$i -type directory}

10. Add the Else clause. This code is shown here:

else

11. The Else script block is the same as the If script block, except it does not include the 0 in the
name that comes from the $intPad variable. Copy the New-Item line of code from the If state-
ment and delete the $intPad variable from the -name argument. The revised line of code is
shown here:

{New-Item -path c:\mytest -name $strPrefix$i -type directory}

12. Increment the value of the $i variable by one. To do this, use the double–plus symbol operator
(++) . The code that does this is shown here:

$i++

13. Close the script block for the Else clause and add the Until statement. The condition that Until
will evaluate is if the $i variable is equal to the value contained in the $intFolders variable +
1. The reason for adding 1 to $intFolders is so the script will actually create the same number
of folders as are contained in the $intFolders variable. Because this script uses a Do...Until
loop and the value of $i is incremented before entering the Until evaluation, the value of $i is
always 1 more than the number of folders created. This code is shown here:

}until ($i -eq $intFolders+1)

14. Save your script as <yourname>CreateMultipleFolders.ps1. Run your script. You should see 10
folders created in the C:\Mytest directory. This concludes this step-by-step exercise.

The next exercise will show you how to delete multiple folders.

Deleting multiple folders

1. Open the <yourname>CreateMultipleFolders.ps1 script created in the previous exercise in the
Windows PowerShell ISE.

2. In the If...Else statement, the New-Item cmdlet is used twice to create folders in the C:\Mytest
directory. You want to delete these folders. To do this, you need to change the New-Item
cmdlet to the Remove-Item cmdlet. The two edited script blocks are shown here:

170 Windows PowerShell 3 Step by Step

{$intPad=0
 Remove-Item -path c:\mytest -name $strPrefix$intPad$i -type directory}
 else
 {Remove-Item -path c:\mytest -name $strPrefix$i -type directory}

3. The Remove-Item cmdlet does not have a -name argument. Therefore, you need to remove
this argument but keep the code that creates the folder name. You can basically replace
-name with a backslash, as shown here:

{$intPad=0
 Remove-Item -path c:\mytest\$strPrefix$intPad$i -type directory}
 else
 {Remove-Item -path c:\mytest\$strPrefix$i -type directory}

4. The Remove-Item cmdlet does not take a -type argument. Because this argument is not
needed, it can also be removed from both Remove-Item statements. The revised script block
is shown here:

{$intPad=0
 Remove-Item -path c:\mytest\$strPrefix$intPad$i}
 else
 {Remove-Item -path c:\mytest\$strPrefix$i}

5. This concludes this exercise. Save your script as <yourname>DeleteMultipleFolders.ps1. Run
your script. You should see the 10 previously created folders deleted.

Chapter 5 quick reference

To Do this

Retrieve the script execution policy Use the Get-ExecutionPolicy cmdlet.

Set the script execution policy Use the Set-ExecutionPolicy cmdlet.

Create a variable Type the variable name in the script.

Create a constant Use the New-Variable cmdlet and specify constant for the
-option argument.

Loop through a collection when you do not know how
many items are in the collection

Use the ForEach-Object cmdlet.

Read the contents of a text file Use the Get-Content cmdlet and supply the path to the
file as the value for the -path argument.

Delete a folder Use the Remove-Item cmdlet and supply the path to the
folder as the value for the -path argument.

 171

C H A P T E R 6

Working with Functions

after completing this chapter, you will be able to:

■■ Understand functions.

■■ Use functions to encapsulate logic.

■■ Use functions to provide ease of modification.

■■ Use functions to provide ease of reuse.

There are clear-cut guidelines that can be used to design functions. These guidelines can be used to
ensure that functions are easy to understand, easy to maintain, and easy to troubleshoot. This chapter
will examine the reasons for the scripting guidelines and provide examples of both good and bad
code design.

Understanding functions

In Microsoft Windows PowerShell, functions have moved to the forefront as the primary program-
ming element used when writing Windows PowerShell scripts. This is not necessarily due to improve-
ments in functions per se, but rather a combination of factors, including the maturity of Windows
PowerShell script writers. In Windows PowerShell 1.0, functions were not well understood, perhaps
due to the lack of clear documentation as to their use, purpose, and application.

VBScript included both subroutines and functions. According to the classic definitions, a subroutine
was used to encapsulate code that would do things like write to a database or create a Microsoft
Word document. Functions, on the other hand, were used to return a value. An example of a classic
VBScript function is one that converts a temperature from Fahrenheit to Celsius. The function receives
the value in Fahrenheit and returns the value in Celsius. The classic function always returns a value—if
it does not, a subroutine should be used instead.

172 Windows PowerShell 3 Step by Step

note Needless to say, the concepts of functions and subroutines were a bit confusing
for many VBScript writers. A common question I used to receive when teaching VBScript
classes was, “When do I use a subroutine and when do I use a function?” After expounding
the classic definition, I would then show them that you could actually write a subroutine
that would behave like a function. Next, I would write a function that acted like a subrou-
tine. It was great fun, and the class loved it. The Windows PowerShell team has essentially
done the same thing. There is no confusion over when to use a subroutine and when to use
a function, because there are no subroutines in Windows PowerShell—only functions.

To create a function in Windows PowerShell, you begin with the Function keyword, followed by the
name of the function. As a best practice, use the Windows PowerShell verb-noun combination when
creating functions. Pick the verb from the standard list of PowerShell verbs to make your functions
easier to remember. It is a best practice to avoid creating new verbs when there is an existing verb
that can easily do the job.

An idea of the verb coverage can be obtained by using the Get-Command cmdlet and piping the
results to the Group-Object cmdlet. This is shown here:

Get-Command -CommandType cmdlet | Group-Object -Property Verb |
Sort-Object -Property count -Descending

When the preceding command is run, the resulting output is shown. This command was run on
Windows Server 2012 and includes cmdlets from the default modules. As shown in the listing, Get is
used the most by the default cmdlets, followed distantly by Set, New, and Remove.

Count Name Group
----- ---- -----
 98 Get {Get-Acl, Get-Alias, Get-AppLockerFileInformation...
 48 Set {Set-Acl, Set-Alias, Set-AppLockerPolicy, Set-Aut...
 38 New {New-Alias, New-AppLockerPolicy, New-CertificateN...
 31 Remove {Remove-AppxPackage, Remove-AppxProvisionedPackag...
 15 Add {Add-AppxPackage, Add-AppxProvisionedPackage, Add...
 11 Invoke {Invoke-BpaModel, Invoke-CimMethod, Invoke-Comman...
 11 Import {Import-Alias, Import-Certificate, Import-Clixml,...
 11 Export {Export-Alias, Export-Certificate, Export-Clixml,...
 10 Test {Test-AppLockerPolicy, Test-Certificate, Test-Com...
 10 Enable {Enable-ComputerRestore, Enable-JobTrigger, Enabl...
 10 Disable {Disable-ComputerRestore, Disable-JobTrigger, Dis...
 9 Clear {Clear-Content, Clear-EventLog, Clear-History, Cl...
 8 Start {Start-BitsTransfer, Start-DtcDiagnosticResourceM...
 8 Write {Write-Debug, Write-Error, Write-EventLog, Write-...
 7 Out {Out-Default, Out-File, Out-GridView, Out-Host...}
 6 ConvertTo {ConvertTo-Csv, ConvertTo-Html, ConvertTo-Json, C...
 6 Register {Register-CimIndicationEvent, Register-EngineEven...
 6 Stop {Stop-Computer, Stop-DtcDiagnosticResourceManager...
 5 Format {Format-Custom, Format-List, Format-SecureBootUEF...
 4 Update {Update-FormatData, Update-Help, Update-List, Upd...
 4 Unregister {Unregister-Event, Unregister-PSSessionConfigurat...
 4 Show {Show-Command, Show-ControlPanelItem, Show-EventL...

 CHAPTER 6 Working with Functions 173

 4 ConvertFrom {ConvertFrom-Csv, ConvertFrom-Json, ConvertFrom-S...
 3 Receive {Receive-DtcDiagnosticTransaction, Receive-Job, R...
 3 Wait {Wait-Event, Wait-Job, Wait-Process}
 3 Complete {Complete-BitsTransfer, Complete-DtcDiagnosticTra...
 3 Select {Select-Object, Select-String, Select-Xml}
 3 Resume {Resume-BitsTransfer, Resume-Job, Resume-Service}
 3 Suspend {Suspend-BitsTransfer, Suspend-Job, Suspend-Service}
 3 Rename {Rename-Computer, Rename-Item, Rename-ItemProperty}
 2 Restore {Restore-Computer, Restore-IscsiVirtualDisk}
 2 Resolve {Resolve-DnsName, Resolve-Path}
 2 Restart {Restart-Computer, ReStart-Service}
 2 Save {Save-Help, Save-WindowsImage}
 2 Send {Send-DtcDiagnosticTransaction, Send-MailMessage}
 2 Disconnect {Disconnect-PSSession, Disconnect-WSMan}
 2 Dismount {Dismount-IscsiVirtualDiskSnapshot, Dismount-Wind...
 2 Connect {Connect-PSSession, Connect-WSMan}
 2 Checkpoint {Checkpoint-Computer, Checkpoint-IscsiVirtualDisk}
 2 Move {Move-Item, Move-ItemProperty}
 2 Mount {Mount-IscsiVirtualDiskSnapshot, Mount-WindowsImage}
 2 Measure {Measure-Command, Measure-Object}
 2 Join {Join-DtcDiagnosticResourceManager, Join-Path}
 2 Install {Install-NfsMappingStore, Install-WindowsFeature}
 2 Unblock {Unblock-File, Unblock-Tpm}
 2 Convert {Convert-IscsiVirtualDisk, Convert-Path}
 2 Undo {Undo-DtcDiagnosticTransaction, Undo-Transaction}
 2 Copy {Copy-Item, Copy-ItemProperty}
 2 Use {Use-Transaction, Use-WindowsUnattend}
 1 Tee {Tee-Object}
 1 Trace {Trace-Command}
 1 Uninstall {Uninstall-WindowsFeature}
 1 Switch {Switch-Certificate}
 1 Compare {Compare-Object}
 1 Repair {Repair-WindowsImage}
 1 Sort {Sort-Object}
 1 Reset {Reset-ComputerMachinePassword}
 1 Confirm {Confirm-SecureBootUEFI}
 1 Read {Read-Host}
 1 Push {Push-Location}
 1 Where {Where-Object}
 1 Limit {Limit-EventLog}
 1 Initialize {Initialize-Tpm}
 1 Group {Group-Object}
 1 ForEach {ForEach-Object}
 1 Expand {Expand-IscsiVirtualDisk}
 1 Exit {Exit-PSSession}
 1 Enter {Enter-PSSession}
 1 Debug {Debug-Process}
 1 Split {Split-Path}
 1 Pop {Pop-Location}

A function is not required to accept any parameters. In fact, many functions do not require input
to perform their job in the script. Let’s use an example to illustrate this point. A common task for
network administrators is obtaining the operating system version. Script writers often need to do
this to ensure their script uses the correct interface or exits gracefully. It is also quite common that
one set of files would be copied to a desktop running one version of the operating system, and

174 Windows PowerShell 3 Step by Step

a different set of files would be copied for another version of the operating system. The first step
in creating a function is to come up with a name. Since the function is going to retrieve informa-
tion, in the listing of cmdlet verbs shown earlier, the best verb to use is Get. For the noun portion
of the name, it is best to use something that describes the information that will be obtained. In this
example, a noun of OperatingSystemVersion makes sense. An example of such a function is shown in
the Get-OperatingSystemVersion.ps1 script. The Get-OperatingSystemVersion function uses Windows
Management Instrumentation (WMI) to obtain the version of the operating system. In this basic form
of the function, you have the function keyword followed by the name of the function, and a script
block with code in it, which is delimited by curly brackets. This pattern is shown here:

Function Function-Name
{
 #insert code here
}

In the Get-OperatingSystemVersion.ps1 script, the Get-OperatingSystemVersion function is
at the top of the script. It uses the Function keyword to define the function, followed by the
name, Get-OperatingSystemVersion. The script block opens, followed by the code, and then the
script block closes. The function uses the Get-WmiObject cmdlet to retrieve an instance of the
Win32_OperatingSystem WMI class. Since this WMI class only returns a single instance, the properties
of the class are directly accessible. The version property is the one you’ll work with, so use parentheses
to force the evaluation of the code inside. The returned management object is used to emit the ver-
sion value. The braces are used to close the script block. The operating system version is returned to
the code that calls the function. In this example, a string that writes “This OS is Version” is used. A sub-
expression is used to force evaluation of the function. The version of the operating system is returned
to the place where the function was called. This is shown here:

Get-OperatingSystemVersion.ps1

Function Get-OperatingSystemVersion
{
 (Get-WmiObject -Class Win32_OperatingSystem).Version
} #end Get-OperatingSystemVersion

"This OS is version $(Get-OperatingSystemVersion)"

Now let’s look at choosing the cmdlet verb. In the earlier listing of cmdlet verbs, there is one
cmdlet that uses the verb Read. It is the Read-Host cmdlet, which is used to obtain information from
the command line. This would indicate that the verb Read is not used to describe reading a file.
There is no verb called “Display,” and the Write verb is used in cmdlet names such as Write-Error
and Write-Debug, both of which do not really seem to have the concept of displaying information.
If you were writing a function that would read the content of a text file and display statistics about
that file, you might call the function Get-TextStatistics. This is in keeping with cmdlet names such as
Get-Process and Get-Service, which include the concept of emitting their retrieved content within
their essential functionality. The Get-TextStatistics function accepts a single parameter called path. The
interesting thing about parameters for functions is that when you pass a value to the parameter, you
use a hyphen. When you refer to the value inside the function, it is a variable such as $path. To call the

 CHAPTER 6 Working with Functions 175

Get-TextStatistics function, you have a couple of options. The first is to use the name of the function
and put the value inside parentheses. This is shown here:

Get-TextStatistics("C:\fso\mytext.txt")

This is a natural way to call the function, and it works when there is a single parameter. It does not
work when there are two or more parameters. Another way to pass a value to the function is to use
the hyphen and the parameter name. This is shown here:

Get-TextStatistics -path "C:\fso\mytext.txt"

Note from the previous example that no parentheses are required. You can also use positional
arguments when passing a value. In this usage, you omit the name of the parameter entirely and sim-
ply place the value for the parameter following the call to the function. This is illustrated here:

Get-TextStatistics "C:\fso\mytext.txt"

note The use of positional arguments works well when you are working from the com-
mand line and want to speed things along by reducing the typing load. However, it can
be a bit confusing to rely on positional arguments, and in general I tend to avoid it—even
when working at the command line. This is because I often copy my working code from the
console directly into a script, and as a result, would need to retype the command a second
time to get rid of aliases and unnamed arguments. With the improvements in tab expan-
sion, I feel that the time saved by using positional arguments or partial arguments does not
sufficiently warrant the time involved in retyping commands when they need to be trans-
ferred to scripts. The other reason for always using named arguments is that it helps you to
be aware of the exact command syntax.

One additional way to pass a value to a function is to use partial parameter names. All that is
required is enough of the parameter name to disambiguate it from other parameters. This is illus-
trated here:

Get-TextStatistics -p "C:\fso\mytext.txt"

The complete text of the Get-TextStatistics function is shown here:

Get-textStatistics Function

Function Get-TextStatistics($path)
{
 Get-Content -path $path |
 Measure-Object -line -character -word
}

Between PowerShell 1.0 and PowerShell 2.0, the number of verbs grew from 40 to 60. In Windows
PowerShell 3.0, the number of verbs grew from 60 to 98. The list of approved verbs appears here:

176 Windows PowerShell 3 Step by Step

Add Clear Close Copy Enter Exit Find
Format Get Hide Join Lock Move New
Open Optimize Pop Push Redo Remove Rename
Reset Resize Search Select Set Show Skip
Split Step Switch Undo Unlock Watch Backup
Checkpoint Compare Compress Convert ConvertFrom ConvertTo Dismount
Edit Expand Export Group Import Initialize Limit
Merge Mount Out Publish Restore Save Sync
Unpublish Update Approve Assert Complete Confirm Deny
Disable Enable Install Invoke Register Request Restart
Resume Start Stop Submit Suspend Uninstall Unregister
Wait Debug Measure Ping Repair Resolve Test
Trace Connect Disconnect Read Receive Send Write
Block Grant Protect Revoke Unblock Unprotect Use

Once the function has been named, you should specify any parameters the function may require.
The parameters are contained within parentheses. In the Get-TextStatistics function, the function
accepts a single parameter: -path. When you have a function that accepts a single parameter, you
can pass the value to the function by placing the value for the parameter inside parentheses. This is
known as calling a function like a method, and is disallowed when you use Set-StrictMode with the
-latest switch. The following command generates an error when the latest strict mode is in effect—
otherwise, it is a permissible way to call a function.

Get-TextLength("C:\fso\test.txt")

The path C:\fso\test.txt is passed to the Get-TextStatistics function via the -path parameter.
Inside the function, the string C:\fso\text.txt is contained in the $path variable. The $path vari-
able only lives within the confines of the Get-TextStatistics function. It is not available outside the
scope of the function. It is available from within child scopes of the Get-TextStatistics function. A
child scope of Get-TextStatistics is one that is created from within the Get-TextStatistics function. In
the Get-TextStatisticsCallChildFunction.ps1 script, the Write-Path function is called from within the
Get-TextStatistics function. This means the Write-Path function will have access to variables that are
created within the Get-TextStatistics function. This is the concept of variable scope, which is extremely
important when working with functions. As you use functions to separate the creation of objects, you
must always be aware of where the objects get created, and where you intend to use them. In the
Get-TextStatisticsCallChildFunction, the $path variable does not obtain its value until it is passed to the
function. It therefore lives within the Get-TextStatistics function. But since the Write-Path function is
called from within the Get-TextStatistics function, it inherits the variables from that scope. When you
call a function from within another function, variables created within the parent function are available
to the child function. This is shown in the Get-TextStatisticsCallChildFunction.ps1 script, which follows:

Get-textStatisticsCallChildFunction.ps1

Function Get-TextStatistics($path)
{
 Get-Content -path $path |
 Measure-Object -line -character -word
 Write-Path
}

 CHAPTER 6 Working with Functions 177

Function Write-Path()
{
 "Inside Write-Path the `$path variable is equal to $path"
}

Get-TextStatistics("C:\fso\test.txt")
"Outside the Get-TextStatistics function `$path is equal to $path"

Inside the Get-TextStatistics function, the $path variable is used to provide the path to the
Get-Content cmdlet. When the Write-Path function is called, nothing is passed to it. But inside the
Write-Path function, the value of $path is maintained. Outside both of the functions, however, $path
does not have any value. The output from running the script is shown here:

 Lines Words Characters Property
 ----- ----- ---------- --------
 3 41 210
Inside Write-Path the $path variable is equal to C:\fso\test.txt
Outside the Get-TextStatistics function $path is equal to

You will then need to open and to close a script block. A pair of opening and closing braces is used
to delimit the script block on a function. As a best practice, when writing a function, I will always use
the Function keyword, and type in the name, the input parameters, and the curly brackets for the
script block at the same time. This is shown here:

Function My-Function

{
 #insert code here
}

In this manner, I do not forget to close the curly brackets. Trying to identify a missing curly bracket
within a long script can be somewhat problematic, as the error that is presented does not always cor-
respond to the line that is missing the curly bracket. For example, suppose the closing curly bracket
is left off of the Get-TextStatistics function, as shown in the Get-TextStatisticsCallChildFunction-
DoesNOTWork-MissingClosingBracket.ps1 script. An error will be generated, as shown here:

Missing closing '}' in statement block.
At C:\Scripts\Get-TextStatisticsCallChildFunction-DoesNOTWork-MissingClosingBracket.ps1:28
char:1

The problem is that the position indicator of the error message points to the first character
on line 28. Line 28 happens to be the first blank line after the end of the script. This means that
Windows PowerShell scanned the entire script looking for the closing curly bracket. Since it did not
find it, it states that the error is the end of the script. If you were to place a closing curly bracket
on line 28, the error in this example would go away, but the script would not work either. The Get-
TextStatisticsCallChildFunction-DoesNOTWork-MissingClosingBracket.ps1 script is shown here, with
a comment that indicates where the missing closing curly bracket should be placed:

178 Windows PowerShell 3 Step by Step

Get-TextStatisticsCallChildFunction-DoesNOTWork-MissingClosingBracket.ps1
Function Get-TextStatistics($path)
{
 Get-Content -path $path |
 Measure-Object -line -character -word
 Write-Path
Here is where the missing bracket goes

Function Write-Path()
{
 "Inside Write-Path the `$path variable is equal to $path"
}
Get-TextStatistics("C:\fso\test.txt")
Write-Host "Outside the Get-TextStatistics function `$path is equal to $path"

One other technique to guard against the problem of the missing curly bracket is to add a com-
ment to the closing curly bracket of each function.

Using functions to provide ease of code reuse

When scripts are written using well-designed functions, it makes it easier to reuse them in other
scripts, and to provide access to these functions from within the Windows PowerShell console. To get
access to these functions, you will need to dot-source the containing script by placing a dot in front of
the path to the script when you call it, and put the functions in a module or load them via the profile.
An issue with dot-sourcing scripts to bring in functions is that often the scripts may contain global
variables or other items you do not want to bring into your current environment.

An example of a useful function is the ConvertToMeters.ps1 script because it converts feet to
meters. There are no variables defined outside the function, and the function itself does not use the
Write-Host cmdlet to break up the pipeline. The results of the conversion will be returned directly to
the calling code. The only problem with the ConvertToMeters.ps1 script is that when it is dot-sourced
into the Windows PowerShell console, it runs, and returns the data because all executable code in the
script is executed. The ConvertToMeters.ps1 script is shown here:

ConverttoMeters.ps1

Function Script:ConvertToMeters($feet)
{
 "$feet feet equals $($feet*.31) meters"
} #end ConvertToMeters
$feet = 5
ConvertToMeters -Feet $feet

With well-written functions, it is trivial to collect them into a single script—you just cut and paste.
When you are done, you have created a function library.

 CHAPTER 6 Working with Functions 179

When pasting your functions into the function library script, pay attention to the comments at the
end of the function. The comments at the closing curly bracket for each function not only point to
the end of the script block, but also provide a nice visual indicator for the end of each function. This
can be helpful when you need to troubleshoot a script. An example of such a function library is the
ConversionFunctions.ps1 script, which is shown here:

ConversionFunctions.ps1

Function Script:ConvertToMeters($feet)
{
 "$feet feet equals $($feet*.31) meters"
} #end ConvertToMeters

Function Script:ConvertToFeet($meters)
{
 "$meters meters equals $($meters * 3.28) feet"
} #end ConvertToFeet

Function Script:ConvertToFahrenheit($celsius)
{
 "$celsius celsius equals $((1.8 * $celsius) + 32) fahrenheit"
} #end ConvertToFahrenheit

Function Script:ConvertTocelsius($fahrenheit)
{
 "$fahrenheit fahrenheit equals $((($fahrenheit - 32)/9)*5) celsius"
} #end ConvertTocelsius

Function Script:ConvertToMiles($kilometer)
{
 "$kilometer kilometers equals $(($kilometer *.6211)) miles"
} #end convertToMiles

Function Script:ConvertToKilometers($miles)
{
 "$miles miles equals $(($miles * 1.61)) kilometers"
} #end convertToKilometers

One way to use the functions from the ConversionFunctions.ps1 script is to use the dot-sourcing
operator to run the script so that the functions from the script are part of the calling scope. To dot-
source the script, you use the dot-source operator (the period, or dot symbol), followed by a space,
followed by the path to the script containing the functions you wish to include in your current scope.
Once you do this, you can call the function directly, as shown here:

PS C:\> . C:\scripts\ConversionFunctions.ps1
PS C:\> convertToMiles 6
6 kilometers equals 3.7266 miles

180 Windows PowerShell 3 Step by Step

All of the functions from the dot-sourced script are available to the current session. This can be
demonstrated by creating a listing of the function drive, as shown here:

PS C:\> dir function: | Where { $_.name -like 'co*'} |
Format-Table -Property name, definition -AutoSize

Name Definition
---- ----------
ConvertToMeters param($feet) "$feet feet equals $($feet*.31) meters"...
ConvertToFeet param($meters) "$meters meters equals $($meters * 3.28) feet"...
ConvertToFahrenheit param($celsius) "$celsius celsius equals $((1.8 * $celsius) + 32)
fahrenheit"...
ConvertTocelsius param($fahrenheit) "$fahrenheit fahrenheit equals $((($fahrenheit -
32)/9)*5) celsius...
ConvertToMiles param($kilometer) "$kilometer kilometers equals $(($kilometer *.6211))
miles"...
ConvertToKilometers param($miles) "$miles miles equals $(($miles * 1.61)) kilometers"...

Including functions in the Windows PowerShell environment

In PowerShell 1.0, you could include functions from previously written scripts by dot-sourcing the
script. The use of a module offers greater flexibility than dot-sourcing due to the ability to create a
module manifest, which specifies exactly which functions and programming elements will be imported
into the current session.

Using dot-sourcing
This technique of dot-sourcing still works in Windows PowerShell 3.0, and it offers the advantage of
simplicity and familiarity. In the TextFunctions.ps1 script shown following, two functions are created.
The first function is called New-Line, and the second is called Get-TextStats. The TextFunctions.ps1
script is shown here:

textFunctions.ps1

Function New-Line([string]$stringIn)
{
 "-" * $stringIn.length
} #end New-Line

Function Get-TextStats([string[]]$textIn)
{
 $textIn | Measure-Object -Line -word -char
} #end Get-TextStats

 CHAPTER 6 Working with Functions 181

The New-Line function will create a string of hyphen characters as long as the length of the input
text. This is helpful when you want an underline for text separation purposes that is sized to the text.
Traditional VBScript users copy the function they need to use into a separate file and run the newly
produced script. An example of using the New-Line text function in this manner is shown here:

Callnew-LinetextFunction.ps1

Function New-Line([string]$stringIn)
{
 "-" * $stringIn.length
} #end New-Line

Function Get-TextStats([string[]]$textIn)
{
 $textIn | Measure-Object -Line -word -char
} #end Get-TextStats

*** Entry Point to script ***
"This is a string" | ForEach-Object {$_ ; New-Line $_}

When the script runs, it returns the following output:

This is a string

Of course, this is a bit inefficient and limits your ability to use the functions. If you have to copy
the entire text of a function into each new script you wish to produce, or edit a script each time you
wish to use a function in a different manner, you dramatically increase your workload. If the func-
tions were available all the time, you might be inclined to utilize them more often. To make the text
functions available in your current Windows PowerShell console, you need to dot-source the script
containing the functions into your console, put it in a module, or load it via your profile. You will need
to use the entire path to the script unless the folder that contains the script is in your search path. The
syntax to dot-source a script is so easy that it actually becomes a stumbling block for some people
who are expecting some complex formula or cmdlet with obscure parameters. It is none of that—just
a period (dot), followed by a space, followed by the path to the script that contains the function. This
is why it is called dot-sourcing: you have a dot and the source (path) to the functions you wish to
include. This is shown here:

PS C:\> . C:\fso\TextFunctions.ps1

Once you have included the functions in your current console, all the functions in the source script
are added to the Function drive. This is shown in Figure 6-1.

182 Windows PowerShell 3 Step by Step

FIGURE 6-1 Functions from a dot-sourced script are available via the Function drive.

Using dot-sourced functions
Once the functions have been introduced to the current console, you can incorporate them into your
normal commands. This flexibility should also influence the way you write the function. If the func-
tions are written so they will accept pipelined input and do not change the system environment, by
adding global variables, for example, you will be much more likely to use the functions, and they will
be less likely to conflict with either functions or cmdlets that are present in the current console.

As an example of using the New-Line function, consider the fact that the Get-CimInstance cmdlet
allows the use of an array of computer names for the -computername parameter. In this example,
BIOS information is obtained from two separate workstations. This is shown here:

PS C:\> Get-CimInstance win32_bios -ComputerName w8server8, w8client8

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 6516-4289-5671-5458-4791-0966-09
Version : VRTUAL - 3000919
PSComputerName : w8server8

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 9454-6382-0248-8429-3463-9488-79
Version : VRTUAL - 3000919
PSComputerName : w8client8

 CHAPTER 6 Working with Functions 183

You can improve the display of the information returned by the Get-CimInstance by pipelining the
output to the New-Line function so that you can underline each computer name as it comes across
the pipeline. You do not need to write a script to produce this kind of display. You can type the com-
mand directly into the Windows PowerShell console. The first thing you need to do is to dot-source
the TextFunctions.ps1 script. This makes the functions directly available in the current Windows
PowerShell console session. You then use the same Get-CimInstance query you used earlier to obtain
BIOS information via WMI from two computers. Pipeline the resulting management objects to the
ForEach-Object cmdlet. Inside the script block section, you use the $_ automatic variable to reference
the current object on the pipeline and retrieve the pscomputername property. You send this informa-
tion to the New-Line function so the server name is underlined, and you display the BIOS information
that is contained in the $_ variable.

The command to import the New-Line function into the current Windows PowerShell session and
use it to underline the server names is shown here:

Get-CimInstance win32_bios -ComputerName w8server8, w8client8 |
ForEach-Object { $_.pscomputername ; New-Line $_.pscomputername ; $_ }

The results of using the New-Line function are shown in Figure 6-2.

FIGURE 6-2 Functions that are written to accept pipelined input find an immediate use in your daily work routine.

The Get-TextStats function from the TextFunctions.ps1 script provides statistics based upon an
input text file or text string. Once the TextFunctions.ps1 script is dot-sourced into the current console,
the statistics it returns when the function is called are word count, number of lines in the file, and
number of characters. An example of using this function is shown here:

Get-TextStats "This is a string"

184 Windows PowerShell 3 Step by Step

When the Get-TextStats function is used, the following output is produced:

 Lines Words Characters Property
 ----- ----- ---------- --------
 1 4 16

In this section, the use of functions was discussed. The reuse of functions could be as simple as
copying the text of the function from one script into another script. It is easier, however, to dot-source
the function than to reuse it. This can be done from within the Windows PowerShell console or from
within a script.

Adding help for functions

When you dot-source functions into the current Windows PowerShell console, one problem is intro-
duced. Because you are not required to open the file that contains the function to use it, you may be
unaware of everything the file contains within it. In addition to functions, the file could contain vari-
ables, aliases, PowerShell drives, or any number of other things. Depending on what you are actually
trying to accomplish, this may or may not be an issue. The need sometimes arises, however, to have
access to help information about the features provided by the Windows PowerShell script.

Using a here-string object for help
In Windows PowerShell 1.0, you could solve this problem by adding a help parameter to the func-
tion and storing the help text within a here-string object. You can use this approach in Windows
PowerShell 3.0 as well, but as shown in Chapter 7, “Creating Advanced Functions and Modules,”
there is a better approach to providing help for functions. The classic here-string approach for help is
shown in the GetWmiClassesFunction.ps1 script, which follows. The first step that needs to be done
is to define a switched parameter named $help. The second step involves creating and displaying the
results of a here-string object that includes help information. The GetWmiClassesFunction.ps1 script is
shown here:

GetWmiClassesFunction.ps1

Function Get-WmiClasses(
 $class=($paramMissing=$true),
 $ns="root\cimv2",
 [switch]$help
)
{
 If($help)
 {
 $helpstring = @"
 NAME
 Get-WmiClasses
 SYNOPSIS
 Displays a list of WMI Classes based upon a search criteria

 CHAPTER 6 Working with Functions 185

 SYNTAX
 Get-WmiClasses [[-class] [string]] [[-ns] [string]] [-help]
 EXAMPLE
 Get-WmiClasses -class disk -ns root\cimv2"
 This command finds wmi classes that contain the word disk. The
 classes returned are from the root\cimv2 namespace.
"@
 $helpString
 break #exits the function early
 }
 If($local:paramMissing)
 {
 throw "USAGE: getwmi2 -class <class type> -ns <wmi namespace>"
 } #$local:paramMissing
 "`nClasses in $ns namespace"
 Get-WmiObject -namespace $ns -list |
 Where-Object {
 $_.name -match $class -and `
 $_.name -notlike 'cim*'
 }
 #
} #end get-wmiclasses

The here-string technique works pretty well for providing function help if you follow the cmdlet
help pattern. This is shown in Figure 6-3.

FIGURE 6-3 Manually created help can mimic the look of core cmdlet help.

The drawback with manually creating help for a function is that it is tedious, and as a result, only
the most important functions receive help information when you use this methodology. This is unfor-
tunate, as it then requires the user to memorize the details of the function contract. One way to work
around this is to use the Get-Content cmdlet to retrieve the code that was used to create the func-
tion. This is much easier to do than searching for the script that was used to create the function and
opening it up in Notepad. To use the Get-Content cmdlet to display the contents of a function, you
type Get-Content and supply the path to the function. All functions available to the current Windows
PowerShell environment are available via the Function PowerShell drive. You can therefore use the
following syntax to obtain the content of a function:

PowerShell C:\> Get-Content Function:\Get-WmiClasses

186 Windows PowerShell 3 Step by Step

The technique of using Get-Content to read the text of the function is shown in Figure 6-4.

FIGURE 6-4 The Get-Content cmdlet can retrieve the contents of a function.

An easier way to add help, by using comment-based help, is discussed in Chapter 7. Comment-
based help, although more complex than the method discussed here, offers a number of advan-
tages—primarily due to the integration with the Windows PowerShell help subsystem. When you add
comment-based help, users of your function can access your help in exactly the same manner as any
of the core Windows PowerShell cmdlets.

Using two input parameters
To create a function that uses multiple input parameters, you use the Function keyword, specify the
name of the function, use variables for each input parameter, and then define the script block within
the curly brackets. The pattern is shown here:

Function My-Function($Input1,$Input2)
{
 #Insert Code Here
}

An example of a function that takes multiple parameters is the Get-FreeDiskSpace function, which
is shown in the Get-FreeDiskSpace.ps1 script from the “Obtaining specific WMI data” section sidebar,
which follows.

The Get-FreeDiskSpace.ps1 script begins with the Function keyword and is followed by the name
of the function and the two input parameters. The input parameters are placed inside parentheses, as
shown here:

Function Get-FreeDiskSpace($drive,$computer)

 CHAPTER 6 Working with Functions 187

Inside the function’s script block, the Get-FreeDiskSpace function uses the Get-WmiObject cmdlet
to query the Win32_LogicalDisk WMI class. It connects to the computer specified in the $computer
parameter, and it filters out only the drive that is specified in the $drive parameter. When the function
is called, each parameter is specified as -drive and -computer. In the function definition, the variables
$drive and $computer are used to hold the values supplied to the parameters.

Once the data from WMI is retrieved, it is stored in the $driveData variable. The data that is stored
in the $driveData variable is an instance of the Win32_LogicalDisk class. This variable contains a com-
plete instance of the class. The members of this class are shown in Table 6-1.

TABLE 6-1 Members of the Win32_LogicalDisk class

Name Member type Definition

Chkdsk Method System.Management.ManagementBaseObject
Chkdsk(System.Boolean FixErrors, System.
Boolean VigorousIndexCheck, System.Boolean
SkipFolderCycle, System.Boolean ForceDismount,
System.Boolean RecoverBadSectors, System.Boolean
OkToRunAtBootUp)

Reset Method System.Management.ManagementBaseObject Reset()

SetPowerState Method System.Management.ManagementBaseObject
SetPowerState(System.UInt16 PowerState, System.
String Time)

Access Property System.UInt16 Access {get;set;}

Availability Property System.UInt16 Availability {get;set;}

BlockSize Property System.UInt64 BlockSize {get;set;}

Caption Property System.String Caption {get;set;}

Compressed Property System.Boolean Compressed {get;set;}

ConfigManagerErrorCode Property System.UInt32 ConfigManagerErrorCode {get;set;}

ConfigManagerUserConfig Property System.Boolean ConfigManagerUserConfig {get;set;}

CreationClassName Property System.String CreationClassName {get;set;}

Description Property System.String Description {get;set;}

DeviceID Property System.String DeviceID {get;set;}

DriveType Property System.UInt32 DriveType {get;set;}

ErrorCleared Property System.Boolean ErrorCleared {get;set;}

ErrorDescription Property System.String ErrorDescription {get;set;}

ErrorMethodology Property System.String ErrorMethodology {get;set;}

FileSystem Property System.String FileSystem {get;set;}

FreeSpace Property System.UInt64 FreeSpace {get;set;}

InstallDate Property System.String InstallDate {get;set;}

LastErrorCode Property System.UInt32 LastErrorCode {get;set;}

MaximumComponentLength Property System.UInt32 MaximumComponentLength {get;set;}

MediaType Property System.UInt32 MediaType {get;set;}

Name Property System.String Name {get;set;}

188 Windows PowerShell 3 Step by Step

Name Member type Definition

NumberOfBlocks Property System.UInt64 NumberOfBlocks {get;set;}

PNPDeviceID Property System.String PNPDeviceID {get;set;}

PowerManagementCapabilities Property System.UInt16[] PowerManagementCapabilities
{get;set;}

PowerManagementSupported Property System.Boolean PowerManagementSupported {get;set;}

ProviderName Property System.String ProviderName {get;set;}

Purpose Property System.String Purpose {get;set;}

QuotasDisabled Property System.Boolean QuotasDisabled {get;set;}

QuotasIncomplete Property System.Boolean QuotasIncomplete {get;set;}

QuotasRebuilding Property System.Boolean QuotasRebuilding {get;set;}

Size Property System.UInt64 Size {get;set;}

Status Property System.String Status {get;set;}

StatusInfo Property System.UInt16 StatusInfo {get;set;}

SupportsDiskQuotas Property System.Boolean SupportsDiskQuotas {get;set;}

SupportsFileBasedCompression Property System.Boolean SupportsFileBasedCompression
{get;set;}

SystemCreationClassName Property System.String SystemCreationClassName {get;set;}

SystemName Property System.String SystemName {get;set;}

VolumeDirty Property System.Boolean VolumeDirty {get;set;}

VolumeName Property System.String VolumeName {get;set;}

VolumeSerialNumber Property System.String VolumeSerialNumber {get;set;}

__CLASS Property System.String __CLASS {get;set;}

__DERIVATION Property System.String[] __DERIVATION {get;set;}

__DYNASTY Property System.String __DYNASTY {get;set;}

__GENUS Property System.Int32 __GENUS {get;set;}

__NAMESPACE Property System.String __NAMESPACE {get;set;}

__PATH Property System.String __PATH {get;set;}

__PROPERTY_COUNT Property System.Int32 __PROPERTY_COUNT {get;set;}

__RELPATH Property System.String __RELPATH {get;set;}

__SERVER Property System.String __SERVER {get;set;}

__SUPERCLASS Property System.String __SUPERCLASS {get;set;}

PSStatus Property set PSStatus {Status, Availability, DeviceID, StatusInfo}

ConvertFromDateTime Script method System.Object ConvertFromDateTime();

ConvertToDateTime Script method System.Object ConvertToDateTime();

 CHAPTER 6 Working with Functions 189

Obtaining specific WMI data
While storing the complete instance of the object in the $driveData variable is a bit inefficient
due to the amount of data it contains, in reality the class is rather small, and the ease of using
the Get-WmiObject cmdlet is usually worth the wasteful methodology. If performance is a pri-
mary consideration, the use of the [wmi] type accelerator would be a better solution. To obtain
the free disk space using this method, you would use the following syntax:

([wmi]"Win32_logicalDisk.DeviceID='c:'").FreeSpace

To put the preceding command into a usable function, you would need to substitute the
hard-coded drive letter for a variable. In addition, you would want to modify the class construc-
tor to receive a path to a remote computer as well. The newly created function is contained in the
Get-DiskSpace.ps1 script, shown here:

Get-DiskSpace.ps1
Function Get-DiskSpace($drive,$computer)
{
 ([wmi]"\\$computer\root\cimv2:Win32_logicalDisk.DeviceID='$drive'").FreeSpace
}
Get-DiskSpace -drive "C:" -computer "Office"

Once you have made the preceding changes, the code only returns the value of the
FreeSpace property from the specific drive. If you were to send the output to Get-Member, you
would see you have an integer. This technique is more efficient than storing an entire instance
of the WIN32_LogicalDisk class and then selecting a single value.

Once you have the data stored in the $driveData variable, you will want to print out some informa-
tion to the user of the script. The first thing to do is print out the name of the computer and the name
of the drive. To do this, you can place the variables inside double quotation marks. Double quotes are
expanding strings, and variables placed inside double quotes emit their value, not their name. This is
shown here:

"$computer free disk space on drive $drive"

The next thing you will want to do is to format the data that is returned. To do this, use the .NET
Framework format strings to specify two decimal places. You will need to use a subexpression to
prevent unraveling of the WMI object inside the expanding-string double quotation marks. The
subexpression uses the dollar sign and a pair of parentheses to force the evaluation of the expression
before returning the data to the string. This is shown here:

Get-FreeDiskSpace.ps1

Function Get-FreeDiskSpace($drive,$computer)
{
 $driveData = Get-WmiObject -class win32_LogicalDisk `
 -computername $computer -filter "Name = '$drive'"

190 Windows PowerShell 3 Step by Step

"
 $computer free disk space on drive $drive
 $("{0:n2}" -f ($driveData.FreeSpace/1MB)) MegaBytes
"
}

Get-FreeDiskSpace -drive "C:" -computer "w8client1"

Using a type constraint in a function
When accepting parameters for a function, it may be important to use a type constraint to ensure the
function receives the correct type of data. To do this, you place the desired type name inside square
brackets in front of the input parameter. This constrains the data type and prevents the entry of an
incorrect type of data. Allowable type accelerators appear in Table 6-2.

TABLE 6-2 Data type aliases

Alias Type

[int] 32-bit signed integer

[long] 64-bit signed integer

[string] Fixed-length string of Unicode characters

[char] Unicode 16-bit character

[bool] True/false value

[byte] 8-bit unsigned integer

[double] Double-precision 64-bit floating-point number

[decimal] 128-bit decimal value

[single] Single-precision 32-bit floating-point number

[array] Array of values

[xml] XML object

[hashtable] Hashtable object (similar to a dictionary object)

In the Resolve-ZipCode function, which is shown in the following Resolve-ZipCode.ps1 script, the
$zip input parameter is constrained to only allow a 32-bit signed integer for input. (Obviously, the [int]
type constraint would eliminate most of the world’s postal codes, but the web service the script uses
only resolves US-based postal codes, so it is a good addition to the function.)

In the Resolve-ZipCode function, the first thing that is done is to use a string that points to the
WSDL (Web Services Description Language) for the web service. Next, the New-WebServiceProxy
cmdlet is used to create a new web service proxy for the ZipCode service. The WSDL for the ZipCode
service defines a method called the GetInfoByZip method. It will accept a standard U.S.-based postal
code. The results are displayed as a table. The Resolve-ZipCode.ps1 script is shown here:

 CHAPTER 6 Working with Functions 191

resolve-ZipCode.ps1

#Requires -Version 2.0
Function Resolve-ZipCode([int]$zip)
{
 $URI = "http://www.webservicex.net/uszip.asmx?WSDL"
 $zipProxy = New-WebServiceProxy -uri $URI -namespace WebServiceProxy -class ZipClass
 $zipProxy.getinfobyzip($zip).table
} #end Get-ZipCode

Resolve-ZipCode 28273

When using a type constraint on an input parameter, any deviation from the expected data type
will generate an error similar to the one shown here:

Resolve-ZipCode : Cannot process argument transformation on parameter 'zip'. Cannot convert
value "COW" to type "System
.Int32". Error: "Input string was not in a correct format."
At C:\Users\edwils.NORTHAMERICA\AppData\Local\Temp\tmp3351.tmp.ps1:22 char:16
+ Resolve-ZipCode <<<< "COW"
 + CategoryInfo : InvalidData: (:) [Resolve-ZipCode], ParameterBindin...
mationException
 + FullyQualifiedErrorId : ParameterArgumentTransformationError,Resolve-ZipCode

Needless to say, such an error could be distracting to the users of the function. One
way to handle the problem of confusing error messages is to use the Trap keyword. In the
DemoTrapSystemException.ps1 script, the My-Test function uses [int] to constrain the $myinput vari-
able to only accept a 32-bit unsigned integer for input. If such an integer is received by the function
when it is called, the function will return the string It worked. If the function receives a string for input,
an error will be raised, similar to the one shown previously.

Rather than display a raw error message, which most users and many IT professionals find confus-
ing, it is a best practice to suppress the display of the error message, and perhaps inform the user an
error condition has occurred and provide more meaningful and direct information that the user can
then relay to the help desk. Many times, IT departments will display such an error message, complete
with either a local telephone number for the appropriate help desk, or even a link to an internal web
page that provides detailed troubleshooting and corrective steps the user can perform. You could
even provide a web page that hosted a script that the user could run to fix the problem. This is similar
to the “Fix it for me” web pages Microsoft introduced.

When creating an instance of a System.SystemException class (when a system exception occurs),
the Trap statement will trap the error, rather than allowing it to display the error information on the
screen. If you were to query the $error variable, you would see that the error had in fact occurred
and was actually received by the error record. You would also have access to the ErrorRecord class
via the $_ automatic variable, which means the error record has been passed along the pipeline. This
gives you the ability to build a rich error-handling solution. In this example, the string error trapped
is displayed, and the Continue statement is used to continue the script execution on the next line of
code. In this example, the next line of code that is executed is the After the error string. When the
DemoTrapSystemException.ps1 script is run, the following output is shown:

192 Windows PowerShell 3 Step by Step

error trapped
After the error

The complete DemoTrapSystemException.ps1 script is shown here:

DemotrapSystemException.ps1

Function My-Test([int]$myinput)
{

 "It worked"
} #End my-test function
*** Entry Point to Script ***

Trap [SystemException] { "error trapped" ; continue }
My-Test -myinput "string"
"After the error"

Using more than two input parameters

When using more than two input parameters, I consider it a best practice to modify the way the
function is structured. This not only makes the function easier to read, but it also permits cmdlet
binding. In the basic function pattern shown here, the function accepts three input parameters.
When considering the default values and the type constraints, the parameters begin to become
long. Moving them to the inside of the function body highlights the fact that they are input param-
eters, and it makes them easier to read, understand, and maintain. It also permits decorating the
parameters with attributes.

Function Function-Name
{
 Param(
 [int]$Parameter1,
 [String]$Parameter2 = "DefaultValue",
 $Parameter3
)
#Function code goes here
} #end Function-Name

An example of a function that uses three input parameters is the Get-DirectoryListing function.
With the type constraints, default values, and parameter names, the function signature would be
rather cumbersome to include on a single line. This is shown here:

Function Get-DirectoryListing (String]$Path,[String]$Extension = "txt",[Switch]$Today)

If the number of parameters were increased to four, or if a default value for the -path parameter
were desired, the signature would easily scroll to two lines. The use of the Param statement inside the
function body also provides the ability to specify input parameters to a function.

 CHAPTER 6 Working with Functions 193

note The use of the Param statement inside the function body is often regarded as a per-
sonal preference. It requires additional work, and often leaves the reader of the script won-
dering why this was done. When there are more than two parameters, visually the Param
statement stands out, and it is obvious why it was done in this particular manner. But, as
will be shown in Chapter 7, using the Param statement is the only way to gain access to
advanced function features such as cmdlet binding, parameter attributes, and other power-
ful features of Windows PowerShell.

Following the Function keyword, the name of the function, and the opening script block, the
Param keyword is used to identify the parameters for the function. Each parameter must be sepa-
rated by a comma. All the parameters must be surrounded with a set of parentheses. If you want to
assign a default value for a parameter, such as the extension .txt for the Extension parameter in the
Get-DirectoryListing function, you perform a straight value assignment followed by a comma.

In the Get-DirectoryListing function, the Today parameter is a switched parameter. When it is
supplied to the function, only files written to since midnight on the day the script is run will be
displayed. If it is not supplied, all files matching the extension in the folder will be displayed. The
Get-DirectoryListingToday.ps1 script is shown here:

Get-DirectoryListingtoday.ps1

Function Get-DirectoryListing
{
 Param(
 [String]$Path,
 [String]$Extension = "txt",
 [Switch]$Today
)
 If($Today)
 {
 Get-ChildItem -Path $path* -include *.$Extension |
 Where-Object { $_.LastWriteTime -ge (Get-Date).Date }
 }
 ELSE
 {
 Get-ChildItem -Path $path* -include *.$Extension
 }
} #end Get-DirectoryListing

*** Entry to script ***
Get-DirectoryListing -p c:\fso -t

194 Windows PowerShell 3 Step by Step

note As a best practice, you should avoid creating functions that have a large number
of input parameters. It is very confusing. When you find yourself creating a large number of
input parameters, you should ask if there is a better way to do things. It may be an indicator
that you do not have a single-purpose function. In the Get-DirectoryListing function, I have
a switched parameter that will filter the files returned by the ones written to today. If I were
writing the script for production use, instead of just to demonstrate multiple function
parameters, I would have created another function called something like Get-FilesByDate. In
that function, I would have a Today switch, and a Date parameter to allow a selectable date
for the filter. This separates the data-gathering function from the filter/presentation func-
tion. See the “Use of functions to provide ease of modification” section later in the chapter
for more discussion of this technique.

Use of functions to encapsulate business logic

There are two kinds of logic with which scriptwriters need to be concerned. The first is program logic,
and the second is business logic. Program logic includes the way the script works, the order in which
things need to be done, and the requirements of code used in the script. An example of program
logic is the requirement to open a connection to a database before querying the database.

Business logic is something that is a requirement of the business, but not necessarily a requirement
of the program or script. The script can often operate just fine regardless of the particulars of the
business rule. If the script is designed properly, it should operate perfectly fine no matter what gets
supplied for the business rules.

In the BusinessLogicDemo.ps1 script, a function called Get-Discount is used to calculate the
discount to be granted to the total amount. One good thing about encapsulating the business rules
for the discount into a function is that as long as the contract between the function and the calling
code does not change, you can drop any kind of convoluted discount schedule into the script block
of the Get-Discount function that the business decides to come up with—including database calls
to determine on-hand inventory, time of day, day of week, total sales volume for the month, the
buyer’s loyalty level, and the square root of some random number that is used to determine instant
discount rate.

So, what is the contract with the function? The contract with the Get-Discount function says, “If
you give me a rate number as a type of system.double and a total as an integer, I will return to you a
number that represents the total discount to be applied to the sale.” As long as you adhere to that
contract, you never need to modify the code.

The Get-Discount function begins with the Function keyword and is followed by the name of the
function and the definition for two input parameters. The first input parameter is the $rate parameter,
which is constrained to be of type system.double (which will permit you to supply decimal numbers).

 CHAPTER 6 Working with Functions 195

The second input parameter is the $total parameter, which is constrained to be of type system.integer,
and therefore will not allow decimal numbers. In the script block, the value of the -total parameter is
multiplied by the value of the -rate parameter. The result of this calculation is returned to the pipeline.

The Get-Discount function is shown here:

Function Get-Discount([double]$rate,[int]$total)
{
 $rate * $total
} #end Get-Discount

The entry point to the script assigns values to both the $total and $rate variables, as shown here:

$rate = .05
$total = 100

The variable $discount is used to hold the result of the calculation from the Get-Discount function.
When calling the function, it is a best practice to use the full parameter names. It makes the code
easier to read, and will help make it immune to unintended problems if the function signature ever
changes.

$discount = Get-Discount -rate $rate -total $total

note The signature of a function is the order and names of the input parameters. If you
typically supply values to the signature via positional parameters, and the order of the input
parameters changes, the code will fail, or worse yet, produce inconsistent results. If you
typically call functions via partial parameter names, and an additional parameter is added,
the script will fail due to difficulty with the disambiguation process. Obviously, you take this
into account when first writing the script and the function, but months or years later, when
making modifications to the script or calling the function via another script, the problem
can arise.

The remainder of the script produces output for the screen. The results of running the script are
shown here:

Total: 100
Discount: 5
Your Total: 95

The complete text of the BusinessLogicDemo.ps1 script is shown here:

BusinessLogicDemo.ps1

Function Get-Discount([double]$rate,[int]$total)
{
 $rate * $total
} #end Get-Discount

196 Windows PowerShell 3 Step by Step

$rate = .05
$total = 100
$discount = Get-Discount -rate $rate -total $total
"Total: $total"
"Discount: $discount"
"Your Total: $($total-$discount)"

Business logic does not have to be related to business purposes. Business logic is anything that is
arbitrary that does not affect the running of the code. In the FindLargeDocs.ps1 script, there are two
functions. The first function, Get-Doc, is used to find document files (files with an extension of .doc,
.docx, or .dot) in a folder that is passed to the function when it is called. The -recurse switch, when
used with the Get-ChildItem cmdlet, causes the function to look in the present folder, as well as within
child folders. This function is stand-alone and has no dependency on any other functions.

The LargeFiles piece of code is a filter. A filter is kind of special-purpose function that uses the Filter
keyword rather than using the Function keyword when it is created.

FindLargeDocs.ps1
Function Get-Doc($path)
{
 Get-ChildItem -Path $path -include *.doc,*.docx,*.dot -recurse
} #end Get-Doc

Filter LargeFiles($size)
{
 $_ |
 Where-Object { $_.length -ge $size }
} #end LargeFiles

Get-Doc("C:\FSO") | LargeFiles 1000

Use of functions to provide ease of modification

It is a truism that a script is never completed. There is always something else to add to a script—a
change that will improve it, or additional functionality someone requests. When a script is written as
one long piece of inline code, without recourse to functions, it can be rather tedious and error prone
to modify.

An example of an inline script is the InLineGetIPDemo.ps1 script, which follows. The first line of code
uses the Get-WmiObject cmdlet to retrieve the instances of the Win32_NetworkAdapterConfiguration
WMI class that Internet Protocol (IP) enabled. The results of this WMI query are stored in the $IP vari-
able. This line of code is shown here:

$IP = Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $true"

Once the WMI information has been obtained and stored, the remainder of the script prints out
information to the screen. The IPAddress, IPSubNet, and DNSServerSearchOrder properties are all
stored in an array. For this example, you are only interested in the first IP address, and you therefore

 CHAPTER 6 Working with Functions 197

print out element 0, which will always exist if the network adapter has an IP address. This section of
the script is shown here:

"IP Address: " + $IP.IPAddress[0]
"Subnet: " + $IP.IPSubNet[0]
"GateWay: " + $IP.DefaultIPGateway
"DNS Server: " + $IP.DNSServerSearchOrder[0]
"FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain

When the script is run, it produces output similar to the following:

IP Address: 192.168.2.5
Subnet: 255.255.255.0
GateWay: 192.168.2.1
DNS Server: 192.168.2.1
FQDN: w8client1.nwtraders.com

The complete InLineGetIPDemo.ps1 script is shown here:

InLineGetIPDemo.ps1

$IP = Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $true"
"IP Address: " + $IP.IPAddress[0]
"Subnet: " + $IP.IPSubNet[0]
"GateWay: " + $IP.DefaultIPGateway
"DNS Server: " + $IP.DNSServerSearchOrder[0]
"FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain

With just a few modifications to the script, a great deal of flexibility can be obtained. The modifica-
tions, of course, involve moving the inline code into functions. As a best practice, a function should
be narrowly defined and should encapsulate a single thought. While it would be possible to move the
entire previous script into a function, you would not have as much flexibility. There are two thoughts
or ideas that are expressed in the script. The first is obtaining the IP information from WMI, and the
second is formatting and displaying the IP information. It would be best to separate the gathering
and the displaying processes from one another, because they are logically two different activities.

To convert the InLineGetIPDemo.ps1 script into a script that uses a function, you only need to add
the Function keyword, give the function a name, and surround the original code with a pair of curly
brackets. The transformed script is now named GetIPDemoSingleFunction.ps1 and is shown here:

GetIPDemoSingleFunction.ps1

Function Get-IPDemo
{
 $IP = Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $true"
 "IP Address: " + $IP.IPAddress[0]
 "Subnet: " + $IP.IPSubNet[0]
 "GateWay: " + $IP.DefaultIPGateway
 "DNS Server: " + $IP.DNSServerSearchOrder[0]
 "FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain
} #end Get-IPDemo

*** Entry Point To Script ***

Get-IPDemo

198 Windows PowerShell 3 Step by Step

If you go to all the trouble to transform the inline code into a function, what benefit do you
derive? By making this single change, your code will become

■■ Easier to read

■■ Easier to understand

■■ Easier to reuse

■■ Easier to troubleshoot

The script is easier to read because you do not really need to read each line of code to see what
it does. You see that there is a function that obtains the IP address, and it is called from outside the
function. That is all the script does.

The script is easier to understand because you see there is a function that obtains the IP address. If
you want to know the details of that operation, you read that function. If you are not interested in the
details, you can skip that portion of the code.

The script is easier to reuse because you can dot-source the script, as shown here. When the script
is dot-sourced, all the executable code in the script is run. As a result, because each of the scripts
prints information, the following is displayed:

IP Address: 192.168.2.5
Subnet: 255.255.255.0
GateWay: 192.168.2.1
DNS Server: 192.168.2.1
FQDN: w8client1.nwtraders.com

 w8client1 free disk space on drive C:
 48,767.16 MegaBytes

This OS is version 6.2

The DotSourceScripts.ps1 script is shown following. As you can see, it provides a certain level of
flexibility to choose the information required, and it also makes it easy to mix and match the required
information. If each of the scripts had been written in a more standard fashion, and the output had
been more standardized, the results would have been more impressive. As it is, three lines of code
produce an exceptional amount of useful output that could be acceptable in a variety of situations.

DotSourceScripts.ps1

. C:\Scripts\GetIPDemoSingleFunction.ps1

. C:\Scripts\Get-FreeDiskSpace.ps1

. C:\Scripts\Get-OperatingSystemVersion.ps1

A better way to work with the function is to think about the things the function is actually doing. In
the FunctionGetIPDemo.ps1 script, there are two functions. The first connects to WMI, which returns
a management object. The second function formats the output. These are two completely unrelated

 CHAPTER 6 Working with Functions 199

tasks. The first task is data gathering, and the second task is the presentation of the information. The
FunctionGetIPDemo.ps1 script is shown here:

FunctionGetIPDemo.ps1

Function Get-IPObject
{
 Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $true"
} #end Get-IPObject

Function Format-IPOutput($IP)
{
 "IP Address: " + $IP.IPAddress[0]
 "Subnet: " + $IP.IPSubNet[0]
 "GateWay: " + $IP.DefaultIPGateway
 "DNS Server: " + $IP.DNSServerSearchOrder[0]
 "FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain
} #end Format-IPOutput

*** Entry Point To Script

$ip = Get-IPObject
Format-IPOutput -ip $ip

By separating the data-gathering and the presentation activities into different functions, you
gain additional flexibility. You could easily modify the Get-IPObject function to look for network
adapters that were not IP enabled. To do this, you would need to modify the -filter parameter of
the Get-WmiObject cmdlet. Since most of the time you would actually be interested only in network
adapters that are IP enabled, it would make sense to set the default value of the input parameter to
$true. By default, the behavior of the revised function is exactly as it was prior to modification. The
advantage is that you can now use the function and modify the objects returned by it. To do this,
you supply $false when calling the function. This is illustrated in the Get-IPObjectDefaultEnabled.ps1
script.

Get-IPObjectDefaultEnabled.ps1

Function Get-IPObject([bool]$IPEnabled = $true)
{
 Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $IPEnabled"
} #end Get-IPObject

Get-IPObject -IPEnabled $False

By separating the gathering of the information from the presentation of the information, you gain
flexibility not only in the type of information that is garnered, but also in the way the information is
displayed. When gathering network adapter configuration information from a network adapter that is
not enabled for IP, the results are not as impressive as for one that is enabled for IP. You might there-
fore decide to create a different display to list only the pertinent information. As the function that
displays the information is different from the one that gathers the information, a change can easily be
made that customizes the information that is most germane. The Begin section of the function is run
once during the execution of the function. This is the perfect place to create a header for the output

200 Windows PowerShell 3 Step by Step

data. The Process section executes once for each item on the pipeline, which in this example will be
each of the non-IP-enabled network adapters. The Write-Host cmdlet is used to easily write the data
out to the Windows PowerShell console. The backtick-t character combination (`t) is used to produce
a tab.

note The `t character is a string character, and as such works with cmdlets that accept
string input.

The Get-IPObjectDefaultEnabledFormatNonIPOutput.ps1 script is shown here:

Get-IPObjectDefaultEnabledFormatnonIPOutput.ps1

Function Get-IPObject([bool]$IPEnabled = $true)
{
 Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $IPEnabled"
} #end Get-IPObject

Function Format-NonIPOutput($IP)
{
 Begin { "Index # Description" }
 Process {
 ForEach ($i in $ip)
 {
 Write-Host $i.Index `t $i.Description
 } #end ForEach
 } #end Process
} #end Format-NonIPOutPut

$ip = Get-IPObject -IPEnabled $False
Format-NonIPOutput($ip)

You can use the Get-IPObject function to retrieve the network adapter configuration, and you can
use the Format-NonIPOutput and Format-IPOutput functions in a script to display the IP information
as specifically formatted output.

CombinationFormatGetIPDemo.ps1

Function Get-IPObject([bool]$IPEnabled = $true)
{
 Get-WmiObject -class Win32_NetworkAdapterConfiguration -Filter "IPEnabled = $IPEnabled"
} #end Get-IPObject

Function Format-IPOutput($IP)
{
 "IP Address: " + $IP.IPAddress[0]
 "Subnet: " + $IP.IPSubNet[0]
 "GateWay: " + $IP.DefaultIPGateway
 "DNS Server: " + $IP.DNSServerSearchOrder[0]
 "FQDN: " + $IP.DNSHostName + "." + $IP.DNSDomain
} #end Format-IPOutput

 CHAPTER 6 Working with Functions 201

Function Format-NonIPOutput($IP)
{
 Begin { "Index # Description" }
 Process {
 ForEach ($i in $ip)
 {
 Write-Host $i.Index `t $i.Description
 } #end ForEach
 } #end Process
} #end Format-NonIPOutPut

*** Entry Point ***
$IPEnabled = $false
$ip = Get-IPObject -IPEnabled $IPEnabled
If($IPEnabled) { Format-IPOutput($ip) }
ELSE { Format-NonIPOutput($ip) }

Understanding filters

A filter is a special-purpose function. It is used to operate on each object in a pipeline and is often
used to reduce the number of objects that are passed along the pipeline. Typically, a filter does not
use the Begin or the End parameters that a function might need to use. So, a filter is often thought
of as a function that only has a Process block. But then, many functions are written without using the
Begin or End parameters, while filters are never written in such a way that they use the Begin or the
End parameters. The biggest difference between a function and a filter is a bit subtler, however.
When a function is used inside a pipeline, it actually halts the processing of the pipeline until the
first element in the pipeline has run to completion. The function then accepts the input from the first
element in the pipeline and begins its processing. When the processing in the function is completed,
it then passes the results along to the next element in the script block. A function runs once for the
pipelined data. A filter, on the other hand, runs once for each piece of data passed over the pipeline.
In short, a filter will stream the data when in a pipeline, and a function will not. This can make a big
difference in the performance. To illustrate this point, let’s examine a function and a filter that accom-
plish the same things.

In the MeasureAddOneFilter.ps1 script, which follows, an array of 50,000 elements is created by
using the 1..50000 syntax. (In Windows PowerShell 1.0, 50,000 was the maximum size of an array cre-
ated in this manner. In Windows PowerShell 2.0 and 3.0, this ceiling is raised to the maximum size of
an [Int32] (2,146,483,647). The use of this size is dependent upon memory. This is shown here:

PS C:\ > 1..[Int32]::MaxValue
The '..' operator failed: Exception of type 'System.OutOfMemoryException' was thrown..
At line:1 char:4
+ 1.. <<<< 2147483647
 + CategoryInfo : InvalidOperation: (:) [], RuntimeException
 + FullyQualifiedErrorId : OperatorFailed

202 Windows PowerShell 3 Step by Step

The array is then pipelined into the AddOne filter. The filter prints out the string add one filter
and then adds the number 1 to the current number on the pipeline. The length of time it takes
to run the command is then displayed. On my computer, it takes about 2.6 seconds to run the
MeasureAddOneFilter.ps1 script.

MeasureaddOneFilter.ps1

Filter AddOne
{
 "add one filter"
 $_ + 1
}

Measure-Command { 1..50000 | addOne }

The function version is shown following. In a similar fashion to the MeasureAddOneFIlter.ps1 script,
it creates an array of 50,000 numbers and pipelines the results to the AddOne function. The string
Add One Function is displayed. An automatic variable is created when pipelining input to a func-
tion. It is called $input. The $input variable is an enumerator, not just a plain array. It has a moveNext
method, which can be used to move to the next item in the collection. Since $input is not a plain
array, you cannot index directly into it—$input[0] would fail. To retrieve a specific element, you use
the $input.current property. When I run the script below, it takes 4.3 seconds on my computer (that is
almost twice as long as the filter).

MeasureaddOneFunction.ps1

Function AddOne
{
 "Add One Function"
 While ($input.moveNext())
 {
 $input.current + 1
 }
}

Measure-Command { 1..50000 | addOne }

What was happening that made the filter so much faster than the function in this example? The
filter runs once for each item on the pipeline. This is shown here:

add one filter
2
add one filter
3
add one filter
4
add one filter
5
add one filter
6

 CHAPTER 6 Working with Functions 203

The DemoAddOneFilter.ps1 script is shown here:

DemoaddOneFilter.ps1

Filter AddOne
{
 "add one filter"
 $_ + 1
}

1..5 | addOne

The AddOne function runs to completion once for all the items in the pipeline. This effectively stops
the processing in the middle of the pipeline until all the elements of the array are created. Then all the
data is passed to the function via the $input variable at one time. This type of approach does not take
advantage of the streaming nature of the pipeline, which in many instances is more memory-efficient.

Add One Function
2
3
4
5
6

The DemoAddOneFunction.ps1 script is shown here:

DemoaddOneFunction.ps1

Function AddOne
{
 "Add One Function"
 While ($input.moveNext())
 {
 $input.current + 1
 }
}

1..5 | addOne

To close this performance issue between functions and filters when used in a pipeline, you can
write your function in such a manner that it behaves like a filter. To do this, you must explicitly call
out the Process block. When you use the Process block, you are also able to use the $_ automatic
variable instead of being restricted to using $input. When you do this, the script will look like
DemoAddOneR2Function.ps1, the results of which are shown here:

add one function r2
2
add one function r2
3
add one function r2
4
add one function r2
5
add one function r2
6

204 Windows PowerShell 3 Step by Step

The complete DemoAddOneR2Function.ps1 script is shown here:

DemoaddOner2Function.ps1

Function AddOneR2
{
 Process {
 "add one function r2"
 $_ + 1
 }
} #end AddOneR2

1..5 | addOneR2

What does using an explicit Process block do to the performance? When run on my computer, the
function takes about 2.6 seconds, which is virtually the same amount of time taken by the filter. The
MeasureAddOneR2Function.ps1 script is shown here:

MeasureaddOner2Function.ps1

Function AddOneR2
{
 Process {
 "add one function r2"
 $_ + 1
 }
} #end AddOneR2

Measure-Command {1..50000 | addOneR2 }

Another reason for using filters is that they visually stand out, and therefore improve readability of
the script. The typical pattern for a filter is shown here:

Filter FilterName
{
 #insert code here
}

The HasMessage filter, found in the FilterHasMessage.ps1 script, begins with the Filter keyword,
and is followed by the name of the filter, which is HasMessage. Inside the script block (the curly brack-
ets), the $_ automatic variable is used to provide access to the pipeline. It is sent to the Where-Object
cmdlet, which performs the filter. In the calling script, the results of the HasMessage filter is sent to
the Measure-Object cmdlet, which tells the user how many events in the application log have a mes-
sage attached to them. The FilterHasMessage.ps1 script is shown here:

FilterhasMessage.ps1

Filter HasMessage
{
 $_ |
 Where-Object { $_.message }
} #end HasMessage

Get-WinEvent -LogName Application | HasMessage | Measure-Object

 CHAPTER 6 Working with Functions 205

Although the filter has an implicit Process block, this does not prevent you from using the Begin,
Process, and End script blocks explicitly. In the FilterToday.ps1 script, a filter named IsToday is created.
To make the filter a stand-alone entity with no external dependencies required (such as the passing
of a DateTime object to it), you need the filter to obtain the current date. However, if the call to the
Get-Date cmdlet was done inside the Process block, the filter would continue to work, but the call
to Get-Date would be made once for each object found in the input folder. So, if there were 25 items
in the folder, the Get-Date cmdlet would be called 25 times. When you have something that you want
to occur only once in the processing of the filter, you can place it in a Begin block. The Begin block
is called only once, while the Process block is called once for each item in the pipeline. If you wanted
any post-processing to take place (such as printing out a message stating how many files were found
today), you would place the relevant code in the End block of the filter. The FilterToday.ps1 script is
shown here:

Filtertoday.ps1

Filter IsToday
{
 Begin {$dte = (Get-Date).Date}
 Process { $_ |
 Where-Object { $_.LastWriteTime -ge $dte }
 }
}

Get-ChildItem -Path C:\fso | IsToday

Creating a function: step-by-step exercises

In this exercise, you’ll explore the use of the Get-Verb cmdlet to find permissible Windows PowerShell
verbs. You will also use Function keyword and create a function. Once you have created the basic
function, you’ll add additional functionality to the function in the next exercise.

Creating a basic function

1. Start Windows PowerShell ISE.

2. Use the Get-Verb cmdlet to obtain a listing of approved verbs.

3. Select a verb that would be appropriate for a function that obtains a listing of files by date last
modified. In this case, the appropriate verb is Get.

4. Create a new function named Get-FilesByDate. The code to do this appears here:

Function Get-FilesByDate
{

}

206 Windows PowerShell 3 Step by Step

5. Add four command-line parameters to the function. The first parameter is an array of file
types, the second is for the month, the third parameter is for the year, and the last parameter
is an array of file paths. This portion of the function appears here:

Param(
 [string[]]$fileTypes,
 [int]$month,
 [int]$year,
 [string[]]$path)

6. Following the Param portion of the function, add the code to perform a recursive search of
paths supplied via the $path variable. Limit the search to include only file types supplied via
the $filetypes variable. This portion of the code appears here:

Get-ChildItem -Path $path -Include $filetypes -Recurse |

7. Add a Where-Object clause to limit the files returned to the month of the lastwritetime
property that equals the month supplied via the command line, and the year supplied via the
command line. This portion of the function appears here:

Where-Object {
 $_.lastwritetime.month -eq $month -AND $_.lastwritetime.year -eq $year }

8. Save the function in a .ps1 file named Get-FilesByDate.ps1.

9. Run the script containing the function inside the Windows PowerShell ISE.

10. In the command pane, call the function and supply appropriate parameters for the function.
One such example of a command line appears here:

Get-FilesByDate -fileTypes *.docx -month 5 -year 2012 -path c:\data

The completed function appears here:

Function Get-FilesByDate
{
 Param(
 [string[]]$fileTypes,
 [int]$month,
 [int]$year,
 [string[]]$path)
 Get-ChildItem -Path $path -Include $filetypes -Recurse |
 Where-Object {
 $_.lastwritetime.month -eq $month -AND $_.lastwritetime.year -eq $year }
 } #end function Get-FilesByDate

This concludes this step-by-step exercise.

In the following exercise, you will add additional functionality to your Windows PowerShell func-
tion. The functionality will include a default value for the file types and making the $month, $year, and
$path parameters mandatory.

 CHAPTER 6 Working with Functions 207

adding additional functionality to an existing function

1. Start the Windows PowerShell ISE.

2. Open the Get-FilesByDate.ps1 script (created in the previous exercise) and use the Save As fea-
ture of the Windows PowerShell ISE to save the file with a new name of Get-FilesByDateV2.ps1.

3. Create an array of default file types for the $filetypes input variable. Assign the array of file
types to the $filetypes input variable. Use array notation when creating the array of file types.
For this exercise use *.doc and *.docx. The command to do this appears here:

[string[]]$fileTypes = @(".doc","*.docx")

4. Use the [Parameter(Mandatory=$true)] parameter tag to make the $month parameter manda-
tory. The tag appears just above the input parameter in the param portion of the script. Do
the same thing for the $year and $path parameters as well. The revised portion of the param
section of the script appears here:

[Parameter(Mandatory=$true)]
 [int]$month,
 [Parameter(Mandatory=$true)]
 [int]$year,
 [Parameter(Mandatory=$true)]
 [string[]]$path)

5. Save and run the function. Call the function without assigning a value for the path. An input
box should appear permitting you to type in a path. Type in a single path residing on your
system and press Enter. A second prompt appears (because the $path parameter accepts an
array). Simply press Enter a second time. An appropriate command line appears here:

Get-FilesByDate -month 10 -year 2011

6. Now run the function and assign a path value. An appropriate command line appears here:

Get-FilesByDate -month 10 -year 2011 -path c:\data

7. Now run the function and look for a different file type. In the example appearing here, I look
for Excel documents.

Get-FilesByDate -month 10 -year 2011 -path c:\data -fileTypes *.xlsx,*.xls

208 Windows PowerShell 3 Step by Step

The revised function appears here:

Function Get-FilesByDate
{
 Param(
 [string[]]$fileTypes = @(".DOC","*.DOCX"),
 [Parameter(Mandatory=$true)]
 [int]$month,
 [Parameter(Mandatory=$true)]
 [int]$year,
 [Parameter(Mandatory=$true)]
 [string[]]$path)
 Get-ChildItem -Path $path -Include $filetypes -Recurse |
 Where-Object {
 $_.lastwritetime.month -eq $month -AND $_.lastwritetime.year -eq $year }
 } #end function Get-FilesByDate

This concludes the exercise.

Chapter 6 quick reference

To Do this

Create a function Use the Function keyword, and provide a name and a
script block.

Reuse a Windows PowerShell function Dot-source the file containing the function.

Constrain a data type Use a type constraint in square brackets and place it in
front of the variable or data to be constrained.

Provide input to a function Use the Param keyword and supply variables to hold the
input.

To use a function Load the function into memory.

To store a function Place the function in a script file.

To name a function Use Get-Verb to identify an appropriate verb and use the
verb-noun naming convention.

 209

C H A P T E R 7

Creating advanced Functions
and Modules

after completing this chapter, you will be able to:

■■ Understand the use of the [cmdletbinding] attribute.

■■ Use parameter validation attributes to prevent errors.

■■ Configure shouldprocess to permit the use of -whatif.

■■ Configure Write-Verbose to provide additional information.

■■ Create a module.

■■ Install a module.

Advanced functions incorporate advanced Microsoft Windows PowerShell features and can therefore
behave like cmdlets. They do not have to be complicated. In fact, advanced functions do not even
have to be difficult to write or to use. What makes a function advanced is the capabilities it possesses
that enable it to behave in a similar manner to a cmdlet. Back during the beta of Windows PowerShell
2.0, the name for the advanced function was script cmdlet, and while the name change is perhaps
understandable because script cmdlets really are just advanced functions, in reality, the name was
very descriptive. This is because an advanced function mimics the behavior of a regular Windows
PowerShell cmdlet. In fact, the best advanced functions behave exactly like a Windows PowerShell
cmdlet and implement the same capabilities.

The [cmdletbinding] attribute

The first step in creating an advanced function is to add the [cmdletbinding] attribute to modify the
way the function works. This single addition adds several capabilities, such as additional parameter
checking and the ability to use easily the Write-Verbose cmdlet. To use the [cmdletbinding] attribute,
you place the attribute in a square-bracket attribute tag and include it in the first noncommented line
in the function. In addition, the [cmdletbinding] attribute requires the use of the Param keyword. If
your advanced function requires no parameters, you can use the Param keyword without specifying
any parameters. This technique appears here:

210 Windows PowerShell 3 Step by Step

function my-function
{
 [cmdletbinding()]
 Param()

}

Once you have the basic outline of the advanced function, you can begin to fill in the blanks. For
example, using the Write-Verbose cmdlet only requires adding the command. Without the use of the
[cmdletbinding] attribute, you would need to manually change the value of the $VerbosePreference
automatic variable from silentlycontinue to continue (and presumably later change it back to the
default value). The use of the [cmdletbinding] attribute and Write-Verbose appear here:

function my-function
{
 [cmdletbinding()]
 Param()
 Write-Verbose "verbose stream"
}

Enabling cmdlet binding for a function

1. Begin a function by using the Function keyword and supplying the name of the function.

2. Open a script block.

3. Type the [cmdletbinding()] attribute.

4. Add the Param statement.

5. Close the script block.

Easy verbose messages
Once loaded, the function permits the use of the -verbose switched parameter. Use of this parameter
causes each Write-Verbose statement to write to the Windows PowerShell console output. When the
function runs without the -verbose switch, no output displays from the verbose stream. Use of this
technique appears in Figure 7-1.

 CHAPTER 7 Creating Advanced Functions and Modules 211

FIGURE 7-1 Once specified, the [cmdletbinding] attribute enables easy access to the verbose stream.

The great thing about using the -verbose switch is that detailed information (such as the progress
in making remote connections, loading modules, and other operations that could cause a script to
fail) is output as events happen. This provides a built-in diagnostic mode for the advanced function—
with virtually no additional programming required.

Providing verbose output

1. Inside a function, add the [cmdletbinding()] attribute.

2. Add a Param statement.

3. Use the Write-Verbose cmdlet for each status message to display.

4. When calling the function, use the -verbose switched parameter.

automatic parameter checks
The default behavior for a Windows PowerShell function is that any additional values beyond the
defined number of arguments are supplied to an unnamed argument and are therefore available in
the automatic $args variable. This behavior, while potentially useful, easily becomes a source of errors
for a script. The following function illustrates this behavior:

212 Windows PowerShell 3 Step by Step

function my-function
{
 #[cmdletbinding()]
 Param($a)
 $a
 #$args
}

When the preceding function runs, any value supplied to the -a parameter appears in the output.
This appears here:

PS C:\Users\ed.IAMMRED> my-function -a 1,2,3,4
1
2
3
4

If, on the other hand, when calling the function you omit the first comma, no error is generated—
but the output displayed does not meet expectations. This appears here:

PS C:\Users\ed.IAMMRED> my-function -a 1 2,3,4
1

The remaining parameters appear in the automatic $args variable. Placing the $args variable in the
function illustrates this. First add the $args automatic variable as appears here:

function my-function
{
 #[cmdletbinding()]
 Param($a)
 $a
 $args
}

Now, when calling the function, while omitting the first comma, the following output appears.

PS C:\Users\ed.IAMMRED> my-function -a 1 2,3,4
1
2
3
4

While interesting, you may not want this supplying of additional values to an unnamed argument
behavior. One way to correct it is to check the number of arguments supplied to the function. You can
do this by monitoring the count property of the $args variable. This appears here:

function my-function
{
 #[cmdletbinding()]
 Param($a)
 $a
 $args.count
}

 CHAPTER 7 Creating Advanced Functions and Modules 213

When passing multiple arguments to the function, the value of count increments. In the output
appearing here, the first number, 1, returns from the -a position. The number 3 is the count of extra
arguments (those not supplied for the named argument).

PS C:\Users\ed.IAMMRED> my-function 1 2 3 4
1
3

By using this feature and checking the count property of $args, you can detect extra arguments
coming to the function with one line of code. This change appears here:

function my-function
{
 #[cmdletbinding()]
 Param($a,$b)
 $a
 $b
 if($args.count -gt 0) {Write-Error "unhandled arguments supplied"}
}

When the code is run, as shown following, the first two parameters supplied are accepted for the
-a and the -b parameters. The two remaining parameters go into the $args automatic variable. This
increases the count property of $args to a value greater than 0, and therefore an error occurs.

PS C:\Users\ed.IAMMRED> my-function 1 2 3 4
1
2
my-function : unhandled arguments supplied
At line:1 char:12
+ my-function <<<< 1 2 3 4
 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException
 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException,my-
 function

The easiest way to identify unhandled parameters supplied to a Windows PowerShell function is to
use the [cmdletbinding] attribute. One of the features of the [cmdletbinding] attribute is that it gener-
ates an error when unhandled parameter values appear on the command line. The following function
illustrates the [cmdletbinding] attribute:

function my-function
{
 [cmdletbinding()]
 Param($a,$b)
 $a
 $b
}

214 Windows PowerShell 3 Step by Step

When you call the preceding function with too many arguments, the following error appears:

PS C:\Users\ed.IAMMRED> my-function 1 2 3 4
my-function : A positional parameter cannot be found that accepts argument '3'.
At line:1 char:12
+ my-function <<<< 1 2 3 4
 + CategoryInfo : InvalidArgument: (:) [my-function], ParameterBindingException
 + FullyQualifiedErrorId : PositionalParameterNotFound,my-function

adding support for the -whatif parameter
One of the great features of Windows PowerShell is the use of the -whatif parameter on cmdlets that
change system state, such as the Stop-Service and Stop-Process cmdlets. If you consistently use the
-whatif switched parameter, you can avoid many inadvertent system outages or potential data loss. As
a Windows PowerShell best practice, you should also implement the -whatif parameter in advanced
functions that potentially change system state. In the past, this meant creating special parameters and
adding lots of extra code to handle the output. Now it requires a single line of code.

note [cmdletbinding()] appears with empty parentheses because there are other things,
such as SupportsShouldProcess, that can appear between the parentheses.

Inside the parentheses of the [cmdletbinding] attribute, set SupportsShouldProcess to true. The fol-
lowing function illustrates this technique:

function my-function
{
 [cmdletbinding(SupportsShouldProcess=$True)]
 Param($path)
 md $path
}

Now when you call the function with the -whatif switched parameter, a message appears in the
output detailing the exact behavior the cmdlet takes when run without the -whatif parameter. This
appears in Figure 7-2.

 CHAPTER 7 Creating Advanced Functions and Modules 215

FIGURE 7-2 Using -whatif when running a function with SupportsShouldProcess informs you what the function will
do when run.

adding -whatif support

1. Inside a function, add the [cmdletbinding()] attribute.

2. Inside the parentheses of the [cmdletbinding] attribute, add SupportsShouldProcess = $true.

3. Add a Param statement.

4. When calling the function, use the -whatif switched parameter.

adding support for the -confirm parameter
If all you want to do is to enable users of your function to use the -confirm switched parameter
when calling the function, the command is exactly the same as the one to enable -whatif. The
SupportsShouldProcess attribute turns on both -whatif and -confirm. Therefore, when you run the
function that follows with the -confirm switch, it prompts you prior to executing the specific action.

function my-function
{
 [cmdletbinding(SupportsShouldProcess=$True)]
 Param($path)
 md $path
}

The following command illustrates calling the function with the -confirm parameter:

my-function -path c:\mytest -confirm

216 Windows PowerShell 3 Step by Step

The dialog box in Figure 7-3 displays as a result of the previous command line when the code runs
from within the Windows PowerShell ISE.

FIGURE 7-3 Use of SupportsShouldProcess also enables the -confirm switch.

Most of the time, when you do something in Windows PowerShell, it executes the command
instead of prompting. For example, the following command stops all processes on the computer.

Get-Process | Stop-Process

note On Windows 8, the preceding command prompts prior to stopping the CRSS process
that will cause the computer to shut down. On operating systems prior to Windows 8, the
command executes without prompting.

If you do not want a cmdlet to execute by default—that is, you wish for it to prompt by default—
you add an additional property to the [cmdletbinding] attribute: the confirmimpact property. This
technique appears here:

[cmdletbinding(SupportsShouldProcess=$True, confirmimpact="high")]

There values for the confirmimpact property are High, Medium, Low, and None. They correspond to
the values for the automatic $confirmpreference variable.

Specifying the default parameter set
Properties specified for the [cmdletbinding] attribute impact the entire function. Therefore, when an
advanced function contains multiple parameter sets (or different groupings of parameters for the
same cmdlet), the function needs to know which one of several potential possibilities is the default.
The following command illustrates finding the default Windows PowerShell parameter set for a
cmdlet:

PS C:\> (Get-Command Stop-Process).parametersets | Format-Table name, isdefault -AutoSize

Name IsDefault
---- ---------
Id True
Name False
InputObject False

To specify a default parameter set for an advanced function, use the DefaultParameterSetName
property of the [cmdletbinding] attribute. When doing this, you tell Windows PowerShell that if

 CHAPTER 7 Creating Advanced Functions and Modules 217

a particular parameter set is not specified and not resolved by its data type, then the parameter
set with the DefaultParameterSetName attribute is to be used. Here is the code to specify the
DefaultParameterSetName property of the [cmdletbinding] attribute:

[cmdletbinding(DefaultParameterSetName="name")]

More information about creating parameter sets appears in the following section.

The parameter attribute

The parameter attribute accepts a number of properties that add power and flexibility to your
advanced Windows PowerShell function. The parameter attribute properties are shown in Table 7-1.

TABLE 7-1 Advanced function parameter attribute properties and meanings

Parameter attribute property Example Meaning

Mandatory Mandatory=$true The parameter must be specified.

Position Position=0 The parameter occupies the first posi-
tion when calling the function.

ParameterSetName ParameterSetName=”name” The parameter belongs to the speci-
fied parameter set.

ValueFromPipeline ValueFromPipeline=$true The parameter accepts pipelined
input.

ValueFromPipelineByPropertyName ValueFromPipelineByPropertyName
=$true

The parameter uses a property on the
object instead of the entire object.

ValueFromRemainingArguments ValueFromRemainingArguments=$
true

The parameter collects unassigned
arguments.

HelpMessage HelpMessage=”parameter help info” A short help message for the param-
eter is displayed.

the mandatory parameter property
The mandatory parameter attribute property turns a function’s parameter from optional to manda-
tory. By default, all parameters to an advanced function are optional; by using the mandatory prop-
erty, you can change that behavior on a parameter-by-parameter basis. When a function runs with
missing mandatory parameters, Windows PowerShell prompts for the missing parameter.

Use of the mandatory parameter appears here:

Function Test-Mandatory
{
 Param(
 [Parameter(mandatory=$true)]
 $name)
 "hello $name"
}

218 Windows PowerShell 3 Step by Step

When you run the Test-Mandatory function without supplying a value for the name parameter,
Windows PowerShell prompts for the missing value. This appears in the output that follows:

PS C:\> Test-Mandatory
cmdlet Test-Mandatory at command pipeline position 1
Supply values for the following parameters:
name: Ed Wilson
hello Ed Wilson

If, the user does not supply a value for the missing parameter, but instead skips past the prompt,
no error occurs, and the function continues to run, because the user is really assigning something
($null) to the parameter.

note If the code itself generates errors when run with no parameter values, these errors
are displayed. In this way, the mandatory parameter property causes a prompt, but it is not
an error-handling technique.

The output appears in Figure 7-4.

FIGURE 7-4 No error appears when skipping past a mandatory parameter.

the position parameter property
The position parameter property tells Windows PowerShell that the specific parameter receives values
when it occupies a specific position. Position numbers are zero based, and therefore the first position
is parameter position 0. By default, Windows PowerShell parameters are positional—that is, you can
supply values for them in the order in which they appear in the parameter set. However, once you

 CHAPTER 7 Creating Advanced Functions and Modules 219

use the position parameter property for any single parameter, the parameters default to being
nonpositional—that is, you will now need to use the parameter names to supply values.

note When supplying values for named parameters, you only need to type enough of
the parameter name to distinguish it from other parameter names (including the default
parameters).

The code that appears here illustrates using the position parameter property:

Function Test-Positional
{
 Param(
 [Parameter(Position=0)]
 $greeting,
 $name)
 "$greeting $name"
}

the ParameterSetName parameter property
The ParameterSetName property identifies groups of parameters that taken together create a specific
command set. It is quite common for cmdlets and advanced functions to expose multiple ways of
calling the code. One thing to keep in mind when creating different parameter sets is that the same
parameter cannot appear in more than one parameter set. Therefore, only the parameters that are
unique to each parameter set appear.

note When creating a parameter set, it is a best practice always to include one mandatory
parameter in each set.

If your parameter set uses more than a single parameter, use the ParameterSetName property
from the automatic $PSCmdlet variable in a switch statement to evaluate actions to take place. This
technique appears in the Test-ParameterSet function that follows.

Function Test-ParameterSet
{
 Param(
 [Parameter(ParameterSetName="City",Mandatory=$true)]
 $city,
 [Parameter(ParameterSetName="City")]
 $state,
 [Parameter(ParameterSetName="phone",Mandatory=$true)]
 $phone,
 [Parameter(ParameterSetName="phone")]
 $ext,
 [Parameter(Mandatory=$true)]
 $name)
 Switch ($PSCmdlet.ParameterSetName)

220 Windows PowerShell 3 Step by Step

 {
 "city" {"$name from $city in $state"}
 "phone" {"$name phone is $Phone extension $ext"}
 }
}

the ValueFromPipeline property
The ValueFromPipeline property causes Windows PowerShell to accept objects from the pipeline. The
entire object passes into the function’s Process block when you use the ValueFromPipeline parameter
property. Because the entire object passes to the function, you can access specific properties from the
pipeline with dotted notation. An example of this technique appears here:

Function Test-PipedValue
{
 Param(
 [Parameter(ValueFromPipeline=$true)]
 $process)
 Process {Write-Host $process.name $process.id}
}

Instead of receiving an entire object from the pipeline, the ValueFromPipelineByPropertyName
property can often simplify code by allowing your function to pick properties from the input object
directly from the pipeline. The Test-PipedValueByPropertyName function illustrates this technique:

Function Test-PipedValueByPropertyName
{
 Param(
 [Parameter(ValueFromPipelineByPropertyName=$true)]
 $processname,
 [Parameter(ValueFromPipelineByPropertyName=$true)]
 $id)
 Process {Write-Host $processname $id}
}

When you need to accept arbitrary information that may or may not align with specific parameters,
the ValueFromRemainingArguments parameter property provides the answer. Such a technique permits
flexibility in the use of the parameters, and the remaining items in the arguments comprise an array and
are therefore accessible via standard array notation. The Test-ValueFromRemainingArguments function
illustrates using the ValueFromRemainingArguments parameter property in a function:

Function Test-ValueFromRemainingArguments
{
 Param(
 $Name,
 [Parameter(ValueFromRemainingArguments=$true)]
 $otherInfo)
 Process { "Name: $name `r`nOther info: $otherinfo" }
}

 CHAPTER 7 Creating Advanced Functions and Modules 221

Figure 7-5 illustrates calling the Test-ValueFromRemainingArguments function and providing addi-
tional arguments to the function.

FIGURE 7-5 The ValueFromRemainingArguments parameter property permits access to extra arguments.

the HelpMessage property
The HelpMessage property provides a small amount of help related to a specific parameter. This
information becomes accessible when Windows PowerShell prompts for a missing parameter. This
means that it only makes sense to use the HelpMessage parameter property when it is coupled with
the Mandatory parameter property.

note It is a Windows PowerShell best practice to use the HelpMessage parameter property
when using the Mandatory parameter property.

When Windows PowerShell prompts for a missing parameter, and when the HelpMessage param-
eter property exists, an additional line appears in the output. This line appears here:

(Type !? for Help.)

To view the help, type !? and press Enter, and the string value for the HelpMessage parameter
property will be displayed.

222 Windows PowerShell 3 Step by Step

Function Test-HelpMessage
{
 Param(
 [Parameter(Mandatory=$true, HelpMessage="Enter your name please")]
 $name)
 "Good to meet you $name"
}

Understanding modules

Windows PowerShell 2.0 introduced the concept of modules. A module is a package that can
contain Windows PowerShell cmdlets, aliases, functions, variables, type/format XML, help files, other
scripts, and even providers. In short, a Windows PowerShell module can contain the kinds of things
that you might put into your profile, but it can also contain things that Windows PowerShell 1.0
required a developer to incorporate into a PowerShell snap-in. There are several advantages of mod-
ules over snap-ins:

■■ Anyone who can write a Windows PowerShell script can create a module.

■■ To install a module, you do not need to write a Windows Installer package.

■■ To install a module, you do not have to have administrator rights.

These advantages should be of great interest to the IT professional.

Locating and loading modules

There are two default locations for Windows PowerShell modules. The first location is in the user’s
home directory, and the second is in the Windows PowerShell home directory. These locations are
defined in $env:psmodulepath, a default environmental variable. You can add additional default mod-
ule path locations by editing this variable. The modules directory in the Windows PowerShell home
directory always exists. However, the modules directory in the user’s home directory is not present
by default. The modules directory will only exist in the user’s home directory if it has been created.
The creation of the modules directory in the user’s home directory does not normally happen until
someone has decided to create and to store modules there. A nice feature of the modules directory is
that when it exists, it is the first place Windows PowerShell uses when it searches for a module. If the
user’s module directory does not exist, the modules directory within the Windows PowerShell home
directory is used.

 CHAPTER 7 Creating Advanced Functions and Modules 223

Listing available modules
Windows PowerShell modules exist in two states: loaded and unloaded. To display a list of all loaded
modules, use the Get-Module cmdlet without any parameters. This is shown here:

PS C:\> Get-Module

ModuleType Name ExportedCommands
---------- ---- ----------------
Script ISE {Get-IseSnippet, Import-IseSnippet, New-
IseSnip...
Manifest Microsoft.PowerShell.Management {Add-Computer, Add-Content, Checkpoint-
Computer...
Manifest Microsoft.PowerShell.Utility {Add-Member, Add-Type, Clear-Variable,
Compare-...

If there are multiple modules loaded when the Get-Module cmdlet runs, each module will appear
along with its accompanying exported commands on their own individual lines. This is shown here:

PS C:\> Get-Module

ModuleType Name ExportedCommands
---------- ---- ----------------
Script GetFreeDiskSpace Get-FreeDiskSpace
Script HelloWorld {Hello-World, Hello-User}
Script TextFunctions {New-Line, Get-TextStats}
Manifest BitsTransfer {Start-BitsTransfer, Remove-BitsTransfe...
Script PSDiagnostics {Enable-PSTrace, Enable-WSManTrace, Sta...

PS C:\>

If no modules are loaded, nothing displays to the Windows PowerShell console. No errors
appear, nor is there any confirmation that the command has actually run. This situation never
occurs on Windows 8 because Windows PowerShell core cmdlets reside in two basic modules: the
Microsoft.PowerShell.Management and Microsoft.PowerShell.Utility modules. These two modules
always load unless Windows PowerShell launches with the -noprofile switch. But even then, the
Microsoft.PowerShell.Management module loads due to autoload.

To obtain a listing of all modules that are available on the system, you use the Get-Module cmdlet
with the -ListAvailable parameter. The Get-Module cmdlet with the -ListAvailable parameter lists all
modules that are available whether or not the modules are loaded into the Windows PowerShell con-
sole. The output appearing here illustrates the default installation of a Windows 8 client system:

224 Windows PowerShell 3 Step by Step

PS C:\> Get-Module -ListAvailable

 Directory: C:\Windows\system32\WindowsPowerShell\v1.0\Modules

ModuleType Name ExportedCommands
---------- ---- ----------------
Manifest AppLocker {Get-AppLockerFileInformation, Get...
Manifest Appx {Add-AppxPackage, Get-AppxPackage,...
Manifest BitLocker {Unlock-BitLocker, Suspend-BitLock...
Manifest BitsTransfer {Add-BitsFile, Complete-BitsTransf...
Manifest BranchCache {Add-BCDataCacheExtension, Clear-B...
Manifest CimCmdlets {Get-CimAssociatedInstance, Get-Ci...
Manifest DirectAccessClientComponents {Disable-DAManualEntryPointSelecti...
Script Dism {Add-AppxProvisionedPackage, Add-W...
Manifest DnsClient {Resolve-DnsName, Clear-DnsClientC...
Manifest International {Get-WinDefaultInputMethodOverride...
Manifest iSCSI {Get-IscsiTargetPortal, New-IscsiT...
Script ISE {New-IseSnippet, Import-IseSnippet...
Manifest Kds {Add-KdsRootKey, Get-KdsRootKey, T...
Manifest Microsoft.PowerShell.Diagnostics {Get-WinEvent, Get-Counter, Import...
Manifest Microsoft.PowerShell.Host {Start-Transcript, Stop-Transcript}
Manifest Microsoft.PowerShell.Management {Add-Content, Clear-Content, Clear...
Manifest Microsoft.PowerShell.Security {Get-Acl, Set-Acl, Get-PfxCertific...
Manifest Microsoft.PowerShell.Utility {Format-List, Format-Custom, Forma...
Manifest Microsoft.WSMan.Management {Disable-WSManCredSSP, Enable-WSMa...
Manifest MMAgent {Disable-MMAgent, Enable-MMAgent, ...
Manifest MsDtc {New-DtcDiagnosticTransaction, Com...
Manifest NetAdapter {Disable-NetAdapter, Disable-NetAd...
Manifest NetConnection {Get-NetConnectionProfile, Set-Net...
Manifest NetLbfo {Add-NetLbfoTeamMember, Add-NetLbf...
Manifest NetQos {Get-NetQosPolicy, Set-NetQosPolic...
Manifest NetSecurity {Get-DAPolicyChange, New-NetIPsecA...
Manifest NetSwitchTeam {New-NetSwitchTeam, Remove-NetSwit...
Manifest NetTCPIP {Get-NetIPAddress, Get-NetIPInterf...
Manifest NetworkConnectivityStatus {Get-DAConnectionStatus, Get-NCSIP...
Manifest NetworkTransition {Add-NetIPHttpsCertBinding, Disabl...
Manifest PKI {Add-CertificateEnrollmentPolicySe...
Manifest PrintManagement {Add-Printer, Add-PrinterDriver, A...
Script PSDiagnostics {Disable-PSTrace, Disable-PSWSManC...
Binary PSScheduledJob {New-JobTrigger, Add-JobTrigger, R...
Manifest PSWorkflow {New-PSWorkflowExecutionOption, Ne...
Manifest PSWorkflowUtility Invoke-AsWorkflow
Manifest ScheduledTasks {Get-ScheduledTask, Set-ScheduledT...
Manifest SecureBoot {Confirm-SecureBootUEFI, Set-Secur...
Manifest SmbShare {Get-SmbShare, Remove-SmbShare, Se...
Manifest SmbWitness {Get-SmbWitnessClient, Move-SmbWit...
Manifest Storage {Add-InitiatorIdToMaskingSet, Add-...
Manifest TroubleshootingPack {Get-TroubleshootingPack, Invoke-T...
Manifest TrustedPlatformModule {Get-Tpm, Initialize-Tpm, Clear-Tp...
Manifest VpnClient {Add-VpnConnection, Set-VpnConnect...
Manifest Wdac {Get-OdbcDriver, Set-OdbcDriver, G...
Manifest WindowsDeveloperLicense {Get-WindowsDeveloperLicense, Show...
Script WindowsErrorReporting {Enable-WindowsErrorReporting, Dis....

 CHAPTER 7 Creating Advanced Functions and Modules 225

note Windows PowerShell 3.0 still installs into the \\windows\system32\WindowsPowerShell\
v1.0 directory (even on Windows 8). The reason for adherence to this location is for com-
patibility with applications that expect this location. A common question I receive via the
Hey Scripting Guy! blog (http://www.scriptingguys.com/blog) is related to this folder name.
To determine the version of Windows PowerShell you are running, use the $PSVersionTable
automatic variable.

Loading modules
Once you have identified a module you wish to load, you use the Import-Module cmdlet to load the
module into the current Windows PowerShell session. This appears here:

PS C:\> Import-Module -Name NetConnection
PS C:\>

If the module exists, the Import-Module cmdlet completes without displaying any information. If
the module is already loaded, no error message displays. This behavior appears as follows, where you
press the up arrow key to retrieve the previous command and press Enter to execute the command.
The Import-Module command runs three times but no errors appear.

PS C:\> Import-Module -Name NetConnection
PS C:\> Import-Module -Name NetConnection
PS C:\> Import-Module -Name NetConnection
PS C:\>

Once you import the module, you may want to use the Get-Module cmdlet to quickly see the func-
tions exposed by the module. (You can also use the Get-Command -module <modulename> com-
mand as well.) It is not necessary to type the complete module name. You can use wildcards, and you
can even use tab expansion to expand the module name. The wildcard technique appears here:

PS C:\> Get-Module net*

ModuleType Name ExportedCommands
---------- ---- ----------------
Manifest netconnection {Get-NetConnectionProfile, Set-Net...

As shown previously, the netconnection module exports two commands: the Get-NetConnectionProfile
function, and some other command that is probably Set-NetConnectionProfile (the guess is due to the fact
that the Get and the Set Windows PowerShell verbs often go together. Because the first three letters
of the noun for the second function is net, I am assuming the command name). The one problem
with using the Get-Module cmdlet is that it truncates the exportedcommands property (the truncate
behavior is controlled by the value assigned to the $formatEnumeration automatic variable). The easy
solution to this problem is to pipeline the resulting psmoduleinfo object to the Select-Object cmdlet
and expand the exportedcommands property. This technique appears here:

226 Windows PowerShell 3 Step by Step

PS C:\> Get-Module net* | select -expand *comm*

Key Value
--- -----
Get-NetConnectionProfile Get-NetConnectionProfile
Set-NetConnectionProfile Set-NetConnectionProfile

When loading modules that have long names, you are not limited to typing the entire module name.
You can use wildcards or tab expansion to complete the module name. When using wildcards to load
modules, it is a best practice to type a significant portion of the module name so that you only match a
single module from the list of modules that are available to you. If you do not match a single module, an
error is generated. The following error appears because net* matches multiple modules.

PS C:\> Import-Module net*
Import-Module : The specified module 'net*' was not loaded because no valid module
file was found in any module directory.
At line:1 char:1
+ Import-Module net*
+ ~~~~~~~~~~~~~~~~~~
 + CategoryInfo : ResourceUnavailable: (net*:String) [Import-Module],
 FileNotFoundException
 + FullyQualifiedErrorId : Modules_ModuleNotFound,Microsoft.PowerShell.Commands.
 ImportModuleCommand

Important In Windows PowerShell 2.0, if a wildcard pattern matches more than one
module name, the first matched module loads and the remaining matches are ignored. This
leads to inconsistent and unpredictable results. Therefore, Windows PowerShell 3.0 changes
this behavior to generate an error when a wildcard pattern matches more than one module
name.

If you want to load all of the modules that are available on your system, you can use the Get-
Module cmdlet with the -ListAvailable parameter and pipeline the resulting PSModuleInfo objects to
the Import-Module cmdlet. This is shown here:

PS C:\> Get-Module -ListAvailable | Import-Module
PS C:\>

If you have a module that contains a function, cmdlet, or workflow that uses a verb that is not on
the allowed verb list, a warning message displays when you import the module. The functions in the
module still work, and the module will work, but the warning displays to remind you to check the
authorized verb list. This behavior appears here:

PS C:\> Import-Module HelloUser
WARNING: The names of some imported commands from the module 'HelloUser' include
unapproved verbs that might make them less discoverable. To find the commands with
unapproved verbs, run the Import-Module command again with the Verbose parameter.
For a list of approved verbs, type Get-Verb.
PS C:\> hello-user
hello administrator

 CHAPTER 7 Creating Advanced Functions and Modules 227

To obtain more information about which unapproved verbs are being used, you use the -Verbose
parameter of Import-Module. This command is shown here:

PS C:\> Import-Module HelloUser -Verbose

The results of the Import-Module -Verbose command are shown in Figure 7-6.

FIGURE 7-6 The -Verbose parameter of Import-Module displays information about each function exported, as well
as illegal verb names. The hello verb used in Hello-User is not an approved verb.

In this section, the concept of locating and loading modules was discussed. You can list modules
by using the -ListAvailable switched parameter with the Get-Module cmdlet. Modules are loaded via
the Import-Module cmdlet.

Installing modules

One of the features of modules is that they can be installed without elevated rights. Because each
user has a modules folder in the %userprofile% directory that the user has rights to use, the instal-
lation of a module does not require administrator rights to install into the personal module store.
An additional feature of modules is that they do not require a specialized installer (of course, some
complex modules do use specialized installers to make it easier for users to deploy). The files asso-
ciated with a module can be copied by using the Xcopy utility, or they can be copied by using
Windows PowerShell cmdlets.

Creating a per-user Modules folder
The users’ modules folder does not exist by default. To avoid confusion, you may decide to create
the modules directory in the user’s profile prior to deploying modules, or you may simply create a
module-installer script (or even a logon script) that checks for the existence of the user’s modules
folder, creates the folder if it does not exist, and then copies the modules. One thing to remember
when directly accessing the user’s modules directory is that the modules folder is in a different loca-
tion depending on the version of the operating system. On Windows XP and Windows Server 2003,
the user’s modules folder is in the My Documents folder, and on Windows Vista and above, the user’s
modules folder is in the Documents folder.

228 Windows PowerShell 3 Step by Step

note Windows PowerShell 3.0 does not install on Windows Vista or below. So, in a pure
Windows PowerShell 3.0 environment, you can skip the operating system check and simply
create the folder in the Documents folder.

In the Copy-Modules.ps1 script (available with the scripts for this chapter from
http://aka.ms/PowerShellSBS_book), you solve the problem of different modules folder locations
by using the Get-OperatingSystemVersion function, which retrieves the major version number of the
operating system. The Get-OperatingSystemVersion function appears here:

Function Get-OperatingSystemVersion
{
 (Get-WmiObject -Class Win32_OperatingSystem).Version
} #end Get-OperatingSystemVersion

The Test-ModulePath function uses the major version number of the operating system. If the major
version number of the operating system is greater than 6, it means the operating system is at least
Windows Vista and will therefore use the Documents folder in the path to the modules. If the major
version number of the operating system is not greater than 6, the script will use the My Documents
folder for the module location. Once the version of the operating system is determined and the path
to the module location is ascertained, it is time to determine if the modules folders exist or not. The
best tool for the job of checking for the existence of folders is the Test-Path cmdlet. The Test-Path
cmdlet returns a Boolean value. As you are only interested in the absence of the folder, you can use
the -not operator in the completed Test-ModulePath function, as shown here:

Function Test-ModulePath
{
 $VistaPath = "$env:userProfile\documents\WindowsPowerShell\Modules"
 $XPPath = "$env:Userprofile\my documents\WindowsPowerShell\Modules"
 if ([int](Get-OperatingSystemVersion).substring(0,1) -ge 6)
 {
 if(-not(Test-Path -path $VistaPath))
 {
 New-Item -Path $VistaPath -itemtype directory | Out-Null
 } #end if
 } #end if
 Else
 {
 if(-not(Test-Path -path $XPPath))
 {
 New-Item -path $XPPath -itemtype directory | Out-Null
 } #end if
 } #end else
} #end Test-ModulePath

Upon creating the user’s Modules folder, it is time to create a child folder to hold the new module.
A module installs into a folder that has the same name as the module itself. The name of the module
is the name of the folder. For the module to be valid, it needs a file of the same name with either a
.psm1 or .psd1 extension. The location is shown in Figure 7-7.

 CHAPTER 7 Creating Advanced Functions and Modules 229

FIGURE 7-7 Modules are placed in the user’s Modules directory.

In the Copy-Module function from the Copy-Modules.ps1 script, the first action retrieves the value
of the PSModulePath environmental variable. Because there are two default locations in which mod-
ules can be stored, the PSModulePath environmental variable contains the path to both locations.
PSModulePath is not stored as an array; it is stored as a string. The value contained in PSModulePath
appears here:

PS C:\> $env:PSModulePath
C:\Users\administrator\Documents\WindowsPowerShell\Modules;C:\Windows\system32\
WindowsPowerShell\v1.0\Modules\

If you attempt to index into the data stored in the PSModulePath environmental variable, you will
retrieve one letter at a time. This is shown here:

PS C:\> $env:psmodulePath[0]
C
PS C:\> $env:psmodulePath[1]
:
PS C:\> $env:psmodulePath[2]
\
PS C:\> $env:psmodulePath[3]
U

Attempting to retrieve the path to the user’s module location one letter at a time would be prob-
lematic at best and error prone at worst. Because the data is a string, you can use string methods
to manipulate the two paths. To break a string into an usable array, you use the split method from
the System.String class. You only need to pass a single value to the split method: the character upon
which to split. Because the value stored in the PSModulePath variable is a set of strings separated by
semicolons, you can access the split method directly. This technique appears here:

230 Windows PowerShell 3 Step by Step

PS C:\> $env:PSModulePath.Split(";")
C:\Users\administrator\Documents\WindowsPowerShell\Modules
C:\Windows\system32\WindowsPowerShell\v1.0\Modules\

You can see from the preceding output that the first string displayed is the path to the user’s
modules folder, and the second string is the path to the system modules folder. Because the split
method turns a string into an array, you can now index into the array and retrieve the path to the
user’s modules folder by using the [0] syntax. You do not need to use an intermediate variable to
store the returned array of paths if you do not wish to. You can index into the returned array directly.
If you were to use the intermediate variable to hold the returned array, and then index into the array,
the code would resemble the following:

PS C:\> $aryPaths = $env:PSModulePath.Split(";")
PS C:\> $aryPaths[0]
C:\Users\administrator\Documents\WindowsPowerShell\Modules

Because the array is immediately available once the split method has been called, you directly
retrieve the user’s modules path. This is shown here:

PS C:\> $env:PSModulePath.Split(";")[0]
C:\Users\administrator\Documents\WindowsPowerShell\Modules

Working with the $modulePath variable
The path that will be used to store the module is stored in the $modulepath variable. This path includes
the path to the user’s modules folder plus a child folder that has the same name as the module itself.
To create the new path, it is a best practice to use the Join-Path cmdlet instead of doing string con-
catenation and attempting to manually build the path to the new folder. The Join-Path cmdlet will put
together a parent path and a child path to create a new path. This is shown here:

$ModulePath = Join-Path -path $userPath `
 -childpath (Get-Item -path $name).basename

Windows PowerShell adds a script property called basename to the System.Io.FileInfo class. This
makes it easy to retrieve the name of a file without the file extension. Prior to Windows PowerShell
2.0, it was common to use the split method or some other string-manipulation technique to remove
the extension from the file name. Use of the basename property appears here:

PS C:\> (Get-Item -Path C:\fso\HelloWorld.psm1).basename
HelloWorld

Finally, you need to create the subdirectory that will hold the module and copy the module files
into the directory. To avoid cluttering the display with the returned information from the New-Item
and Copy-Item cmdlets, the results are pipelined to the Out-Null cmdlet. This is shown here:

New-Item -path $modulePath -itemtype directory | Out-Null
Copy-Item -path $name -destination $ModulePath | Out-Null

 CHAPTER 7 Creating Advanced Functions and Modules 231

The entry point to the Copy-Modules.ps1 script calls the Test-ModulePath function to determine
if the user’s modules folder exists. It then uses the Get-ChildItem cmdlet to retrieve a listing of all
the module files in a particular folder. The -Recurse parameter is used to retrieve all the module files
in the path. The resulting FileInfo objects are pipelined to the ForEach-Object cmdlet. The fullname
property of each FileInfo object is passed to the Copy-Module function. This is shown here:

Test-ModulePath
Get-ChildItem -Path C:\fso -Include *.psm1,*.psd1 -Recurse |
ForEach-Object { Copy-Module -name $_.fullname }

The complete Copy-Modules.ps1 script is shown here:

Copy-Modules.ps1

Function Get-OperatingSystemVersion
{
 (Get-WmiObject -Class Win32_OperatingSystem).Version
} #end Get-OperatingSystemVersion

Function Test-ModulePath
{
 $VistaPath = "$env:userProfile\documents\WindowsPowerShell\Modules"
 $XPPath = "$env:Userprofile\my documents\WindowsPowerShell\Modules"
 if ([int](Get-OperatingSystemVersion).substring(0,1) -ge 6)
 {
 if(-not(Test-Path -path $VistaPath))
 {
 New-Item -Path $VistaPath -itemtype directory | Out-Null
 } #end if
 } #end if
 Else
 {
 if(-not(Test-Path -path $XPPath))
 {
 New-Item -path $XPPath -itemtype directory | Out-Null
 } #end if
 } #end else
} #end Test-ModulePath

Function Copy-Module([string]$name)
{
 $UserPath = $env:PSModulePath.split(";")[0]
 $ModulePath = Join-Path -path $userPath `
 -childpath (Get-Item -path $name).basename
 New-Item -path $modulePath -itemtype directory | Out-Null
 Copy-Item -path $name -destination $ModulePath | Out-Null
}

*** Entry Point to Script ***
Test-ModulePath
Get-ChildItem -Path C:\fso -Include *.psm1,*.psd1 -Recurse |
ForEach-Object { Copy-Module -name $_.fullname }

232 Windows PowerShell 3 Step by Step

note You must set the script execution policy to permit running of scripts to use user-
created script modules. Script support does not need to be enabled in Windows PowerShell
to use the system modules. However, to run Copy-Modules.ps1 to install modules to the
user’s profile, you would need scripting support. To enable scripting support in Windows
PowerShell, you use the Set-ExecutionPolicy cmdlet.

Creating a module drive
An easy way to work with modules is to create a couple of Windows PowerShell drives using the
filesystem provider. Since the modules live in a location that is not easily navigated to from the com-
mand line, and since $PSModulePath returns a string that contains the path to both the user’s and
system modules folders, it makes sense to provide an easier way to work with the modules’ locations.
To create a Windows PowerShell drive for the user module location, you use the New-PSDrive cmdlet,
specify a name, such as mymods, use the filesystem provider, and obtain the root location from the
$PSModulePath environmental variable by using the split method from the .NET Framework String
class. For the user’s modules folder, you use first element from the returned array. This is shown here:

PS C:\> New-PSDrive -Name mymods -PSProvider filesystem -Root ($env:PSModulePath.Split(";")[0])

Name Used (GB) Free (GB) Provider Root
---- --------- --------- -------- ----
mymods 116.50 FileSystem C:\Users\administrator\Docum...

The command to create a Windows PowerShell drive for the system module location is similar
to the one used to create a Windows PowerShell drive for the user module location. The exceptions
are specifying a different name, such as sysmods, and choosing the second element from the array
obtained via the split method call on the $PSModulePath variable. This command appears here:

PS C:\> New-PSDrive -Name sysmods -PSProvider filesystem -Root ($env:PSModulePath.Split(";")[1])

Name Used (GB) Free (GB) Provider Root
---- --------- --------- -------- ----
sysmods 116.50 FileSystem C:\Windows\system32\WindowsP...

You can also write a script that creates Windows PowerShell drives for each of the two mod-
ule locations. To do this, you first create an array of names for the Windows PowerShell drives.
You then use a For statement to walk through the array of PowerShell drive names and call the
New-PSDrive cmdlet. Because you are running the commands inside a script, the new PowerShell
drives by default will live within the script scope. Once the script ends, the script scope goes away.
This means the Windows PowerShell drives will not be available once the script ended—which would
defeat your purposes in creating them in the first place. To combat this scoping issue, you need

 CHAPTER 7 Creating Advanced Functions and Modules 233

to create the PowerShell drives within the global scope, which means they will be available in the
Windows PowerShell console once the script has completed running. To avoid displaying confirmation
messages when creating the PowerShell drives, you pipe the results to the Out-Null cmdlet.

In the New-ModulesDrive.ps1 script, create another function. This function displays global file
system PowerShell drives. When the script runs, call the New-ModuleDrive function. Then call the
Get-FileSystemDrives function. The complete New-ModuleDrive function appears here:

new-ModuleDrive function

Function New-ModuleDrive
{
<#
 .SYNOPSIS
 Creates two PS drives: myMods and sysMods
 .EXAMPLE
 New-ModuleDrive
 Creates two PS drives: myMods and sysMods. These correspond
 to the users' modules folder and the system modules folder respectively.
#>
 $driveNames = "myMods","sysMods"

 For($i = 0 ; $i -le 1 ; $i++)
 {
 New-PSDrive -name $driveNames[$i] -PSProvider filesystem `
 -Root ($env:PSModulePath.split(";")[$i]) -scope Global |
 Out-Null
 } #end For
} #end New-ModuleDrive

Function Get-FileSystemDrives
{
<#
 .SYNOPSIS
 Displays global PS drives that use the filesystem provider
 .EXAMPLE
 Get-FileSystemDrives
 Displays global PS drives that use the filesystem provider
#>
 Get-PSDrive -PSProvider FileSystem -scope Global
} #end Get-FileSystemDrives

*** EntryPoint to Script ***
New-ModuleDrive
Get-FileSystemDrives

This section covered the concept of installing modules. Before installing modules, create a special
modules folder in the user’s profile. A script was developed that will perform this action. The use of
a $modulepath variable was examined. The section concluded with a script that creates a PowerShell
drive to provide easy access to installed modules.

234 Windows PowerShell 3 Step by Step

Checking for module dependencies
One problem with using modules is you now have a dependency to external code, and this means
that a script that uses the module must have the module installed, or else the script will fail. If you
control the environment, taking an external dependency is not a bad thing; if you do not control the
environment, an external dependency can be a disaster.

Because of the potential for problems, Windows PowerShell 3.0 adds additional capabilities to the
#requires statement. The #requires statement can check for Windows PowerShell version, modules,
snap-ins, and even module and snap-in version numbers. Unfortunately, use of #requires only works
in a script, not in a function, cmdlet, or snap-in. Figure 7-8 illustrates using the #requires statement
to ensure the presence of a specific module prior to script execution. The script requires a module
named bogus that does not exist. Because the bogus module does not exist, an error occurs.

FIGURE 7-8 Use the #requires statement to prevent execution of a script when a required module does not exist.

Because you cannot use the #requires statement inside a function, you may want to use the
Get-MyModule function to determine if a module exists or is already loaded (the other way to do this
is to use a manifest). The complete Get-MyModule function appears here:

 CHAPTER 7 Creating Advanced Functions and Modules 235

Get-MyModule.ps1

Function Get-MyModule
{
 Param([string]$name)
 if(-not(Get-Module -name $name))
 {
 if(Get-Module -ListAvailable |
 Where-Object { $_.name -eq $name })
 {
 Import-Module -Name $name
 $true
 } #end if module available then import
 else { $false } #module not available
 } # end if not module
 else { $true } #module already loaded

} #end function get-MyModule

get-mymodule -name "bitsTransfer"

The Get-MyModule function accepts a single string: the name of the module to check. The if state-
ment is used to see if the module is currently loaded. If it is not loaded, the Get-Module cmdlet is
used to see if the module exists on the system. If it does exist, the module is loaded.

If the module is already loaded into the current Windows PowerShell session, the Get-MyModule
function returns $true to the calling code. Let’s dig into the function a bit further to see how it works.

The first thing you do is use the if statement to see if the module is not loaded into the current
session. To do this, use the -not operator to see if the module is not loaded. Use the Get-Module
cmdlet to search for the required module by name. This section of the script appears here:

Function Get-MyModule
{
 Param([string]$name)
 if(-not(Get-Module -name $name))
 {

To obtain a list of modules that are installed on a system, use the Get-Module cmdlet with the
-ListAvailable switch. Unfortunately, there is no way to filter the results, and this necessitates pipelin-
ing the results to the Where-Object cmdlet to see if the required cmdlet is installed on the system. If
the module exists on the system, the function uses the Import-Module cmdlet to import the module,
and it returns $true to the calling code. This section of the script is shown here:

if(Get-Module -ListAvailable |
 Where-Object { $_.name -eq $name })
 {
 Import-Module -Name $name
 $true
 } #end if module available then import

236 Windows PowerShell 3 Step by Step

Finally, you need to handle the two other cases. If the module is not available, the Where-Object
cmdlet will not find anything. This triggers the first else clause, where $false is returned to the calling
code. If the module is already loaded, the second else clause returns $true to the script. This section of
the script is shown here:

 else { $false } #module not available
 } # end if not module
 else { $true } #module already loaded

} #end function get-MyModule

A simple use of the Get-MyModule function is to call the function and pass the name of a module
to it. This example is actually shown in the last line of the Get-MyModule.ps1 script:

get-mymodule -name "bitsTransfer"

When called in this manner, the Get-MyModule function will load the bitsTransfer module if it
exists on your system and if it is not already loaded. If the module is already loaded, or if it is loaded
by the function, $true is returned to the script. If the module does not exist, $false is returned. The use
of the Get-MyModule function appears in Figure 7-9.

FIGURE 7-9 Use the Get-MyModule function to ensure a module exists prior to attempting to load it.

A better use of the Get-MyModule function is as a prerequisite check for a function that uses a
particular module. Your syntax might look something like this:

If(Get-MyModule -name “bitsTransfer”) { call your bits code here }
ELSE { “Bits module is not installed on this system.” ; exit }

 CHAPTER 7 Creating Advanced Functions and Modules 237

Using a module from a share
Using a module from a central file share is no different from using a module from one of the two
default locations. When a module is placed in the %windir%\System32\WindowsPowerShell\v1.0\
Modules folder, it is available to all users. If a module is placed in the %UserProfile%\My documents\
WindowsPowerShell\Modules folder, it is only available to the specific user. The advantage of placing
modules in the %UserProfile% location is that the user automatically has permission to perform the
installation; modules in the system location, on the other hand, require administrator rights.

Speaking of installation of Windows PowerShell modules, in many cases the installation of a
Windows PowerShell module is no more complicated than placing the *.psm1 file in a folder in
the default user location. The key point is that the folder created under the \Modules folder must
have the same name as the module itself. When you install a module on a local computer, use the
Copy-Modules.ps1 script to simplify the process of creating and naming the folders.

When copying a Windows PowerShell module to a network-shared location, follow the same rules:
make sure that the folder that contains the module has the same name as the module. In the follow-
ing procedure, you’ll copy the ConversionModuleV6 module to a network share.

Using a network-shared module

1. Create a share on a networked server and assign appropriate permissions.

2. Use the Get-ChildItem cmdlet (for which dir is the alias) to view the share and the associated
modules. Here’s an example:

PS C:\> dir '\\w8s504\shared'

 Directory: \\w8s504\shared

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 6/30/2012 1:00 PM ConversionModuleV6

3. Import the module by using the Import-Module cmdlet and the UNC (Universal Naming
Convention) path to the folder containing the module. The following command imports the
module from the W8s504 server:

PS C:\> Import-Module \\w8s504\shared\Conv*

238 Windows PowerShell 3 Step by Step

4. Verify that the module has loaded properly by using the Get-Module cmdlet. This command
appears here:

PS C:\> Get-Module

ModuleType Name ExportedCommands
---------- ---- ----------------
Script ConversionModuleV6 {ConvertTo-celsius, ConvertTo-Fahr...
Manifest Microsoft.PowerShell.Management {Add-Computer, Add-Content, Checkp...
Manifest Microsoft.PowerShell.Security {ConvertFrom-SecureString, Convert...
Manifest Microsoft.PowerShell.Utility {Add-Member, Add-Type, Clear-Varia...

5. Use the Get-Command cmdlet to see the commands exported by the module. This technique
appears here (gcm is an alias for the Get-Command cmdlet):

PS C:\> gcm -Module conv*

CommandType Name ModuleName
----------- ---- ----------
Function ConvertTo-celsius ConversionModu...
Function ConvertTo-Fahrenheit ConversionModu...
Function ConvertTo-Feet ConversionModu...
Function ConvertTo-Kilometers ConversionModu...
Function ConvertTo-Liters ConversionModu...
Function ConvertTo-Meters ConversionModu...
Function ConvertTo-MetersPerSecond ConversionModu...
Function ConvertTo-Miles ConversionModu...
Function ConvertTo-Pounds ConversionModu...

You need to keep in mind a couple of things. The first is that a Windows PowerShell module is
basically a script—in our particular application. If the script execution policy is set to the default level
of Restricted, an error will be generated—even if the logged-on user is an administrator. Fortunately,
the error that is returned informs you of that fact. Even if the execution policy is set to Restricted on a
particular machine, you can always run a Windows PowerShell script (or module) if you start Windows
PowerShell with the bypass option. The command to do this is shown here:

powershell -executionpolicy bypass

One of the really cool uses of a shared module is to permit centralization of Windows PowerShell
profiles for networked users. To do this, the profile on the local computer would simply import the
shared module. In this way, you only need to modify one module in one location to permit updates
for all the users on the network.

Creating a module

The first thing you will probably want to do is to create a module. You can create a module in the
Windows PowerShell ISE. The easiest way to create a module is to use functions you have previously
written. One of the first things to do is to locate the functions you wish to store in the module. You
can copy them directly into the Windows PowerShell ISE. This technique appears in Figure 7-10.

 CHAPTER 7 Creating Advanced Functions and Modules 239

FIGURE 7-10 Using the Windows PowerShell ISE makes creating a new module as easy as copying and pasting
existing functions into a new file.

Once you have copied your functions into the new module, save it with the .psm1 extension. The
basicFunctions.psm1 module appears here:

BasicFunctions.psm1

Function Get-OptimalSize
{
 <#
 .Synopsis
 Converts Bytes into the appropriate unit of measure.
 .Description
 The Get-OptimalSize function converts bytes into the appropriate unit of
 measure. It returns a string representation of the number.
 .Example
 Get-OptimalSize 1025
 Converts 1025 bytes to 1.00 KiloBytes
 .Example
 Get-OptimalSize -sizeInBytes 10099999
 Converts 10099999 bytes to 9.63 MegaBytes
 .Parameter SizeInBytes
 The size in bytes to be converted
 .Inputs
 [int64]
 .OutPuts
 [string]
 .Notes
 NAME: Get-OptimalSize
 AUTHOR: Ed Wilson
 LASTEDIT: 6/30/2012

240 Windows PowerShell 3 Step by Step

 KEYWORDS: Scripting Techniques, Modules
 .Link
 Http://www.ScriptingGuys.com
 #Requires -Version 2.0
 #>
[CmdletBinding()]
param(
 [Parameter(Mandatory = $true,Position = 0,valueFromPipeline=$true)]
 [int64]
 $sizeInBytes
) #end param
 Switch ($sizeInBytes)
 {
 {$sizeInBytes -ge 1TB} {"{0:n2}" -f ($sizeInBytes/1TB) + " TeraBytes";break}
 {$sizeInBytes -ge 1GB} {"{0:n2}" -f ($sizeInBytes/1GB) + " GigaBytes";break}
 {$sizeInBytes -ge 1MB} {"{0:n2}" -f ($sizeInBytes/1MB) + " MegaBytes";break}
 {$sizeInBytes -ge 1KB} {"{0:n2}" -f ($sizeInBytes/1KB) + " KiloBytes";break}
 Default { "{0:n2}" -f $sizeInBytes + " Bytes" }
 } #end switch
 $sizeInBytes = $null
} #end Function Get-OptimalSize

Function Get-ComputerInfo
{
 <#
 .Synopsis
 Retrieves basic information about a computer.
 .Description
 The Get-ComputerInfo cmdlet retrieves basic information such as
 computer name, domain name, and currently logged on user from
 a local or remote computer.
 .Example
 Get-ComputerInfo
 Returns computer name, domain name and currently logged on user
 from local computer.
 .Example
 Get-ComputerInfo -computer berlin
 Returns computer name, domain name and currently logged on user
 from remote computer named berlin.
 .Parameter Computer
 Name of remote computer to retrieve information from
 .Inputs
 [string]
 .OutPuts
 [object]
 .Notes
 NAME: Get-ComputerInfo
 AUTHOR: Ed Wilson
 LASTEDIT: 6/30/2012
 KEYWORDS: Desktop mgmt, basic information
 .Link
 Http://www.ScriptingGuys.com
 #Requires -Version 2.0
 #>

 CHAPTER 7 Creating Advanced Functions and Modules 241

 Param([string]$computer=$env:COMPUTERNAME)
 $wmi = Get-WmiObject -Class win32_computersystem -ComputerName $computer
 $pcinfo = New-Object psobject -Property @{"host" = $wmi.DNSHostname
 "domain" = $wmi.Domain
 "user" = $wmi.Username}
 $pcInfo
} #end function Get-ComputerInfo

You can control what is exported from the module by creating a manifest (or you can control what
the module exports by using the Export-ModuleMember cmdlet). If you place together related func-
tions that you will more than likely want to use in a single session, you can avoid creating a manifest
(although you may still wish to create a manifest for documentation and for management purposes).
In the BasicFunctions.psm1 module, there are two functions: one that convert numbers from bytes to a
more easily understood numeric unit, and another function that returns basic computer information.

The Get-ComputerInfo function returns a custom object that contains information about the user,
computer name, and computer domain. Once you have created and saved the module, you will need
to install the module by copying it to your module store. You can do this manually by navigating
to the module directory, creating a folder for the module, and placing a copy of the module in the
folder. I prefer to use the Copy-Modules.ps1 script discussed earlier in this chapter.

Once the module has been copied to its own directory (installed), you can use the Import-Module
cmdlet to import it into the current Windows PowerShell session. If you are not sure of the name of
the module, you can use the Get-Module cmdlet with the -ListAvailable switch, as shown here:

PS C:\> Get-Module -ListAvailable

 Directory: C:\Users\administrator\Documents\WindowsPowerShell\Modules

ModuleType Name ExportedCommands
---------- ---- ----------------
Script BasicFunctions {Get-OptimalSize, Get-ComputerInfo}
Script ConversionModuleV6 {ConvertTo-MetersPerSecond, Conver...
Script HelloUser hello-user

 Directory: C:\Windows\system32\WindowsPowerShell\v1.0\Modules

ModuleType Name ExportedCommands
---------- ---- ----------------
Manifest AppLocker {Get-AppLockerFileInformation, Get...
Manifest Appx {Add-AppxPackage, Get-AppxPackage,...
Manifest BitLocker {Unlock-BitLocker, Suspend-BitLock...
Manifest BitsTransfer {Add-BitsFile, Complete-BitsTransf...
Manifest BranchCache {Add-BCDataCacheExtension, Clear-B...
Manifest CimCmdlets {Get-CimAssociatedInstance, Get-Ci...
Manifest DirectAccessClientComponents {Disable-DAManualEntryPointSelecti...
Script Dism {Add-AppxProvisionedPackage, Add-W...
Manifest DnsClient {Resolve-DnsName, Clear-DnsClientC...
Manifest International {Get-WinDefaultInputMethodOverride...
Manifest iSCSI {Get-IscsiTargetPortal, New-IscsiT...

242 Windows PowerShell 3 Step by Step

Script ISE {New-IseSnippet, Import-IseSnippet...
Manifest Kds {Add-KdsRootKey, Get-KdsRootKey, T...
Manifest Microsoft.PowerShell.Diagnostics {Get-WinEvent, Get-Counter, Import...
Manifest Microsoft.PowerShell.Host {Start-Transcript, Stop-Transcript}
Manifest Microsoft.PowerShell.Management {Add-Content, Clear-Content, Clear...
Manifest Microsoft.PowerShell.Security {Get-Acl, Set-Acl, Get-PfxCertific...
Manifest Microsoft.PowerShell.Utility {Format-List, Format-Custom, Forma...
Manifest Microsoft.WSMan.Management {Disable-WSManCredSSP, Enable-WSMa...
Manifest MMAgent {Disable-MMAgent, Enable-MMAgent, ...
Manifest MsDtc {New-DtcDiagnosticTransaction, Com...
Manifest NetAdapter {Disable-NetAdapter, Disable-NetAd...
Manifest NetConnection {Get-NetConnectionProfile, Set-Net...
Manifest NetLbfo {Add-NetLbfoTeamMember, Add-NetLbf...
Manifest NetQos {Get-NetQosPolicy, Set-NetQosPolic...
Manifest NetSecurity {Get-DAPolicyChange, New-NetIPsecA...
Manifest NetSwitchTeam {New-NetSwitchTeam, Remove-NetSwit...
Manifest NetTCPIP {Get-NetIPAddress, Get-NetIPInterf...
Manifest NetworkConnectivityStatus {Get-DAConnectionStatus, Get-NCSIP...
Manifest NetworkTransition {Add-NetIPHttpsCertBinding, Disabl...
Manifest PKI {Add-CertificateEnrollmentPolicySe...
Manifest PrintManagement {Add-Printer, Add-PrinterDriver, A...
Script PSDiagnostics {Disable-PSTrace, Disable-PSWSManC...
Binary PSScheduledJob {New-JobTrigger, Add-JobTrigger, R...
Manifest PSWorkflow {New-PSWorkflowExecutionOption, Ne...
Manifest PSWorkflowUtility Invoke-AsWorkflow
Manifest ScheduledTasks {Get-ScheduledTask, Set-ScheduledT...
Manifest SecureBoot {Confirm-SecureBootUEFI, Set-Secur...
Manifest SmbShare {Get-SmbShare, Remove-SmbShare, Se...
Manifest SmbWitness {Get-SmbWitnessClient, Move-SmbWit...
Manifest Storage {Add-InitiatorIdToMaskingSet, Add-...
Manifest TroubleshootingPack {Get-TroubleshootingPack, Invoke-T...
Manifest TrustedPlatformModule {Get-Tpm, Initialize-Tpm, Clear-Tp...
Manifest VpnClient {Add-VpnConnection, Set-VpnConnect...
Manifest Wdac {Get-OdbcDriver, Set-OdbcDriver, G...
Manifest WindowsDeveloperLicense {Get-WindowsDeveloperLicense, Show...
Script WindowsErrorReporting {Enable-WindowsErrorReporting, Dis...

Once you have imported the module, you can use the Get-Command cmdlet with the -module
parameter to see what commands are exported by the module.

PS C:\> Import-Module basicfunctions
PS C:\> Get-Command -Module basic*

CommandType Name ModuleName
----------- ---- ----------
Function Get-ComputerInfo basicfunctions
Function Get-OptimalSize basicfunctions

Once you have added the functions from the module, you can use them directly from the
Windows PowerShell prompt. Using the Get-ComputerInfo function is illustrated here:

 CHAPTER 7 Creating Advanced Functions and Modules 243

PS C:\> Get-ComputerInfo

host domain user
---- ------ ----
mred1 NWTraders.Com NWTRADERS\ed

PS C:\> (Get-ComputerInfo).user
NWTRADERS\ed
PS C:\> (Get-ComputerInfo).host
mred1
PS C:\> Get-ComputerInfo -computer win8-pc | Format-Table -AutoSize

host domain user
---- ------ ----
win8-PC NWTraders.Com NWTRADERS\Administrator

PS C:\>

Because the help tags were used when creating the functions, you can use the Get-Help cmdlet
to obtain information about using the function. In this manner, the function that was created in the
module behaves exactly like a regular Windows PowerShell cmdlet. This includes tab expansion.

PS C:\> Get-Help Get-ComputerInfo

NAME
 Get-ComputerInfo

SYNOPSIS
 Retrieves basic information about a computer.

SYNTAX
 Get-ComputerInfo [[-computer] <String>] [<CommonParameters>]

DESCRIPTION
 The Get-ComputerInfo cmdlet retrieves basic information such as
 computer name, domain name, and currently logged on user from
 a local or remote computer.

RELATED LINKS
 Http://www.ScriptingGuys.com
 #Requires -Version 2.0

REMARKS
 To see the examples, type: "Get-Help Get-ComputerInfo -examples".
 For more information, type: "Get-Help Get-ComputerInfo -detailed".
 For technical information, type: "Get-Help Get-ComputerInfo -full".

244 Windows PowerShell 3 Step by Step

PS C:\> Get-Help Get-ComputerInfo -Examples

NAME
 Get-ComputerInfo

SYNOPSIS
 Retrieves basic information about a computer.

 -------------------------- EXAMPLE 1 --------------------------

 C:\PS>Get-ComputerInfo

 Returns computer name, domain name and currently logged on user
 from local computer.

 -------------------------- EXAMPLE 2 --------------------------

 C:\PS>Get-ComputerInfo -computer berlin

 Returns computer name, domain name and currently logged on user
 from remote computer named berlin.

PS C:\>

The Get-OptimalSize function can even receive input from the pipeline, as shown here:

PS C:\> (Get-WmiObject win32_volume -Filter "driveletter = 'c:'").freespace
26513960960
PS C:\> (Get-WmiObject win32_volume -Filter "driveletter = 'c:'").freespace | Get-OptimalSize
24.69 GigaBytes
PS C:\>

Creating, installing, and importing a module

1. Place functions into a text file and save the file with a .psm1 extension.

2. Copy the newly created module containing the functions to the modules directory. Use the
Copy-Modules.ps1 script to do this.

3. Obtain a listing of available modules by using the Get-Modules cmdlet with the -ListAvailable
switched parameter.

4. Optionally, import modules into your current Windows PowerShell session by using the
Import-Module cmdlet.

 CHAPTER 7 Creating Advanced Functions and Modules 245

5. See what commands are available from the newly created module by using the Get-Command
cmdlet with the -module parameter.

6. Use Get-Help to obtain information about the imported functions.

7. Use the functions like you would use any other cmdlet.

Creating an advanced function: step-by-step exercises

In this exercise, you’ll explore creating an advanced function. You will use a template from the
Windows PowerShell ISE to create the basic framework. Next, you will add help and functionality to
the advanced function. Following this exercise, you will add the advanced function to a module and
install the module on your system.

Creating an advanced function

1. Start the Windows PowerShell ISE.

2. Use the cmdlet (advanced function) snippet from the Windows PowerShell ISE to create the
basic framework for an advanced function.

3. Move the comment-based help from outside the function body to inside the function body.
The moved comment-based help appears here:

function Verb-Noun
{
 <#
.Synopsis
 Short description
.DESCRIPTION
 Long description
.EXAMPLE
 Example of how to use this cmdlet
.EXAMPLE
 Another example of how to use this cmdlet
#>

4. Change the name of the function from Verb-Noun to Get-MyBios. This change appears here:

function Get-MyBios

5. Modify the comment-based help. Fill in the synopsis, description, and example parameters.
Add a comment for parameter. This revised comment-based help appears here:

246 Windows PowerShell 3 Step by Step

<#
.Synopsis
 Gets bios information from local or remote computer
.DESCRIPTION
 This function gets bios information from local or remote computer
.Parameter computername
 The name of the remote computer
.EXAMPLE
 Get-MyBios
 Gets bios information from local computer
.EXAMPLE
 Get-MyBios -cn remoteComputer
 Gets bios information from remote computer named remotecomputer
#>

6. Add the #requires statement and require Windows PowerShell version 3.0. This command
appears here:

#requires -version 3.0

7. Modify the parameter name to computername. Add an alias attribute with a value of cn.
Configure parameter properties for ValueFromPipeline and ParameterSetName. Constrain the
computername parameter to be a string. The code to do this appears here:

Param
 (
 # name of remote computer
 [Alias("cn")]
 [Parameter(ValueFromPipeline=$true,
 Position=0,
 ParametersetName="remote")]
 [string]
 $ComputerName)

8. Remove the begin and end statements from the snippet.

9. Add a Switch statement that evaluates $PSCmdlet.ParameterSetName. If ParameterSetName
equals remote, use the -classname and -computername parameters from the Get-CimInstance
cmdlet. Default to querying the Get-CimInstance cmdlet without using the -computername
parameter. The Switch statement appears here:

Switch ($PSCmdlet.ParameterSetName)
 {
 "remote" { Get-CimInstance -ClassName win32_bios -cn $ComputerName }
 DEFAULT { Get-CimInstance -ClassName Win32_BIOS }
 } #end switch

10. Save the advanced function as Get-MyBios.ps1 in an easily accessible folder, because you’ll
turn this into a module in the next exercise.

11. Inside the Windows PowerShell ISE, run the function.

 CHAPTER 7 Creating Advanced Functions and Modules 247

12. In the command pane, call the Get-MyBios function with no parameters. You should receive
back BIOS information from your local computer.

13. Now call the Get-MyBios function with the -cn alias and the name of a remote computer. You
should receive BIOS information from the remote computer.

14. Use help and view the full help from the advanced function. Sample output appears here:

PS C:\> help Get-MyBios -Full

NAME
 Get-MyBios

SYNOPSIS
 Gets bios information from local or remote computer

SYNTAX
 Get-MyBios [[-ComputerName] <String>] [<CommonParameters>]

DESCRIPTION
 This function gets bios information from local or remote computer

PARAMETERS
 -ComputerName <String>
 The name of the remote computer

 Required? false
 Position? 1
 Default value
 Accept pipeline input? true (ByValue)
 Accept wildcard characters? false

 <CommonParameters>
 This cmdlet supports the common parameters: Verbose, Debug,
 ErrorAction, ErrorVariable, WarningAction, WarningVariable,
 OutBuffer and OutVariable. For more information, see
 about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

OUTPUTS

 -------------------------- EXAMPLE 1 --------------------------

 C:\PS>Get-MyBios

 Gets bios information from local computer

248 Windows PowerShell 3 Step by Step

 -------------------------- EXAMPLE 2 --------------------------

 C:\PS>Get-MyBios -cn remoteComputer

 Gets bios information from remote computer named remotecomputer

 requires -version 3.0

RELATED LINKS

This concludes this step-by-step exercise.

In the following exercise, you’ll explore creating a module.

Creating and installing a module

1. Start the Windows PowerShell ISE.

2. Open the Get-MyBios.ps1 file you created in the previous exercise and copy the contents into
an empty Windows PowerShell ISE script pane.

3. Save the newly copied code as a module by specifying the .psm1 file extension. Call your file
mybios.psm1. Choose the Save As option from the File menu, and save the file in a convenient
location.

4. In your mybios.psm1 file, just after the end of the script block for the Get-MyBios function,
use the New-Alias cmdlet to create a new alias named gmb. Set the value of this alias to Get-
MyBios. This command appears here:

New-Alias -Name gmb -Value Get-MyBios

5. Add the Export-ModuleMember cmdlet to the script to export all aliases and functions from
the mybios module. This command appears here:

Export-ModuleMember -Function * -Alias *

6. Save your changes and close the module file.

7. Use the Copy-Modules script to create a modules folder named mybios in your current user’s
directory and copy the module to that location.

8. Open the Windows PowerShell console and use the Import-Module cmdlet to import the
mybios module. This command appears here:

Import-Module mybios

9. Use the Get-MyBios advanced function to return the BIOS information from the current
computer.

 CHAPTER 7 Creating Advanced Functions and Modules 249

10. Use the Help function to retrieve complete help information from the advanced function. This
command appears here:

help Get-MyBios -full

11. Pipeline the name of a remote computer to the Get-MyBios advanced function. This command
appears here:

"w8s504" | Get-MyBios

This concludes the exercise.

Chapter 7 quick reference

To Do this

Display help for a command that is missing a parameter Use the HelpMessage parameter property.

Make a parameter mandatory Use the Mandatory parameter property in the param sec-
tion of the function.

Implement -verbose in a function Use the [cmdletbinding] attribute and write the messages
via the Write-Verbose cmdlet.

Implement the -whatif switched parameter in a function Use the [cmdletbinding()] attribute with the
SupportsShouldProcess property.

Ensure that only defined parameters pass values to the
function

Use the [cmdletbinding()] attribute.

Group sets of parameters for ease of use and checking Create a parameter set via the ParameterSetName param-
eter property.

Assign a specific position to a parameter Use the Position parameter property and assign a specific
zero-based numeric position.

 251

C H A P T E R 8

Using the Windows PowerShell ISE

after completing this chapter, you will be able to:

■■ Understand the use of tab completion to complete cmdlet names, types, and paths.

■■ Use code snippets to simplify programming.

■■ Use the command pane to run or insert commands.

■■ Use the Windows PowerShell ISE to connect to a remote system and run commands.

■■ Run script commands without saving the script.

■■ Write, save, and load a Windows PowerShell script.

Running the Windows PowerShell ISE

On Microsoft Windows 8, the Windows PowerShell ISE appears to be a bit hidden. In fact, on
Windows Server 2012, it also is a bit hidden. However, on Windows Server 2012, a Windows
PowerShell shortcut automatically appears on the desktop taskbar. Likewise, pinning
Windows PowerShell to the Windows 8 desktop taskbar is a Windows PowerShell best practice. To
start the Windows PowerShell ISE, you have a couple of choices. On the Start page of Windows Server
2012, you can type PowerShell, and both Windows PowerShell and the Windows PowerShell ISE
appear as search results. However, on Windows 8 this is not the case. You must type PowerShell_ISE
to find the Windows PowerShell ISE. You can also launch the Windows PowerShell ISE by right-
clicking the Windows PowerShell icon and choosing either Windows PowerShell ISE or Run ISE As
Administrator from the Tasks menu that appears. This Tasks menu appears in Figure 8-1.

FIGURE 8-1 Right-clicking the Windows PowerShell icon on the desktop taskbar brings up the Tasks menu, from
which you can launch the Windows PowerShell ISE.

252 Windows PowerShell 3 Step by Step

Inside the Windows PowerShell console, you only need to type ise to launch the Windows
PowerShell ISE. This shortcut permits quick access to the Windows PowerShell ISE when you need to
type more than a few interactive commands.

navigating the Windows PowerShell ISE
Once the Windows PowerShell ISE launches, two panes appear. On the left side of the screen is an
interactive Windows PowerShell console. On the right side of the screen is the Commands add-on.
The Commands add-on is really a Windows PowerShell command explorer window. When using the
Windows PowerShell ISE in an interactive fashion, the Commands add-on provides you the ability
to build a command by using the mouse. Once you have built the command, click the Run button to
copy the command to the console window and execute the command. This view of the Windows
PowerShell ISE appears in Figure 8-2.

FIGURE 8-2 The Windows PowerShell ISE presents a Windows PowerShell console on the left and a Commands
add-on on the right side of the screen.

Typing into the Name input box causes the Commands add-on to search through all Windows
PowerShell modules to retrieve a matching command. This is a great way to discover and locate
commands. By default, the Commands add-on uses a wildcard search pattern. Therefore, typing wmi
returns five cmdlets that include that letter pattern. This appears in Figure 8-3.

 CHAPTER 8 Using the Windows PowerShell ISE 253

FIGURE 8-3 The Commands add-on uses a wildcard search pattern to find matching cmdlets.

Once you find the cmdlet that interests you, select it from the filtered list of cmdlet names. Upon
selection, the Commands pane changes to display the parameters for the selected cmdlet. Each
parameter set appears on a different tab. Screen resolution really affects the usability of this feature.
The greater the screen resolution, the more usable this feature becomes. With a small resolution,
you have to scroll back and forth to see the parameter sets, and you have to scroll up and down to
see the available parameters for a particular parameter set. In this view, it is easy to miss important
parameters. In Figure 8-4, the Get-WmiObject cmdlet queries the Win32_Bios Windows Management
Instrumentation (WMI) class. Upon entering the WMI class name in the Class box, click the Run button
to execute the command. The console pane displays first the command, and then the output from
running the command.

note Using the Insert button inserts the command to the console, but does not execute
the command. This is great for occasions when you want to look over the command prior
to actually executing it. It also provides you with the chance to edit the command prior to
execution.

254 Windows PowerShell 3 Step by Step

FIGURE 8-4 Select the command to run from the Commands add-on, fill out the required parameters, and click
Run to execute Windows PowerShell cmdlets inside the Windows PowerShell ISE.

Finding and running commands via the Commands add-on

1. In the Name box of the Commands add-on, enter the command you are interested in running.

2. Select the command from the filtered list.

3. Enter the parameters in the Parameters For... parameter box.

4. Click the Run button when finished.

Working with the script pane
Pressing the down arrow beside the word script in the upper-right corner of the console pane reveals
a new script pane into which you can start entering a script. You can also obtain a new script pane by
selecting New from the File menu, or clicking the small white piece-of-paper icon in the upper-left
corner of the Windows PowerShell ISE. You can also use the keyboard shortcut Ctrl+N.

Just because it is called the script pane does not mean that it requires you to enable script support
to use it. As long as the file is not saved, you can enter commands that are as complex as you wish
into the script pane, with script support restricted, and the code will run when you execute the script.
Once the file is saved, however, it becomes a script, and you will need to deal with the script execution
policy at that point.

 CHAPTER 8 Using the Windows PowerShell ISE 255

You can still use the Commands add-on with the script pane, but it requires an extra step. Use
the Commands add-on as described in the previous section, but instead of using the Run or the
Insert buttons, use the Copy button. Navigate to the appropriate section in the script pane, and then
use the Paste command (which you can access from the shortcut menu, from the Edit menu, by click-
ing the Paste icon on the toolbar, or by simply pressing Ctrl+V).

note If you click the Insert button while the script pane is maximized, the command is
inserted into the hidden console pane. Clicking Insert a second time inserts the command
a second time on the same command line in the hidden console pane. No notification that
this occurs is presented.

To run commands present in the script pane, click the Run Script button (the green triangle in the
middle of the toolbar), press F5, or choose Run from the File menu. The commands from the script
pane transfer to the console pane and then execute. Any output associated with the commands
appears under the transferred commands. Once saved as a script, the commands no longer trans-
fer to the command pane. Rather, the path to the script appears in the console pane along with any
associated output.

You can continue to use the Commands add-on to build your commands as you pipeline the out-
put from one cmdlet to another one. In Figure 8-5, the output from the Get-WmiObject cmdlet pipes
to the Format-Table cmdlet. The properties chosen in the Format-Table cmdlet as well as the imple-
mentation of the -Wrap switch are configured via the Commands add-on.

FIGURE 8-5 Use of the Commands add-on permits easy building of commands.

256 Windows PowerShell 3 Step by Step

tab expansion and IntelliSense
Novice scripters will find the Commands add-on very useful, but it does consume valuable screen real
estate, and it requires the use of the mouse to find and create commands. For advanced scripters, tab
expansion and IntelliSense are the keys to productivity. To turn off the Commands add-on, either click
the X in the upper-right corner of the Commands add-on or deselect Show Commands Add-On from
the View menu. Once you’ve deselected this, the Windows PowerShell ISE remembers your prefer-
ence, and will not display the Commands add-on again until you reselect this option.

IntelliSense provides pop-up help and options while you type, permitting rapid command devel-
opment without requiring complete syntax knowledge. As you are typing a cmdlet name, IntelliSense
supplies possible matches. Once you select the cmdlet, IntelliSense displays the complete syntax of
the cmdlet. This appears in Figure 8-6.

FIGURE 8-6 Once you select a particular cmdlet from the list, IntelliSense displays the complete syntax.

After selecting a cmdlet, if you type parameter names, IntelliSense displays the applicable
parameters in a list. Once IntelliSense appears, use the up and down arrow keys to navigate within
the list. Press Enter to accept the highlighted option. You can then fill in required values for param-
eters and go to the next parameter. Once again, as you approach a parameter position, IntelliSense
displays the appropriate options in a list. This process continues until you complete the command.
IntelliSense even provides enum expansion, and therefore displays allowed enum values for specific
parameters. Figure 8-7 illustrates selecting the Property parameter from the IntelliSense list of
optional parameters.

 CHAPTER 8 Using the Windows PowerShell ISE 257

FIGURE 8-7 IntelliSense displays parameters in a drop-down list. When you select a particular parameter, the data
type of the property appears.

Working with Windows PowerShell ISE snippets

Snippets are pieces of code, or code fragments. They are designed to simplify routine coding tasks by
permitting the insertion of boilerplate code directly into the script. Even experienced scripters love to
use the Windows PowerShell ISE snippets because they are great time-savers. It takes just a little bit of
familiarity with the snippets themselves, along with a bit of experience with the Windows PowerShell
syntax. Once you have the requirements under your belt, you will be able to use the Windows
PowerShell ISE snippets and create code faster than you previously believed was possible. The great
thing is you can create your own snippets, and even share them with others via the TechNet wiki.

Using Windows PowerShell ISE snippets to create code
To start the Windows PowerShell ISE snippets, use the Ctrl+J keystroke combination (you can also use
the mouse to choose Start Snippets from the Edit menu). Once the snippets appear, type the first letter
of the snippet name to quickly jump to the appropriate portion of the snippets (you can also use the
mouse to navigate up and down the snippet list). Once you have identified the snippet you wish to use,
press Enter to place the snippet at the current insertion point in your Windows PowerShell script pane.

The following two exercises go into greater depth about working with snippets.

258 Windows PowerShell 3 Step by Step

Creating a new function via Windows PowerShell ISE snippets

1. Press Ctrl+J to start the Windows PowerShell ISE snippets.

2. Type f to move to the “F” section of the Windows PowerShell ISE snippets.

3. Use the down arrow until you arrive at the simple function snippet.

4. Press Enter to enter the simple function snippet into your code.

Using Windows PowerShell ISE snippets to create a simple function

1. Start the Windows PowerShell ISE.

2. Add a new script pane. To do this, press Ctrl+N.

3. Start the Windows PowerShell ISE snippets by pressing Ctrl+J.

4. Select the simple function snippet and add it to your script pane. Use the down arrow to select
the snippet, and press Enter to insert it into your script.

5. Move your insertion point to inside the script block for the function.

6. Start the Windows PowerShell ISE snippets again by pressing Ctrl+J.

7. Select the switch statement by typing s to move to the “Switch” section of the snippet list.
Press Enter to insert the snippet into your script block.

8. Double-click $param1 and press Ctrl+C to copy the parameter name. Double-click value1 and
press Ctrl+V to paste it.

9. Double-click $param2 to select it and press Ctrl+C to copy the parameter name. Double-click
value3 to select it and press Ctrl+V to paste param2.

10. Check your work; at this point, your code should appear as shown here:

function MyFunction ($param1, $param2)
{
 switch ($x)
 {
 'param1' {}
 {$_ -in 'A','B','C'} {}
 'param2' {}
 Default {}
 }
}

11. Delete the line that appears here, because it will not be used:

{$_ -in 'A','B','C'} {}

 CHAPTER 8 Using the Windows PowerShell ISE 259

12. Delete the line for the default parameter:

Default {}

13. Replace the $x condition with the code to display the keys of the bound parameters collection.
This line of code appears here:

$MyInvocation.BoundParameters.Keys

14. In the script block for param1, add a line of code that describes the parameter and displays
the value. The code appears here:

"param1" {"param1 is $param1" }

15. In the script block for param2, add a line of code that describes the parameter and displays
the value. The code appears here:

"param2" {"param2 is $param2" }

The completed function appears here:

function MyFunction ($param1, $param2)
{
 switch ($MyInvocation.BoundParameters.Keys)
 {
 "param1" {"param1 is $param1" }
 "param2" {"param2 is $param2" }
 }
}

This concludes the procedure.

Creating new Windows PowerShell ISE snippets
After you spend a bit of time using Windows PowerShell ISE snippets, you will wonder how you ever
existed previously. In that same instant, you will also begin to think in terms of new snippets. Luckily, it
is very easy to create a new Windows PowerShell ISE snippet. In fact, there is even a cmdlet to do this:
the New-IseSnippet cmdlet.

note To create or use a user-defined Windows PowerShell ISE snippet, you must change
the script execution policy to permit the execution of scripts. This is because user-defined
snippets load from XML files. Reading and loading files (of any type) requires the script
execution policy to permit running scripts. To verify your script execution policy, use the
Get-ExecutionPolicy cmdlet. To set the script execution policy, use the Set-ExecutionPolicy
cmdlet.

260 Windows PowerShell 3 Step by Step

You can use the New-IseSnippet cmdlet to create a new Windows PowerShell ISE snippet. Once
you create the snippet, it becomes immediately available in the Windows PowerShell ISE once you
start the Windows PowerShell ISE snippets. The command syntax is simple, but the command takes
a decent amount of space to complete. Only three parameters are required: Description, Text, and
Title. The name of the snippet is specified via the Title parameter. The snippet itself is typed into the
Text parameter. A great way to simplify snippet creation is to place the snippet into a here-string
object, and then pass that value to the New-IseSnippet cmdlet. When you want your code to appear
on multiple lines, use the `r special character. Of course, doing this means your Text parameter must
appear inside double quotation marks, not single quotes. The following code creates a new Windows
PowerShell ISE snippet that has a simplified switch syntax. It is a single logical line of code.

New-IseSnippet -Title SimpleSwitch -Description "A simple switch statement"
-Author "ed wilson" -Text "Switch () `r{'param1' { }`r}" -CaretOffset 9

Once you execute the New-IseSnippet command, it creates a new snippets.xml file in the Snippets
directory within your WindowsPowerShell folder in your Documents folder. The simple switch snippet
XML file is shown in Figure 8-8.

FIGURE 8-8 Windows PowerShell snippets are stored in a snippets.xml file in your Windows PowerShell folder.

User-defined snippets are permanent—that is, they survive closing and reopening the Windows
PowerShell ISE. They also survive reboots because they reside as XML files in your WindowsPowerShell
folder.

 CHAPTER 8 Using the Windows PowerShell ISE 261

Removing user-defined Windows PowerShell ISE snippets
While there is a New-IseSnippet cmdlet and a Get-IseSnippet cmdlet, there is no Remove-IseSnippet
cmdlet. There is no need for one, really, because you can use Remove-Item instead. To delete all of
your custom Windows PowerShell ISE snippets, use the Get-IseSnippet cmdlet to retrieve the snippets
and the Remove-Item cmdlet to delete them. The command appears here:

Get-IseSnippet | Remove-Item

If you do not want to delete all of your custom Windows PowerShell ISE snippets, use the Where-
Object cmdlet to filter only the ones you do wish to delete. The following uses the Get-IseSnippet
cmdlet to list all the user-defined Windows PowerShell ISE snippets on the system:

PS C:\Windows\system32> Get-IseSnippet

 Directory: C:\Users\administrator.IAMMRED\Documents\WindowsPowerShell\Snippets

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/1/2012 1:03 AM 653 bogus.snippets.ps1xml
-a--- 7/1/2012 1:02 AM 653 mysnip.snippets.ps1xml
-a--- 7/1/2012 1:02 AM 671 simpleswitch.snippets.ps1xml

Next, use the Where-Object cmdlet (? is an alias for the Where-Object) to return all of the user-
defined Windows PowerShell ISE snippets except the ones that contain the word switch within the
name. The snippets that make it through the filter are pipelined to the Remove-Item cmdlet. In the
code that follows, the -whatif switch shows which snippets would be removed by the command.

PS C:\Windows\system32> Get-IseSnippet | ? name -NotMatch 'switch' | Remove-Item -WhatIf
What if: Performing operation "Remove file" on Target "C:\Users\administrator.IAMMRED\Documents\
WindowsPowerShell\Snippets\bogus.snippets.ps1xml".
What if: Performing operation "Remove file" on Target "C:\Users\administrator.IAMMRED\Documents\
WindowsPowerShell\Snippets\mysnip.snippets.ps1xml".

Once you have confirmed that only the snippets you do not want keep will be deleted, remove the
-whatif switch from the Remove-Item cmdlet and run the command a second time. To confirm which
snippets remain, use the Get-IseSnippet cmdlet to see which Windows PowerShell ISE snippets are left
on the system.

262 Windows PowerShell 3 Step by Step

PS C:\Windows\system32> Get-IseSnippet | ? name -NotMatch 'switch' | Remove-Item

PS C:\Windows\system32> Get-IseSnippet

 Directory: C:\Users\administrator.IAMMRED\Documents\WindowsPowerShell\Snippets

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/1/2012 1:02 AM 671 simpleswitch.snippets.ps1xml

Using the Commands add-on: step-by-step exercises

In this exercise, you will explore using the Commands add-on by looking for cmdlets related to WMI.
You will then select the Invoke-WmiMethod cmdlet from the list and create new processes. Following
this exercise, you will use Windows PowerShell ISE snippets to create a WMI script.

Using the Commands add-on to use WMI methods

1. Start the Windows PowerShell ISE.

2. Use the Commands add-on to search for cmdlets related to WMI.

3. Select the Invoke-WmiMethod cmdlet from the list.

4. In the class block, add the WMI class name Win32_Process.

5. In the name block, enter the method name create.

6. In the argument list, enter notepad.

7. Click the Run button. In the output console, you should see the following command, and on
the next line the output from the command. Sample output appears here:

PS C:\Windows\system32> Invoke-WmiMethod -Class win32_process -Name create -ArgumentList
notepad (note: your processID will more than likely be different than mine).

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ProcessId : 2960
ReturnValue : 0
PSComputerName :

 CHAPTER 8 Using the Windows PowerShell ISE 263

8. Modify the ArgumentList block by adding calc to the argument list. Use a semicolon to sepa-
rate the arguments, as shown here:

Notepad; calc

9. Click the Run button a second time to execute the revised command.

10. In the Commands add-on, look for cmdlets with the word process in the name. Select the
Stop-Process cmdlet from the list of cmdlets.

11. Choose the name parameter set in the parameters for Stop-Process block.

12. In the Name box, type notepad and calc. The command appears here:

notepad, calc

13. Click the Run button to execute the command.

14. Under the name block showing the process-related cmdlets, choose the Get-Process cmdlet.

15. In the name parameter set, enter calc, notepad.

16. Click the Run button to execute the command.

Two errors should appear, stating that the calc and notepad processes aren’t running. The
errors appear here:

PS C:\Windows\system32> Get-Process -Name calc, notepad
Get-Process : Cannot find a process with the name "calc". Verify the process
name and call the cmdlet again.
At line:1 char:1
+ Get-Process -Name calc, notepad
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : ObjectNotFound: (calc:String) [Get-Process],
 ProcessCommandException
 + FullyQualifiedErrorId : NoProcessFoundForGivenName,Microsoft.PowerShell.
 Commands.GetProcessCommand

Get-Process : Cannot find a process with the name "notepad". Verify the
process name and call the cmdlet again.
At line:1 char:1
+ Get-Process -Name calc, notepad
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : ObjectNotFound: (notepad:String) [Get-Process],
 ProcessCommandException
 + FullyQualifiedErrorId : NoProcessFoundForGivenName,Microsoft.PowerShell.
 Commands.GetProcessCommand

This concludes the exercise. Leave the Windows PowerShell ISE console open for the next
exercise.

In the following exercise, you will explore using Windows PowerShell ISE snippets to simplify script
creation.

264 Windows PowerShell 3 Step by Step

Using Windows PowerShell ISE snippets

1. Start the Windows PowerShell ISE.

2. Close the Commands add-on.

3. Display the script pane.

4. Use the Get-WmiObject cmdlet to retrieve a listing of process objects from the local host.
Store the returned process objects in a variable named $process. As you type the command,
ensure you use IntelliSense to reduce typing. You should be able to type Get-Wm and press
Enter to select the Get-WmiObject cmdlet from the IntelliSense list. You should also be able
to type -c and then press Enter to choose the -class parameter from the IntelliSense list. The
complete command appears here:

$process = Get-WmiObject -Class win32_process

5. Use the foreach code snippet to walk through the collection of process objects stored in
the $process variable. To do this, type Ctrl+J to start the code snippets. Once the snippet
list appears, type f to quickly move to the “F” section of the snippets. To choose the foreach
snippet, you can continue to type fore and then press Enter to add the foreach snippet to
your code. It is easier, however, to use the down arrow once you are in the “F” section of the
snippets. The complete foreach snippet appears here:

foreach ($item in $collection)
{

}

6. Change the $collection variable in the foreach snippet to $process because that variable holds
your collection of process objects. The easiest way to do this is to use the mouse and double-
click the $process variable on line 1 of your code. Doing this only selects the noun portion of
variable name, not the dollar sign. So, the process is to double-click $process, press Ctrl+C,
double-click $collection, and press Ctrl+V. The foreach snippet now appears as shown here:

foreach ($item in $process)
{

}

7. Inside the script block portion of the foreach snippet, use the $item variable to display the
name of each process object. The code to do this appears here:

$item.name

 CHAPTER 8 Using the Windows PowerShell ISE 265

8. Run the code by either clicking the green triangle on the toolbar or pressing F5. The output
should list the name of each process on your system. The completed code appears here:

$process = Get-WmiObject -Class win32_process
foreach ($item in $process)
{
 $item.name
}

This concludes the exercise.

Chapter 8 quick reference

To Do this

Create a Windows PowerShell command without typing Use the Commands add-on.

Find a specific Windows PowerShell command Use the Commands add-on and type a search term in the
Name box.

Quickly type a command in either the script pane or the
console pane

Use IntelliSense and press Enter to use the selected
command or parameter.

Run a script from the Windows PowerShell ISE Press F5 to run the entire script.

Run only a specific selection of the script Select the applicable portion of the script and press F8 to
run the selection.

Create a user-defined Windows PowerShell ISE snippet Use the New-IseSnippet cmdlet and enter the Title,
Description, and Text parameters.

Remove all user-defined Windows PowerShell ISE
snippets

Use the Get-ISESnippet cmdlet and pipeline the results to
the Remove-Item cmdlet.

 267

C H A P T E R 9

Working with
Windows PowerShell Profiles

after completing this chapter, you will be able to:

■■ Understand the different Windows PowerShell profiles.

■■ Use New-Item to create a new Windows PowerShell profile.

■■ Use the $profile automatic variable.

■■ Describe the best profile to provide specific functionality.

Six Different PowerShell profiles

A Microsoft Windows PowerShell profile creates a standardized environment by creating custom
functions, aliases, PS drives, and variables upon startup. Windows PowerShell profiles are a bit
confusing—there are, in fact, six different ones. Both the Windows PowerShell console and the
Windows PowerShell ISE have their own profiles. In addition, there are profiles for the current user,
as well as profiles for all users. Table 9-1 lists the six different profiles and their associated locations.
In the table, the automatic variable $home points to the users\username directory on the system.
The $pshome automatic variable points to the Windows PowerShell installation folder. This location
typically is C:\Windows\System32\WindowsPowerShell\v1.0 (for compatibility reasons, the Windows
PowerShell installation folder is in the v1.0 folder—even on Windows PowerShell 3.0).

TABLE 9-1 The six different Windows PowerShell profiles and their paths

Description Path

Current User, Current Host (console) $Home\[My]Documents\WindowsPowerShell\Profile.ps1

Current User, All Hosts $Home\[My]Documents\Profile.ps1

All Users, Current Host (console) $PsHome\Microsoft.PowerShell_profile.ps1

All Users, All Hosts $PsHome\Profile.ps1

Current User, Current Host (ISE) $Home\[My]Documents\WindowsPowerShell\Microsoft.
PowerShellISE_profile.ps1

All Users, Current Host (ISE) $PsHome\Microsoft.PowerShellISE_profile.ps1

268 Windows PowerShell 3 Step by Step

Understanding the six different Windows PowerShell profiles
The first thing to do in understanding the six different Windows PowerShell profiles is to keep in mind
that the value of $profile changes depending on which Windows PowerShell host you use. As long
as you realize it is a moving target, you will be fine. In most cases, when talking about the Windows
PowerShell profile, people are referring to the Current User, Current Host profile. In fact, if there is
no qualifier for the Windows PowerShell profile with its associated scope or description, it is safe to
assume the reference is to the Current User, Current Host profile.

note The Windows PowerShell profile (any one of the six) is simply a Windows PowerShell
script. It has a special name, and it resides in a special place, but it is simply a script. In this
regard, it is sort of like the old-fashioned autoexec.bat batch file. Because the Windows
PowerShell profile is a Windows PowerShell script, you must enable the script execution
policy prior to configuring and using a Windows PowerShell profile.

Examining the $profile variable
In Windows PowerShell, the $profile automatic variable contains the path to the Current User, Current
Host profile. This makes sense, and is a great way to easily access the path to the profile. The following
illustrates this technique from within the Windows PowerShell console:

PS C:\> $profile
C:\Users\ed.IAMMRED\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1

Inside the Windows PowerShell ISE, when I query the $profile automatic variable, I receive the
output appearing here:

PS C:\Users\ed.IAMMRED> $profile
C:\Users\ed.IAMMRED\Documents\WindowsPowerShell\Microsoft.PowerShellISE_profile.ps1

To save you a bit of analyzing, the difference between the Windows PowerShell console Current
User, Current Host profile path and the Windows PowerShell ISE Current User, Current Host profile
path is three letters: ISE.

note These three letters, ISE, often cause you problems. When modifying your profile, you
may be setting something in your Windows PowerShell console profile, and it is not avail-
able inside the Windows PowerShell ISE.

Unraveling the different profiles
You can pipeline the $profile variable to the Get-Member cmdlet and see additional properties that
exist on the $profile variable. This technique appears here:

 CHAPTER 9 Working with Windows PowerShell Profiles 269

PS C:\>
Name

AllUsersAllHosts
AllUsersCurrentHost
CurrentUserAllHosts
CurrentUserCurrentHost

If accessing the $profile variable from within the Windows PowerShell console, the AllUsersCurrentHost
and CurrentUserCurrentHost note properties refer to the Windows PowerShell console. If you
access the $profile variable from within the Windows PowerShell ISE, the AllUsersCurrentHost and
CurrentUserCurrentHost note properties refer to the Windows PowerShell ISE profiles.

Using the $profile variable to refer to more than the current host
When you reference the $profile variable, by default it refers to the Current User, Current Host profile.
If you pipeline the variable to the Format-List cmdlet, it still refers to the Current User, Current Host
profile. This technique appears here:

PS C:\> $PROFILE | Format-List *
C:\Users\ed.IAMMRED\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1

This can lead to a bit of confusion, especially because the Get-Member cmdlet reveals the existence
of multiple profiles and multiple note properties. The way to see all of the profiles for the current
host is to use the -force parameter—it reveals the hidden properties. The command illustrating this
technique appears here:

$PROFILE | Format-List * -Force

The command to display the various profiles and the associated output from the command appear
in Figure 9-1.

FIGURE 9-1 The $profile variable contains the path to several different Windows PowerShell profiles.

It is possible to directly access each of these specific properties—just like you would access any
other property—via dotted notation. This technique appears here:

$PROFILE.CurrentUserAllHosts

270 Windows PowerShell 3 Step by Step

The path to each of the four different profiles for the Windows PowerShell console appears in
Figure 9-2.

FIGURE 9-2 Use dotted notation to access the various properties of the $profile variable.

Determining whether a specific profile exists
To determine if a specific profile exists, use the Test-Path cmdlet and the appropriate note property of
the $profile variable. For example, to determine if a Current User, Current Host profile exists, you can
use the $profile variable with no modifier, or you can use the CurrentUserCurrentHost note property.
The following example illustrates both of these:

PS C:\> test-path $PROFILE
True
PS C:\> test-path $PROFILE.CurrentUserCurrentHost
True
PS C:\>

In the same manner, the other three profiles that apply to the current host (in this example, I am
using the Windows PowerShell console) are determined not to exist. This appears in the code that
follows:

PS C:\> test-path $PROFILE.AllUsersAllHosts
False
PS C:\> test-path $PROFILE.AllUsersCurrentHost
False
PS C:\> test-path $PROFILE.CurrentUserAllHosts
False
PS C:\>

Creating a new profile
To create a new profile for the Current User, All Hosts profile, use the CurrentUserAllHosts property of
the $profile automatic variable and the New-Item cmdlet. This technique appears here:

 CHAPTER 9 Working with Windows PowerShell Profiles 271

PS C:\> new-item $PROFILE.CurrentUserAllHosts -ItemType file -Force

 Directory: C:\Users\ed.IAMMRED\Documents\WindowsPowerShell

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 5/17/2012 2:59 PM 0 profile.ps1

To open the profile for editing, use the ise alias, as appears here:

ise $PROFILE.CurrentUserAllHosts

Once you are finished editing the profile, save it, close the Windows PowerShell console, reopen
the Windows PowerShell console, and test that your changes work properly.

Design considerations for profiles

The first thing to do when deciding how to implement your Windows PowerShell profile is to analyze
the way in which you use Windows PowerShell. For example, if you confine yourself to running a few
Windows PowerShell scripts from within the Windows PowerShell ISE, there is little reason to worry
about a Windows PowerShell console profile. If you use a different Windows PowerShell scripting
environment than the Windows PowerShell ISE, but you also work interactively from the Windows
PowerShell console, you may need to add stuff to the other scripting environment’s profile (assuming
it has one), as well as the Windows PowerShell console profile, to enable you to maintain a consistent
environment. If you work extensively in both the scripting environment and the Windows PowerShell
console, and you find yourself desiring certain modifications to both environments, then that leads to
a different scenario.

There are three different names used for the Windows PowerShell profiles. The names appear in
Table 9-2 along with the profile usage.

TABLE 9-2 Windows PowerShell profile names and name usage

Profile Name Name Usage

Microsoft.PowerShell_profile.ps1 Refers to profiles (either current user or all users) for the Windows
PowerShell console

profile.ps1 Refers to profiles (either current user or all users) for all Windows
PowerShell hosts

Microsoft.PowerShellISE_profile.ps1 Refers to profiles (either current user or all users) for the Windows
PowerShell ISE

The distinction between the Windows PowerShell ISE profiles and the Windows PowerShell console
profiles is the ISE in the name of the Windows PowerShell ISE profiles. The location of the Windows
PowerShell profile determines the scoping (whether the profile applies to either the current user
or to all users. All user profiles (any one of the three profiles detailed in Table 9-2) appear in the

272 Windows PowerShell 3 Step by Step

Windows\system32\WindowsPowerShell\v1.0 directory, a location referenced by the $pshome vari-
able. The following illustrates using the $pshome variable to obtain this folder:

PS C:\Users\ed.IAMMRED> $PSHOME
C:\Windows\System32\WindowsPowerShell\v1.0

The folder containing the three different current user Windows PowerShell profiles is the
WindowsPowerShell folder in the user’s mydocuments special folder. The location of the
user’s mydocuments special folder is obtained by using the GetFolderPath method from the
System.Environment .NET Framework class. This technique appears here:

PS C:\> [environment]::getfolderpath("mydocuments")
C:\Users\ed.IAMMRED\Documents

Table 9-3 details a variety of use-case scenarios, and points to the profile to use for specific
purposes.

TABLE 9-3 Windows PowerShell usage patterns, profile names, and locations

Windows PowerShell use Location and profile name

Near-exclusive Windows PowerShell console work as a
non-admin user

MyDocuments
Microsoft.PowerShell_profile.ps1

Near-exclusive Windows PowerShell console work as an
administrative user

$PSHome
Microsoft.PowerShell_profile.ps1

Near-exclusive Windows PowerShell ISE work as a non-
admin user

MyDocuments
Microsoft.PowerShellISE_profile.ps1

Near-exclusive Windows PowerShell ISE work as an
administrative user

$PSHome
Microsoft.PowerShellISE_profile.ps1

Balanced Windows PowerShell work as a non-admin user MyDocuments
profile.ps1

Balanced Windows PowerShell work as an administrative
user

$psHome
profile.ps1

note Depending on how you perform administrative work, you may decide that you wish
to use a Current User type of profile. This would be because you log on with a specific
account to perform administrative work. If your work requires that you log on with a num-
ber of different user accounts, it makes sense to use an All Users type of profile.

 CHAPTER 9 Working with Windows PowerShell Profiles 273

Using one or more profiles
Many Windows PowerShell users end up using more than one Windows PowerShell profile—it may
not be intentional, but that is how it winds up. What happens is that they begin by creating a Current
User, Current Host profile via the Windows PowerShell $profile variable. After adding a number of
items in the Windows PowerShell profile, the user decides that they would like the same features in
the Windows PowerShell console or the Windows PowerShell ISE—whichever one they did not use
in the beginning. Then, after creating an additional profile, they soon realize they are duplicating
their work. In addition, various packages, such as the Script Explorer, add commands to the Windows
PowerShell profile.

Depending on how much you add to your Windows PowerShell profile, you may be perfectly fine
with having multiple Windows PowerShell profiles. If your profile does not have very many items in
it, using one Windows PowerShell profile for the Windows PowerShell console and another pro-
file for the Windows PowerShell ISE may be a perfectly acceptable solution. Simplicity makes this
approach work. For example, certain commands, such as the Start-Transcript cmdlet, do not work in
the Windows PowerShell ISE. In addition, certain commands, such as those requiring Single-Threaded
Apartment model (STA), do not work by default in the Windows PowerShell console. By creating
multiple $profile profiles (Current User, Current Host) and only editing them from the appropriate
environment, you can greatly reduce the complexity of the profile-creation process.

However, it will not be long before duplication leads to inconsistency, which leads to frustration,
and finally a desire for correction and solution. A better approach is to plan for multiple environments
from the beginning. The following list describes the advantages and disadvantages to using more
than one profile, along with the scenarios in which you’d most likely do this:

■■ Advantages of using more than one profile:

• It’s simple and hassle free

• $profile always refers to the correct profile.

• It removes concern about incompatible commands.

■■ Disadvantages:

• It often means you’re duplicating effort.

• It can cause inconsistencies between profiles (for variables, functions, PS drives, and aliases)

• Maintenance may increase due to the number of potential profiles.

■■ Uses:

• Use with a simple profile.

• Use when you do not have administrator or non-elevated user requirements.

274 Windows PowerShell 3 Step by Step

Using modules
If you need to customize both the Windows PowerShell console and the Windows PowerShell
ISE (or other Windows PowerShell host), and you need to log on with multiple credentials, your
need for Windows PowerShell profiles increases exponentially. Attempting to keep a number
of different Windows PowerShell profiles in sync quickly becomes a maintenance nightmare.
This is especially true if you are prone to making quick additions to your Windows PowerShell
profile as you see a particular need.

In addition to having a large number of different profiles, it is also possible for a Windows
PowerShell profile to grow to inordinate proportions—especially when you begin to add very
many nicely crafted Windows PowerShell functions and helper functions. One solution to the
problem (in fact, the best solution) to profile bloat is to use modules; my Windows PowerShell
ISE profile uses four different modules—the profile itself consists of the lines loading the
modules (for more information about modules, see Chapter 7, “Creating Advanced Functions
and Modules”).

The following list discusses the advantages, disadvantages, and uses of the one-profile approach:

■■ Advantages of using one profile:

• It requires less work.

• It’s easy to keep different profiles in sync.

• It allows you to achieve consistency between different Windows PowerShell environments.

• It’s portable; the profile can more easily travel to different machines.

■■ Disadvantages:

• It’s complex to set up.

• It requires more planning.

• $profile does not point to the correct location.

■■ Uses:

• Use with more complex profiles.

• Use when your work requires multiple user accounts or multiple Windows PowerShell
hosts.

• Use if your work takes you to different computers or virtual machines.

 CHAPTER 9 Working with Windows PowerShell Profiles 275

note The approach of containing functionality for a profile inside modules and then load-
ing the modules from the profile file appears in the “Create a Really Cool PowerShell ISE
Profile” article on the Hey Scripting Guy! blog, at http://www.scriptingguys.com/blog.

Using the All Users, All Hosts profile
One way to use a single Windows PowerShell profile is to put everything into the All Users, All Hosts
profile. I know some companies that create a standard Windows PowerShell profile for everyone in
the company, and they use the All Users, All Hosts profile as a means of standardizing their Windows
PowerShell environment. The changes go in during the image-build process, and therefore the pro-
files are available to machines built from that image.

■■ Advantages of using the All Users, All Hosts profile:

• It’s simple; you can use one location for everything, especially when added during the build
process.

• One file affects all Windows PowerShell users and hosts.

• It avoids conflict between admin users and non-admin users, since both types of users use
the same profile.

• $profile.AllUsersAllHosts always points to the correct file.

• It’s great for central management—one file is used for all users of a machine.

■■ Disadvantages:

• You must have admin rights on the current machine to make changes to the file.

• It provides no distinction between different hosts—some commands will not work in ISE
and others will not work in the Windows PowerShell console.

• It makes no distinction between admin users and non-admin users. Non-admin users will
not be able to run certain commands.

• The files are distributed among potentially thousands of different machines. To make one
change to a profile, you must copy a file to all machines using that profile (although you
can use group policy to assist in this endeavor). This can be a major problem for computers
such as laptops that connect only occasionally to the network. It is also a problem when
attempting to use a shutdown script on a Windows 8 device (because Windows 8 devices
do not perform a true shutdown).

276 Windows PowerShell 3 Step by Step

■■ Uses:

• Use for your personal profile when duties require both elevation and non-elevation of
permissions across multiple Windows PowerShell hosts.

• Use as part of a standard image build to deploy static functionality to numerous machines
and users.

Using your own file
Because the Windows PowerShell profile is a Windows PowerShell script (with the added benefit of
having a special name and residing in a special location), it means that anything that can be accom-
plished in a Windows PowerShell script can be accomplished in a Windows PowerShell profile. A much
better approach to dealing with Windows PowerShell profiles is to keep the profile itself as simple as
possible, but bring in the functionality you require via other means. One way to do this is to add the
profile information you require to a file. Store that file in a central location, and then dot-source it to
the profile.

Using a Central Profile Script

1. Create a Windows PowerShell script containing the profile information you require. Include
aliases, variables, functions, Windows PowerShell drives, and commands to execute on
Windows PowerShell startup.

2. In the Windows PowerShell profile script to host the central profile, dot-source the central
profile file. The following command, placed in the $profile script, brings in functionality stored
in a Windows PowerShell script named myprofile.ps1 that resides in a shared folder named
c:\fso.

. c:\fso\myprofile.ps1

One of the advantages of using a central Windows PowerShell script to store your profile informa-
tion is that only one location requires updating when you add additional functionality to your profile.
In addition, if folder permissions permit, the central Windows PowerShell script becomes available to
any user for any host on the local machine. If you store this central Windows PowerShell script on a
network file share, you only need to update one file for the entire network.

■■ Advantages of using a central script for a PowerShell profile:

• It provides one place to modify the profile, or all users and all hosts having access to
the file.

• It’s easy to keep functionality synchronized among all Windows PowerShell hosts and
users.

• It makes it possible to have one profile for the entire network.

 CHAPTER 9 Working with Windows PowerShell Profiles 277

■■ Disadvantages:

• It’s more complicated due to multiple files.

• It provides no access to the central file, which means you won’t have a profile for machines
without network access.

• It is possible that non-role-specific commands will become available to users.

• Filtering out specific commands for specific hosts becomes more complex.

• One central script becomes very complicated to maintain when it grows to hundreds of
lines.

■■ Uses:

• Use to provide basic functionality among multiple hosts and multiple users.

• Use for a single user who wants to duplicate capabilities between Windows PowerShell
hosts.

• Use to provide a single profile for networked computers via a file share.

Grouping similar functionality into a module

One of the main ways to clean up your Windows PowerShell profile is to group related items into
modules. For example, suppose your Windows PowerShell profile contains a few utility functions such
as the following:

■■ A function to determine admin rights

■■ A function to determine if the computer is a laptop or a desktop

■■ A function to determine if the host is the Windows PowerShell ISE or the Windows PowerShell
console

■■ A function to determine if the computer is 32 bit or 64 bit

■■ A function to write to a temporary file

All of the preceding functions relate to the central theme of being utility types of functions. They
are not specific to one technology, and are in fact helper functions, useful in a wide variety of scripts
and applications. It is also true that as useful as these utilities are, you might not need to use them
everywhere, at all times. This is the advantage of moving the functionality into a module—you can
easily load and unload them as required.

278 Windows PowerShell 3 Step by Step

Where to store the profile module
If you run your system as a non-elevated user, do not use the user module location for modules that
require elevation of privileges. This will be an exercise in futility, because once you elevate the user
account to include admin rights, your profile shifts to another location, and then you do not have
access to the module you were attempting to access.

Therefore, it makes sense to store modules requiring admin rights in the system32 directory
hierarchy. Keep in mind that updates to admin modules will also require elevation and therefore could
add a bit of complication. Store modules that do not require admin rights in the user profile module
location. When modules reside in one of the two default locations, Windows PowerShell automatically
picks up on them and displays them when you use the ListAvailable command, as shown here:

Get-Module -ListAvailable

However, this does not mean you are limited to modules from only the default locations. If you are
centralizing your Windows PowerShell profile and storing it on a shared network drive, it makes sense
to likewise store the module (and module manifest) in the shared network location as well.

note Keep in mind that the Windows PowerShell profile is a script, as is a Windows
PowerShell module. Therefore, your script execution policy impacts the ability to run scripts
(and to load modules) from a shared network location. Even if you have a script execu-
tion policy of Unrestricted, if you have not added the network share to Internet Explorer’s
trusted sites, you will be prompted each time you open Windows PowerShell. You can use
group policy to set the Internet Explorer trusted sites for your domain, or you can add them
manually. You may also want to examine code signing for your scripts.

Creating a profile: step-by-step exercises

In this exercise, you’ll use the New-Item cmdlet to create a new Windows PowerShell profile. You‘ll
also use the Get-ExecutionPolicy cmdlet to ensure script execution is enabled on your local system.
You’ll also create a function to edit your Windows PowerShell profile. In the next exercise, you’ll add
additional functionality to the profile.

Creating a basic Windows PowerShell profile

1. Start the Windows PowerShell console.

2. Use the Test-Path cmdlet to determine if a Windows PowerShell console profile exists. This
command appears here:

Test-Path $PROFILE

 CHAPTER 9 Working with Windows PowerShell Profiles 279

3. If a profile exists, make a backup copy of the profile by using the Copy-Item cmdlet. The com-
mand appearing here copies the profile to the profileBackup.ps1 file in the C:\fso folder.

Copy-Item $profile c:\fso\profileBackUp.ps1

4. Delete the existing $profile file by using the Remove-Item cmdlet. The command to do this
appears here:

Remove-Item $PROFILE

5. Use the Test-Path cmdlet to ensure the $profile file is properly removed. The command to do
this appears here:

Test-Path $PROFILE

6. Use the New-Item cmdlet to create a new Windows PowerShell console profile. Use the
$profile automatic variable to refer to the Windows PowerShell console profile for the current
user. Use the -force switched parameter to avoid any prompting. Specify an ItemType of file to
ensure that a Windows PowerShell file is properly created. The command to accomplish these
tasks appears here:

New-Item $PROFILE -ItemType file -Force

The output from the command to create a Windows PowerShell profile for the Windows
PowerShell console host and the current user appears here:

 Directory: C:\Users\administrator.IAMMRED\Documents\WindowsPowerShell

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 5/27/2012 3:51 PM 0 Microsoft.PowerShell_profile.ps1

7. Open the Windows PowerShell console profile in the Windows PowerShell ISE. To do this, type
the command appearing here:

Ise $profile

8. Create a function named Set-Profile that opens the Windows PowerShell Current User, Current
Host profile for editing in the Windows PowerShell ISE. To do this, begin by using the function
keyword, and then assign the name Set-Profile to the function. These commands appear here:

Function Set-Profile
{

} #end function set-profile

9. Add the Windows PowerShell code to the Set-Profile function to open the profile for editing in
the Windows PowerShell ISE. The command to do this appears here:

ISE $profile

280 Windows PowerShell 3 Step by Step

10. Save the newly modified profile and close the Windows PowerShell ISE.

11. Close the Windows PowerShell console.

12. Open the Windows PowerShell console and look for errors.

13. Test the Set-Profile function by typing the command that appears here into the Windows
PowerShell console:

Set-Profile

The Windows PowerShell console profile for the current user should open in the Windows
PowerShell ISE. The Set-Profile function should be the only thing in the profile file.

This concludes the exercise.

In the following exercise, you will add a variable, an alias, and a Windows PowerShell drive to your
Windows PowerShell profile.

Adding profile functionality

1. Start the Windows PowerShell console.

2. Call the Set-Profile function (you added this function to your Windows PowerShell console
profile during the previous exercise). The command to do this appears here:

Set-Profile

3. Add comment sections at the top of the Windows PowerShell profile for the following four
sections: Variables, Aliases, PS Drives, and Functions. The code to do this appears here:

#Variables

#Aliases

#PS drives

#Functions

4. Create three new variables. The first variable is MyDocuments, the second variable is
ConsoleProfile, and the third variable is ISEProfile. Use the code appearing here to assign the
proper values to these variables:

New-Variable -Name MyDocuments -Value ([environment]::GetFolderPath("mydocuments"))
New-Variable -Name ConsoleProfile -Value (Join-Path -Path $mydocuments -ChildPath
WindowsPowerShell\Microsoft.PowerShell_profile.ps1)
New-Variable -Name ISEProfile -Value (Join-Path -Path $mydocuments -ChildPath
WindowsPowerShell\Microsoft.PowerShellISE_profile.ps1)

 CHAPTER 9 Working with Windows PowerShell Profiles 281

5. Create two new aliases. One alias is named gh and refers to the Get-Help cmdlet. The second
alias is named I and refers to the Invoke-History cmdlet. The code to do this appears here:

New-Alias -Name gh -Value get-help
New-Alias -Name i -Value Invoke-History

6. Create two new PS drives. The first PS drive refers to the HKEY_CLASSES_ROOT location of the
registry. The second PS drive refers to the current user’s my location. The code to create these
two PS drives appears here:

New-PSDrive -Name HKCR -PSProvider Registry -Root hkey_classes_root
New-PSDrive -Name mycerts -PSProvider Certificate -Root Cert:\CurrentUser\My

7. Following the Set-Profile function, add another comment for commands. This code appears
here:

#commands

8. Add three commands. The first command starts the transcript functionality, the second sets
the working location to the root of drive C, and the last clears the Windows PowerShell con-
sole. These three commands appear here:

Start-Transcript
Set-Location -Path c:\
Clear-Host

9. Save the Windows PowerShell profile and close out the Windows PowerShell ISE. Close the
Windows PowerShell console as well. Open the Windows PowerShell console and look for
errors. Test each of the newly created features to ensure they work. The commands to test the
profile appear here:

gh
$MyDocuments
$ConsoleProfile
$ISEProfile
sl hkcr:
sl mycerts:
sl c:\
Stop-Transcript
set-profile

This concludes the exercise.

282 Windows PowerShell 3 Step by Step

Chapter 9 quick reference

To Do this

Determine the existence of a Windows PowerShell profile Use the Test-Path cmdlet and supply the $profile auto-
matic variable.

Create a Windows PowerShell profile Use the New-Item cmdlet and supply a value of file for the
item type. Use the -force switch to avoid prompting.

Add items to a Windows PowerShell profile that all users
will use

Use the All Users, All Hosts profile.

Obtain the path to the All Users, All Hosts profile Use the $profile automatic variable and choose the
AllUsersAllHosts property.

Add items to a Windows PowerShell profile that the cur-
rent user will use

Use the Current User, All Hosts profile.

Obtain the path to the Current User, All Hosts profile Use the $profile automatic variable and choose the
CurrentUserAllHosts property.

Edit a specific Windows PowerShell profile From the Windows PowerShell console, type ISE and
specify the path to the required Windows PowerShell
profile by using the $profile automatic variable and the
appropriate property.

 283

C H A P T E R 1 0

Using WMI

after completing this chapter, you will be able to:

■■ Understand the concept of WMI namespaces.

■■ Use the WMI namespaces.

■■ Navigate the WMI namespaces.

■■ Understand the use of WMI providers.

■■ Discover classes supplied by WMI providers.

■■ Use the Get-WmiObject cmdlet to perform simple WMI queries.

■■ Produce a listing of all WMI classes.

■■ Perform searches to find WMI classes.

The inclusion of Microsoft Windows Management Instrumentation (WMI) in virtually every operat-
ing system released by Microsoft since Windows NT 4.0 should give you an idea of the importance
of this underlying technology. From a network management perspective, many useful tasks can be
accomplished using just Windows PowerShell, but to begin to truly unleash the power of scripting,
you need to bring in additional tools. This is where WMI comes into play. WMI provides access to
many powerful ways of managing Windows systems. This section will dive into the pieces that make
up WMI. It will discuss at several concepts—namespaces, providers, and classes—and show how these
concepts can aid in leveraging WMI in your Windows PowerShell scripts. All the scripts mentioned in
this chapter are available via the Microsoft Script Center Script Repository.

Each new version of Windows introduces improvements to WMI, including new WMI classes, as
well as new capabilities for existing WMI classes. In products such as Microsoft Exchange Server,
Microsoft SQL Server, and Microsoft Internet Information Services (to mention a few), support for
WMI continues to grow and expand. Some of the tasks you can perform with WMI follow:

■■ Report on drive configuration for locally attached drives, and for mapped drives.

■■ Report on available memory, both physical and virtual.

■■ Back up the event log.

■■ Modify the registry.

284 Windows PowerShell 3 Step by Step

■■ Schedule tasks

■■ Share folders

■■ Switch from a static to a dynamic IP address

■■ Enable or disable a network adapter

■■ Defragment a hard disk drive

Understanding the WMI model

WMI is a hierarchical namespace, in which the layers build on one another, like the Lightweight
Directory Access Protocol (LDAP) directory used in Active Directory, or the file system structure on
your hard drive. Although it is true that WMI is a hierarchical namespace, the term by itself does not
really convey the richness of WMI. The WMI model has three sections—resources, infrastructure, and
consumers—with the following uses:

■■ WMI resources Resources include anything that can be accessed by using WMI—the file
system, networked components, event logs, files, folders, disks, Active Directory, and so on.

■■ WMI infrastructure The infrastructure comprises three parts: the WMI service, the WMI
repository, and the WMI providers. Of these parts, WMI providers are the most important
because they provide the means for WMI to gather needed information.

■■ WMI consumers A consumer provides a prepackaged way to process data from WMI. A
consumer can be a PowerShell cmdlet, a VBScript script, an enterprise management software
package, or some other tool or utility that executes WMI queries.

Working with objects and namespaces

Let’s go back to the idea of a namespace introduced earlier in this chapter. You can think of a
namespace as a way to organize or collect data related to similar items. Visualize an old-fashioned fil-
ing cabinet. Each drawer can represent a particular namespace. Inside this drawer are hanging folders
that collect information related to a subset of what the drawer actually holds. For example, at home
in my filing cabinet, I have a drawer reserved for information related to my woodworking tools. Inside
this particular drawer are hanging folders for my table saw, my planer, my joiner, my dust collector,
and so on. In the folder for the table saw is information about the motor, the blades, and the various
accessories I purchased for the saw (such as an overarm blade guard).

WMI organizes the namespaces in a similar fashion to the filing cabinets described previously. It
is possible to extend the filing cabinet analogy to include the three components of WMI with which

 CHAPTER 10 Using WMI 285

you will work. The three components are namespaces, providers, and classes. The namespaces are the
file cabinets. The providers are the drawers in the file cabinet. The folders in the drawers of the file
cabinet are the WMI classes. These namespaces appear in Figure 10-1.

FIGURE 10-1 WMI namespaces viewed in the WMI Control Properties dialog box.

Namespaces can contain other namespaces, as well as other objects, and these objects contain
properties you can manipulate. Let’s use a WMI command to illustrate the organization of the WMI
namespaces. In the command that follows, the Get-WmiObject cmdlet is used to make the connec-
tion into WMI. The -class argument specifies the name of the class. In this example, the class name
is __Namespace (the WMI class from which all WMI namespaces derive). Yes, you read that class name
correctly—it is the word namespace preceded by two underscore characters (a double underscore is
used for all WMI system classes because it makes them easy to find in sorted lists; the double under-
score, when sorted, rises to the top of the list). The -namespace argument is root because it specifies
the root level (the top namespace) in the WMI namespace hierarchy. The Get-WmiObject line of code
appears here:

Get-WmiObject -class __Namespace -namespace root

The command and the associated output appear in Figure 10-2.

286 Windows PowerShell 3 Step by Step

FIGURE 10-2 Namespace output obtained via the Get-WmiObject cmdlet.

When the Get-WmiObject cmdlet runs, it returns a collection of management objects. These
objects contain a number of system properties, and therefore the cmdlet displays some com-
plex output. Fixing the output requires the use of the Select-Object cmdlet and selection of the
name property. Because of nesting (one namespace inside another namespace), the previous
Get-WmiObject command returns a portion of the namespaces on the computer. To fix this situ-
ation, you must use a function. In the Get-WmiNameSpace function, you first create a couple of
input parameters: namespace and computer. The default values of these parameters are root for the
root of the WMI namespace, and localhost, which refers to the local computer. This portion of the
function appears here:

Param(
 $nameSpace = "root",
 $computer = "localhost"
)

It is possible to change the behavior of the Get-WmiNameSpace function by passing new values
when calling the function.

note When performing a WMI query against a remote computer, the user account per-
forming the connection must be a member of the local administrators group on the remote
machine. One way to accomplish this is to right-click the Windows PowerShell icon and
select Run As Administrator from the menu that appears.

 CHAPTER 10 Using WMI 287

An example of calling the Get-WmiNameSpace function with alternate parameter values
appears here:

Get-WmiNameSpace -nameSpace root\cimv2 -computer dc1

The Get-WmiObject cmdlet command looks for instances of the __NameSpace class on the
computer and in the namespace specified when calling the function. One thing that is interesting
is the use of a custom error action—a requirement due to a possible lack of rights on some of the
namespaces. If you set the value of erroraction to silentlycontinue, any error generated, including
Access Denied, does not appear, and the script ignores the error and continues to run. Without this
change, the function would halt at the first Access Denied error, or by default, lots of Access Denied
errors would clutter the output window and make the results difficult to read. This portion of the
Get-WmiNameSpace function appears here:

Get-WmiObject -class __NameSpace -computer $computer `
 -namespace $namespace -ErrorAction "SilentlyContinue"

The results from the first Get-WmiObject command pass down the pipeline to a Foreach-Object
cmdlet. Inside the associated process script block, the Join-Path cmdlet builds up a new namespace
string using the namespace and name properties. The function skips any namespaces that contain
the word directory to make the script run faster and to ignore any LDAP-type classes contained in
the Root\Directory\LDAP WMI namespace. Once created, the new namespace name passes to the
Get-WmiObject cmdlet, where a new query executes. This portion of the function appears here:

Foreach-Object `
 -Process `
 {
 $subns = Join-Path -Path $_.__namespace -ChildPath $_.name
 if($subns -notmatch 'directory') {$subns}
 $namespaces += $subns + "`r`n"
 Get-WmiNameSpace -namespace $subNS -computer $computer
 }
} #end Get-WmiNameSpace

The complete Get-WmiNameSpace function appears here:

Get-WmiNameSpace
Function Get-WmiNameSpace
{
 Param(
 $nameSpace = "root",
 $computer = "localhost"
)
 Get-WmiObject -class __NameSpace -computer $computer `
 -namespace $namespace -ErrorAction "SilentlyContinue" |
 Foreach-Object `
 -Process `

288 Windows PowerShell 3 Step by Step

 {
 $subns = Join-Path -Path $_.__namespace -ChildPath $_.name
 if($subns -notmatch 'directory') {$subns}
 $namespaces += $subns + "`r`n"
 Get-WmiNameSpace -namespace $subNS -computer $computer
 }
} #end Get-WmiNameSpace

An example of calling the Get-WmiNameSpace function, along with a sample of the output,
appears in Figure 10-3.

FIGURE 10-3 WMI namespaces revealed by the Get-WmiNameSpace function.

So what does all this mean? It means that there are more than a dozen different WMI namespaces.
Each of those WMI namespaces provides information about your computers. Understanding that the
different namespaces exist is the first step to being able to navigate WMI to find the needed infor-
mation. Often, students and others new to PowerShell or VBScript work on a WMI script to make the
script perform a certain action, which is a great way to learn scripting. However, what they often do
not know is which namespace they need to connect to so that they can accomplish their task. When
I tell them which namespace to work with, they sometimes reply, “That’s fine for you, but how do I
know that the such-and-such namespace even exists?” By using the Get-WmiNameSpace function,
you can easily generate a list of namespaces installed on a particular machine; and armed with that
information, you can search on MSDN (http://msdn.microsoft.com/library/default.asp) to see what
information the namespace is able to provide.

 CHAPTER 10 Using WMI 289

Listing WMI providers

Understanding the namespace assists the network administrator with judiciously applying WMI script-
ing to his or her network duties. However, as mentioned earlier, to access information through WMI,
you must have access to a WMI provider. After implementing the provider, you can gain access to the
information the provider makes available.

note Keep in mind that in nearly every case, installation of providers happens in the back-
ground via operating system configuration or management application installation. For
example, addition of new roles and features to server SKUs often installs new WMI provid-
ers and their attendant WMI classes.

WMI bases providers on a template class, or a system class called __provider. Armed with this infor-
mation, you can look for instances of the __provider class, and you will have a list of all the providers
that reside in your WMI namespace. This is exactly what the Get-WmiProvider function does.

The Get-WmiProvider function begins by assigning the string Root\cimv2 to the $wmiNS variable.
This value will be used with the Get-WmiObject cmdlet to specify where the WMI query will take
place.

The Get-WmiObject cmdlet queries WMI. The class parameter limits the WMI query to the
__provider class. The -namespace argument tells the Get-WmiObject cmdlet to look only in the
Root\cimv2 WMI namespace. The array of objects returned from the Get-WmiObject cmdlet pipelines
to the Sort-Object cmdlet, where the listing of objects is alphabetized based on the name property.
After this process is completed, the reorganized objects pipeline to the Select-Object cmdlet, where
the name of each provider is displayed. The complete Get-WmiProvider function appears here:

Get-WmiProvider

Function Get-WmiProvider
{
 Param(
 $nameSpace = "root\cimv2",
 $computer = "localhost"
)
 Get-WmiObject -class __Provider -namespace $namespace |
 Sort-Object -property Name |
 Select-Object name
} #end function Get-WmiProvider

Working with WMI classes

In addition to working with namespaces, the inquisitive network administrator may want to explore
the concept of classes. In WMI parlance, you have core classes, common classes, and dynamic classes.
Core classes represent managed objects that apply to all areas of management. These classes provide

290 Windows PowerShell 3 Step by Step

a basic vocabulary for analyzing and describing managed systems. Two examples of core classes are
parameters and the SystemSecurity class. Common classes are extensions to the core classes and rep-
resent managed objects that apply to specific management areas. However, common classes are
independent of a particular implementation or technology. The CIM_UnitaryComputerSystem class is
an example of a common class. Network administrators do not use core and common classes because
they serve as templates from which other classes derive, and as such are mainly of interest to devel-
opers of management applications. The reason IT professionals need to know about the core and
common classes is to avoid confusion when it comes time to find usable WMI classes.

Many of the classes stored in Root\cimv2, therefore, are abstract classes and are of use as tem-
plates used in creating other WMI classes. However, a few classes in Root\cimv2 are dynamic classes
used to hold actual information. The important aspect to remember about dynamic classes is that
providers generate instances of a dynamic class, and therefore dynamic WMI classes are more likely
to retrieve live data from the system.

To produce a simple listing of WMI classes, you can use the Get-WmiObject cmdlet and specify the
-list argument. This code appears here:

Get-WmiObject -list

Partial output from the previous command is shown here:

Win32_TSGeneralSetting Win32_TSPermissionsSetting
Win32_TSClientSetting Win32_TSEnvironmentSetting
Win32_TSNetworkAdapterListSetting Win32_TSLogonSetting
Win32_TSSessionSetting Win32_DisplayConfiguration
Win32_COMSetting Win32_ClassicCOMClassSetting
Win32_DCOMApplicationSetting Win32_MSIResource
Win32_ServiceControl Win32_Property

One of the big problems with WMI is finding the WMI class needed to solve a particular problem.
With literally thousands of WMI classes installed on even a basic Windows installation, searching
through all the classes is difficult at best. While it is possible to search MSDN, a faster solution is to
use Windows PowerShell itself. As just shown, using the -list switched parameter produces a listing of
all the WMI classes in a particular namespace. It would be possible to combine this feature with the
Get-WmiNameSpace function examined earlier to produce a listing of every WMI class on a computer—
but that would only compound an already complicated situation.

A better solution is to stay focused on a single WMI namespace, and to use wildcard characters to
assist in finding appropriate WMI classes. For example, you can use the wildcard pattern "*bios*" to
find all WMI classes that contain the letters bios in the class name. The code that follows accomplishes
this task:

Get-WmiObject -List "*bios*"

 CHAPTER 10 Using WMI 291

The command and associated output appear in Figure 10-4.

FIGURE 10-4 Listing of WMI classes containing the pattern bios in the class name.

In the output shown in Figure 10-4, not all of the WMI classes will return data. In fact, you should
not use all of the classes for direct query, because querying abstract classes is not supported.
Nevertheless, some of the classes are useful; some of the classes solve a specific problem. “Which
ones should you use?” you may ask. A simple answer—not completely accurate, but something to get
you started—is to use only the WMI classes that begin with win32. You can easily modify the previous
Get-WMIObject query to return only WMI classes that begin with win32. A regular expression pat-
tern looks at the first position of each WMI class name to determine if the characters win32 appear.
The special character ^ tells the match operator to begin looking at the beginning of the string. The
revised code appears here:

Get-WmiObject -List "*bios*" | where-object {$_.name -match '^win32'}

It is also possible to simplify the preceding code by taking advantage of command aliases and
the simplified Where-Object syntax. In the code that follows, gwmi is an alias for the Get-WmiObject
cmdlet. The ? symbol is an alias for the Where-Object cmdlet, and the name property from the
returned ManagementClass objects is examined from each instance crossing the pipeline to see if the
regular expression pattern match appears. The shorter syntax appears here:

gwmi -list "*bios*" | ? name -match '^win32'

Only a few WMI classes are returned from the preceding command. It is now time to query each
WMI class to determine the WMI classes that might be useful. It is certainly possible to choose a
class from the list and to query it directly. If you use the gwmi alias for the Get-WmiObject cmdlet,
this doesn’t require much typing. Here is the command to return BIOS information from the local
computer:

gwmi win32_bios

292 Windows PowerShell 3 Step by Step

It is also possible to pipeline the results of the query to find WMI classes to a command to query
the WMI classes. The long form of the command (using complete cmdlet names) appears follow-
ing. Keep in mind that this is a single-line command that appears here on two different lines for
readability.

Get-WmiObject -List "*bios*" | Where-Object { $_.name -match '^win32'} |
ForEach-Object { Get-WmiObject -Class $_.name }

The short form of the command uses the alias gwmi for Get-WmiObject, ? for the Where-Object
cmdlet, as well as the simplified Where-Object syntax, and % for the ForEach-Object cmdlet. The
shortened command appears here:

gwmi -list "*bios*" | ? name -match '^win32' | % {gwmi $_.name}

Exploring WMI objects

1. Open the Windows PowerShell console.

2. Use the Get-WmiObject cmdlet to find WMI classes that contain the string bios in their name.
Use the alias gwmi for the Get-WmiObject cmdlet. The command appears here:

gwmi -List "*bios*"

3. Use the Get-WmiObject cmdlet to query the Win32_Bios WMI class. This command appears
here:

gwmi win32_bios

4. Store the results of the previous query in a variable named a. Press the up arrow key to
retrieve the previous command instead of retyping everything. This command appears here:

$a = gwmi win32_bios

5. View the contents of the $a variable. This command appears here:

$a

6. Pipeline the results stored in the $a variable to the Get-Member cmdlet. To do this, press the
up arrow key to retrieve the previous command. Use the alias gm instead of typing the com-
plete Get-Member cmdlet name. The command appears here:

$a | gm

7. Pipeline the results of the Get-WmiObject command to the Get-Member cmdlet. To do this,
press the up arrow key twice to retrieve the previous command. Use the alias gm instead of
typing the complete Get-Member cmdlet name. The command appears here:

gwmi win32_bios | gm

 CHAPTER 10 Using WMI 293

8. Compare the results of the two Get-Member commands; the output should be the same.

9. Use the Select-Object cmdlet to view all of the information available from the Win32_Bios WMI
class; choose all of the properties by using the * wildcard character. Use the alias select for the
Select-Object cmdlet. The command appears here:

gwmi win32_bios | select *

10. This completes the procedure.

Querying WMI

In most situations, when you use WMI, you are performing some sort of query. Even when you are
going to set a particular property, you still need to execute a query to return a data set that enables
you to perform the configuration. (A data set includes the data that comes back to you as the result of
a query—that is, it is a set of data.) In this section, you will examine use of the Get-WmiObject cmdlet
to query WMI.

Using the Get-WmiObject cmdlet to query a specific WMI class

1. Connect to WMI by using the Get-WmiObject cmdlet.

2. Specify a valid WMI class name to query.

3. Specify a value for the namespace; omit the -namespace parameter to use the default root\
cimv2 namespace.

4. Specify a value for the -computername parameter; omit the -computername parameter to use
the default value of localhost.

Windows PowerShell makes it easy to query WMI. In fact, at its most basic level, the only thing
required is gwmi (the alias for the Get-WmiObject cmdlet) and the WMI class name, and possibly the
name of the WMI namespace if using a non-default namespace. An example of this simple syntax
appears here, along with the associated output:

PS C:\> gwmi win32_bios
SMBIOSBIOSVersion : BAP6710H.86A.0064.2011.0504.1711
Manufacturer : Intel Corp.
Name : BIOS Date: 05/04/11 17:11:33 Ver: 04.06.04
SerialNumber :
Version : INTEL - 1072009

As shown in the “Exploring WMI objects” procedure in the preceding section, however, there are
more properties available in the Win32_Bios WMI class than the five displayed in the output just
shown. The command displays this limited output because a custom view of the Win32_Bios class
defined in the Types.ps1xml file resides in the Windows PowerShell home directory on your system.

294 Windows PowerShell 3 Step by Step

The following command uses the Select-String cmdlet to search the Types.ps1xml file to see if there is
any reference to the WMI class Win32_Bios.

Select-String -Path $pshome*.ps1xml -SimpleMatch "Win32_Bios"

In Figure 10-5, the results of several Select-String commands are displayed when a special format
exists for a particular WMI class. The last query, for the Win32_CurrentTime WMI class, does not return
any results, indicating that no special formatting exists for this class.

FIGURE 10-5 The results of using Select-String to search the format XML files for special formatting instructions.

The previous Select-String queries indicate that there is special formatting for the Win32_Bios,
Win32_DesktopMonitor, Win32_Service, Win32_Process, and Win32_Processor WMI classes. The
Types.ps1xml file contains information that tells Windows PowerShell how to display a particular
WMI class. When an instance of the Win32_Bios WMI class appears, Windows PowerShell uses the
DefaultDisplayPropertySet configuration to display only five properties (if a <view> configuration is
defined, it trumps the default property set). The portion of the Types.ps1xml file that details these five
properties appears here:

 <PropertySet>
 <Name>DefaultDisplayPropertySet</Name>
 <ReferencedProperties>
 <Name>SMBIOSBIOSVersion</Name>
 <Name>Manufacturer</Name>
 <Name>Name</Name>
 <Name>SerialNumber</Name>
 <Name>Version</Name>
 </ReferencedProperties>
 </PropertySet>

 CHAPTER 10 Using WMI 295

The complete type definition for the Win32_Bios WMI class appears in Figure 10-6.

FIGURE 10-6 The Types.ps1xml file controls which properties are displayed for specific WMI classes.

Special formatting instructions for the Win32_Bios WMI class indicate that there is an alternate
property set available—a property set that is in addition to the DefaultDisplayPropertySet. This
additional property set, named PSStatus, contains four properties. The four properties appear in the
PropertySet description shown here:

 <PropertySet>
 <Name>PSStatus</Name>
 <ReferencedProperties>
 <Name>Status</Name>
 <Name>Name</Name>
 <Name>Caption</Name>
 <Name>SMBIOSPresent</Name>
 </ReferencedProperties>
 </PropertySet>

Finding the psstatus property set is more than a simple academic exercise, because the psstatus
property set can be used directly with Windows PowerShell cmdlets such as Select-Object (select is an
alias), Format-List (fl is an alias), and Format-Table (ft is an alias). The following commands illustrate
the technique of using the psstatus property set to control data output:

gwmi win32_bios | select psstatus
gwmi win32_bios | fl psstatus
gwmi win32_bios | ft psstatus

296 Windows PowerShell 3 Step by Step

Unfortunately, you cannot use the alternate property set psstatus to select the properties via the
property parameter. Therefore, the command that appears here fails:

gwmi win32_bios -Property psstatus

Figure 10-7 shows the previous commands utilizing the psstatus property set, along with the asso-
ciated output.

FIGURE 10-7 Use of the psstatus property set, illustrated by various commands.

Querying the Win32_Desktop class

1. Open the Windows PowerShell console.

2. Use the Get-WmiObject cmdlet to query information about desktop profiles stored on your
local computer. To do this, use the Win32_Desktop WMI class, and use the alias gwmi instead
of typing Get-WmiObject. Select only the name property by using the Select-Object cmdlet.
Use the alias select instead of typing the Select-Object cmdlet name. The command appears
here:

gwmi win32_desktop | select name

3. Execute the command. Your output will only contain the name of each profile stored on your
machine. It will be similar to output that appears here:

name

NT AUTHORITY\SYSTEM
IAMMRED\ed
.DEFAULT

 CHAPTER 10 Using WMI 297

4. To retrieve the name of the screen saver, add the property ScreenSaverExecutable to the
Select-Object command. This is shown here:

gwmi win32_desktop | select name, ScreenSaverExecutable

5. Run the command. Your output will appear something like the following:

name ScreenSaverExecutable
---- ---------------------
NT AUTHORITY\SYSTEM
IAMMRED\ed C:\Windows\WLXPGSS.SCR

6. To identify whether the screen saver is secure, you need to query the ScreenSaverSecure prop-
erty. This modified line of code is shown here:

gwmi win32_desktop | select name, ScreenSaverExecutable, ScreenSaverSecure

7. Run the command. Your output will appear something like the following:

name ScreenSaverExecutable ScreenSaverSecure
---- --------------------- -----------------
NT AUTHORITY\SYSTEM
IAMMRED\ed C:\Windows\WLXPGSS.SCR True
.DEFAULT

8. To identify the screen saver timeout values, you need to query the ScreenSaverTimeout prop-
erty. The modified command appears here:

gwmi win32_desktop | select name, ScreenSaverExecutable, ScreenSaverSecure,
ScreenSaverTimeout

9. Run the command. The output will appear something like the following:

name ScreenSaverExecutable ScreenSaverSecure ScreenSaverTimeout
---- --------------------- ----------------- ------------------
NT AUTHORITY\SYSTEM
IAMMRED\ed C:\Windows\WLXPGS... True 600
.DEFAULT

10. If you want to retrieve all the properties related to screen savers, you can use a wildcard aster-
isk screen-filter pattern. Delete the three screen saver properties and replace them with the
Screen* wildcard pattern. The revised command appears here:

gwmi win32_desktop | select name, Screen*

11. Run the command. The output will appear similar to that shown here:

298 Windows PowerShell 3 Step by Step

name : NT AUTHORITY\SYSTEM
ScreenSaverActive : False
ScreenSaverExecutable :
ScreenSaverSecure :
ScreenSaverTimeout :

name : IAMMRED\ed
ScreenSaverActive : True
ScreenSaverExecutable : C:\Windows\WLXPGSS.SCR
ScreenSaverSecure : True
ScreenSaverTimeout : 600

name : .DEFAULT
ScreenSaverActive : False
ScreenSaverExecutable :
ScreenSaverSecure :
ScreenSaverTimeout :

This concludes the procedure.

Obtaining service information: step-by-step exercises

In this exercise, you will explore the use of the Get-Service cmdlet as you retrieve service information
from your computer. You will sort and filter the output from the Get-Service cmdlet. In the second
exercise, you will use WMI to retrieve similar information. You should compare the two techniques for
ease of use and completeness of data.

Obtaining Windows Service information by using the Get-Service cmdlet

1. Start the Windows PowerShell console.

2. From the Windows PowerShell prompt, use the Get-Service cmdlet to obtain a listing of all the
services and their associated status. This is shown here:

Get-Service

A partial listing of the output from this command is shown here:

Status Name DisplayName
------ ---- -----------
Running Bits Bits
Running ALG Application Layer Gateway Service
Stopped AppMgmt Application Management
Stopped aspnet_state ASP.NET State Service
Running AudioSrv Windows Audio
Running BITS Background Intelligent Transfer Ser...

3. Use the Sort-Object cmdlet to sort the listing of services. Specify the status property for
Sort-Object. To sort the data based upon status, pipeline the results of the Get-Service cmdlet

 CHAPTER 10 Using WMI 299

into the Sort-Object cmdlet. Use the sort alias for the Sort-Object cmdlet to reduce the amount
of typing. The results are shown here:

Get-Service |sort -property status

Partial output from this command is shown here:

Status Name DisplayName
------ ---- -----------
Stopped RasAuto Remote Access Auto Connection Manager
Stopped RDSessMgr Remote Desktop Help Session Manager
Stopped odserv Microsoft Office Diagnostics Service
Stopped ose Office Source Engine

4. Use the Get-Service cmdlet to produce a listing of services. Sort the resulting list of services
alphabetically by name. To do this, use the Sort-Object cmdlet to sort the listing of services by
the name property. Pipeline the object returned by the Get-Service cmdlet into the Sort-Object
cmdlet. The command to do this, using the sort alias for Sort-Object, is shown here:

Get-Service |sort -property name

Partial output of this command is shown here:

Status Name DisplayName
------ ---- -----------
Running Bits Bits
Running ALG Application Layer Gateway Service
Stopped AppMgmt Application Management
Stopped aspnet_state ASP.NET State Service
Running AudioSrv Windows Audio
Running BITS Background Intelligent Transfer Ser...

5. Use the Get-Service cmdlet to produce a listing of services. Sort the objects returned by both
the name and the status of the service. The command to do this is shown here:

Get-Service |sort status, name

Partial output of this command is shown here:

Status Name DisplayName
------ ---- -----------
Stopped AppMgmt Application Management
Stopped aspnet_state ASP.NET State Service
Stopped Browser Computer Browser
Stopped CcmExec SMS Agent Host
Stopped CiSvc Indexing Service

6. Use the Get-Service cmdlet to return an object containing service information. Pipeline the
resulting object into a Where-Object cmdlet. Look for the word server in the display name. The
resulting command is shown here:

300 Windows PowerShell 3 Step by Step

Get-Service | where DisplayName -match "server"

The resulting listing is shown here:

Status Name DisplayName
------ ---- -----------
Running DcomLaunch DCOM Server Process Launcher
Running InoRPC eTrust Antivirus RPC Server
Running InoRT eTrust Antivirus Realtime Server
Running InoTask eTrust Antivirus Job Server
Stopped lanmanserver Server
Stopped MSSQL$SQLEXPRESS SQL Server (SQLEXPRESS)
Stopped MSSQLServerADHe... SQL Server Active Directory Helper
Stopped SQLBrowser SQL Server Browser
Stopped SQLWriter SQL Server VSS Writer

7. Use the Get-Service cmdlet to retrieve a listing of service objects. Pipeline the resulting objects
to the Where-Object cmdlet. Use the -equals argument to return an object that represents the
Bits service. The code that does this is shown here:

Get-Service | where name -eq "bits"

8. Press the up arrow key to retrieve the previous command that retrieves the Bits service. Store
the resulting object in a variable called $a. This code is shown here:

$a=Get-Service | where name -eq "bits"

9. Pipeline the object contained in the $a variable into the Get-Member cmdlet. You can use the
gm alias to simplify typing. This code is shown here:

$a | gm

10. Using the object contained in the $a variable, obtain the status of the Bits service. The code
that does this is shown here:

$a.status

11. If the Bits service is running, then stop it. To do so, use the Stop-Service cmdlet. Instead of
pipelining the object in the $a variable, you use the -inputobject argument from the Stop-
Service cmdlet. The code to do this is shown here:

Stop-Service -InputObject $a

12. If the Bits service stops, then use the Start-Service cmdlet instead of the Stop-Service cmdlet.
Use the -inputobject argument to supply the object contained in the $a variable to the cmdlet.
This is shown here:

Start-Service -InputObject $a

 CHAPTER 10 Using WMI 301

13. Query the status property of the object contained in the $a variable to confirm that the Bits
service’s status has changed. This is shown here:

$a.status

note If you are working with a service that has its startup type set to Disabled, then
PowerShell will not be able to start it and will return an error. If you do not have admin
rights, Windows PowerShell will be unable to stop the service.

This concludes this step-by-step exercise.

In the following exercise, you will explore the use of the Win32_Service WMI class by using the Get-
WmiObject cmdlet as you retrieve service information from your computer.

Using WMI for service information

1. Start the Windows PowerShell console.

2. From the Windows PowerShell prompt, use the Get-WmiObject cmdlet to obtain a listing of all
the services and their associated statuses. Use the gwmi alias instead of typing Get-WmiObject.
The command to do this is shown here:

gwmi win32_sevice

A partial listing of the output from this command is shown here:

ExitCode : 0
Name : AdobeActiveFileMonitor6.0
ProcessId : 1676
StartMode : Auto
State : Running
Status : OK

ExitCode : 0
Name : AdobeARMservice
ProcessId : 1772
StartMode : Auto
State : Running
Status : OK

ExitCode : 0
Name : AeLookupSvc
ProcessId : 0
StartMode : Manual
State : Stopped
Status : OK

302 Windows PowerShell 3 Step by Step

ExitCode : 1077
Name : ALG
ProcessId : 0
StartMode : Manual
State : Stopped
Status : OK

3. Use the Sort-Object cmdlet to sort the listing of services. Specify the state property for the
Sort-Object cmdlet. To sort the service information based upon the state of the service, pipe-
line the results of the Get-WmiObject cmdlet into the Sort-Object cmdlet. Use the sort alias for
the Sort-Object cmdlet to reduce the amount of typing. The results are shown here:

gwmi win32_service | sort state

Partial output from this command is shown here:

ExitCode : 0
Name : lmhosts
ProcessId : 676
StartMode : Auto
State : Running
Status : OK

ExitCode : 0
Name : TrkWks
ProcessId : 864
StartMode : Auto
State : Running
Status : OK

ExitCode : 0
Name : LanmanWorkstation
ProcessId : 1316
StartMode : Auto
State : Running
Status : OK

4. Use the Get-WmiObject cmdlet to produce a listing of services. Sort the resulting list of ser-
vices alphabetically by DisplayName. To do this, use the Sort-Object cmdlet to sort the listing
of services by the name property. Pipeline the object returned by the Get-WMIObject cmdlet
into the Sort-Object cmdlet. The command to do this, using the sort alias for Sort-Object, is
shown here:

gwmi win32_service | sort DisplayName

Notice that the output does not appear to actually be sorted by the DisplayName property.
There are two problems at work. The first is that there is a difference between the name prop-
erty and the DisplayName property. The second problem is that the DisplayName property is
not displayed by default. Partial output of this command appears here:

 CHAPTER 10 Using WMI 303

ExitCode : 1077
Name : AxInstSV
ProcessId : 0
StartMode : Manual
State : Stopped
Status : OK

ExitCode : 1077
Name : SensrSvc
ProcessId : 0
StartMode : Manual
State : Stopped
Status : OK

ExitCode : 0
Name : AdobeARMservice
ProcessId : 1772
StartMode : Auto
State : Running
Status : OK

5. Produce a service listing that is sorted by DisplayName. This time, use the Select-Object cmdlet
to display both the state and the DisplayName properties. Use the gwmi, sort, and select
aliases to reduce typing. The command appears here:

gwmi win32_service | sort DisplayName | select state, DisplayName

Sample of the output from the previous command appears here:

state DisplayName
----- -----------
Stopped ActiveX Installer (AxInstSV)
Stopped Adaptive Brightness
Running Adobe Acrobat Update Service
Running Adobe Active File Monitor V6
Running AMD External Events Utility
Stopped Application Experience

6. Use the Get-WmiObject cmdlet to return an object containing service information.
Pipeline the resulting object into a Where-Object cmdlet. Look for the word server in the
display name. The resulting command is shown here:

gwmi win32_service | ? displayname -match 'server'

The resulting listing is shown here:

ExitCode : 0
Name : DcomLaunch
ProcessId : 848
StartMode : Auto
State : Running
Status : OK

304 Windows PowerShell 3 Step by Step

ExitCode : 0
Name : LanmanServer
ProcessId : 1028
StartMode : Auto
State : Running
Status : OK

ExitCode : 0
Name : MSSQL$SQLEXPRESS
ProcessId : 1952
StartMode : Auto
State : Running
Status : OK

7. Use the Get-WMIObject cmdlet to retrieve a listing of service objects. Pipeline the resulting
object to Where-Object. Use the -equals argument to return an object that represents the Bits
service. The code that does this is shown here:

gwmi win32_service | ? name -eq 'bits'

8. Press the up arrow key to retrieve the command that retrieves the Bits service. Store the
resulting object in a variable called $a. This code is shown here:

$a= gwmi win32_service | ? name -eq 'bits'

9. Pipeline the object contained in the $a variable into the Get-Member cmdlet. You can use the
gm alias to simplify typing. This code is shown here:

$a | gm

10. Using the object contained in the $a variable, obtain the status of the Bits service. The code
that does this is shown here:

$a.state

11. If the Bits service is running, then stop it. To do so, use the StopService method. Instead of
pipelining the object in the $a variable, you use dotted notation. The code to do this is shown
here:

$a.StopService()

12. If the Bits service stops, you will see a ReturnValue of 0. If you see a ReturnValue of 2, it means
that access is denied, and you will need to start the Windows PowerShell console with admin
rights to stop the service. Query the state property of the object contained in the $a variable
to confirm that the Bits service’s status has changed. This is shown here:

$a.state

 CHAPTER 10 Using WMI 305

13. If you do not refresh the object stored in the $a variable, the original state is reported—
regardless of whether the command has completed or not. To refresh the data stored in the
$a variable, run the WMI query again. The code to do this appears here:

$a = gwmi win32_service | ? {$_.name -eq 'bits'}
$a.state

14. If the Bits service is stopped, go ahead and start it back up by using the StartService method.
The code to do this appears here:

$a.StartService()

This concludes this step-by-step exercise.

Chapter 10 quick reference

To Do this

Find the default WMI namespace on a computer Use the Advanced tab in the WMI Control Properties
dialog box.

Browse WMI classes on a computer Use the Get-WmiObject cmdlet with the -list argument.
Use a wildcard for the WMI class name.

Make a connection into WMI Use the Get-WmiObject cmdlet in your script.

Use a shortcut name for the local computer Use a dot (.) and assign it to the variable holding the com-
puter name in the script.

Find detailed information about all WMI classes on a
computer

Use the Platform SDK information found in the MSDN
library (http://msdn2.microsoft.com/en-us/library/
aa394582.aspx)

List all the namespaces on a computer Query for a class named __NameSpace.

List all providers installed in a particular namespace Query for a class named __Win32Provider.

List all the classes in a particular namespace on a
computer

Use the -list argument for the Get-WmiObject cmdlet.

Quickly retrieve similarly named properties from a class Use the Select-Object cmdlet and supply a wildcard aster-
isk (*) for the -property argument.

http://msdn2.microsoft.com/en-us/library/aa394582.aspx
http://msdn2.microsoft.com/en-us/library/aa394582.aspx

 307

C H A P T E R 1 1

Querying WMI

after completing this chapter, you will be able to:

■■ Understand the different methods for querying WMI.

■■ Use the Select-Object cmdlet to create a custom object from a WMI query.

■■ Configure the -filter argument to limit information returned by WMI.

■■ Configure the WMI query to return selected properties.

■■ Use the Where-Object cmdlet to filter information returned from WMI.

■■ Leverage both hardware classes and system classes to configure machines.

After network administrators and consultants get their hands on a couple of Microsoft Windows
Management Instrumentation (WMI) scripts, they begin to arrange all kinds of scenarios for use. This
is both a good thing and a bad thing. The good thing is that WMI is powerful technology that can
quickly solve many real problems. The bad thing is that a poorly written WMI script can adversely
affect the performance of everything it touches—from client machines logging on to the network
for the first time to huge infrastructure servers that provide the basis for mission-critical networked
applications. This chapter will examine the fundamentals of querying WMI in an effective man-
ner. Along the way, it will examine some of the more useful WMI classes and add to your Windows
PowerShell skills.

Alternate ways to connect to WMI

Chapter 10, “Using WMI,” examined the basics of the Get-WmiObject cmdlet to obtain specific
information. When you make a connection to WMI, it is important to realize there are default values
utilized for the WMI connection.

The default values are stored in the following registry location: HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\WBEM\Scripting. There are two keys: DEFAULT IMPERSONATION LEVEL and
DEFAULT NAMESPACE. DEFAULT IMPERSONATION LEVEL is set to a value of 3, which means that
WMI impersonates the logged-on user and therefore uses the logged-on user name, credentials, and
rights. The default namespace is Root\cimv2, which means that for many of the tasks you will need to

308 Windows PowerShell 3 Step by Step

perform, the classes are immediately available. Use the Get-ItemProperty cmdlet to verify the default
WMI configuration on a local computer. This command appears here:

get-itemproperty HKLM:\SOFTWARE\Microsoft\WBEM\Scripting

In Figure 11-1, the Get-ItemProperty cmdlet retrieves the default WMI settings on a local computer.
Next, the Invoke-Command cmdlet retrieves the same information from a remote computer named
Win8-C1. Both the commands and the output from the commands appear in the figure.

FIGURE 11-1 Use of the Get-ItemProperty cmdlet to verify default WMI settings.

In reality, a default namespace of root/cimv2 and a default impersonation level of impersonate are
good defaults. The default computer is the local machine, so you do not need to specify the com-
puter name when you are simply running against the local machine.

tip Use default WMI values to simplify your WMI scripts. If you only want to return infor-
mation from the local machine, the WMI class resides in the default namespace, and you
intend to impersonate the logged-on user, then the defaults are perfect. The defaults are
fine when you are logged on to a machine with an account that has permission to access
the information you need. The following command illustrates obtaining BIOS information
from the local computer.

SmallBios.ps1

Get-WmiObject win32_bios

When you use the Get-WmiObject cmdlet and only supply the name of the WMI class, then you are
relying on the default values: default computer, default WMI namespace, and default impersonation

 CHAPTER 11 Querying WMI 309

level. The SmallBios.ps1 script produces the information shown here, which is the main information
you would want to see about the BIOS: the version, name, serial number, and maker.

SMBIOSBIOSVersion : Version 1.40
Manufacturer : TOSHIBA
Name : v1.40
SerialNumber : 55061728HU
Version : TOSHIB - 970814

The amazing thing is that you can obtain such useful information by typing about 15 characters
on the keyboard (using tab completion). Doing this in VBScript would require much more typing.
However, if you want to retrieve different information from the WIN32_Bios WMI class, or if you
would like to see a different kind of output, then you will need to work with the Format cmdlets,
Select-Object, or Out-GridView. This technique appears in the procedure.

retrieving properties

1. Open the Windows PowerShell console.

2. Use the Get-WmiObject cmdlet to retrieve the default properties of the WIN32_
ComputerSystem WMI class:

Get-WmiObject WIN32_computersystem

The results, with the default properties, are shown here:

Domain : nwtraders.com
Manufacturer : TOSHIBA
Model : TECRA M3
Name : MRED1
PrimaryOwnerName : Mred
TotalPhysicalMemory : 2146680832

3. If you are only interested in the name and the make and model of the computer, then you
will need to pipeline the results into a Format-List cmdlet and choose only the properties you
wish. This revised command is shown here:

Get-WmiObject WIN32_computersystem | Format-List name,model, manufacturer

The results are shown here:

name : MRED1
model : TECRA M3
manufacturer : TOSHIBA

4. If you are interested in all the properties from the WIN32_ComputerSystem class, you have
several options. The first is to use the up arrow key and modify the Format-List cmdlet. Instead
of choosing three properties, use an asterisk (*). This revised command is shown here:

Get-WmiObject WIN32_ComputerSystem | Format-List *

310 Windows PowerShell 3 Step by Step

5. The results from this command are shown following. Notice, however, that although the
results seem impressive at first, they quickly degenerate into seemingly meaningless drivel.
Note the number of classes that begin with double underscore, such as __CLASS. These are
system properties that get attached to every WMI class when they are created. Although use-
ful to WMI gurus, they are less exciting to normal network administrators.

AdminPasswordStatus : 0
BootupState : Normal boot
ChassisBootupState : 3
KeyboardPasswordStatus : 0
PowerOnPasswordStatus : 0
PowerSupplyState : 3
PowerState : 0
FrontPanelResetStatus : 0
ThermalState : 3
Status : OK
Name : MRED1
PowerManagementCapabilities :
PowerManagementSupported :
__GENUS : 2
__CLASS : Win32_ComputerSystem
__SUPERCLASS : CIM_UnitaryComputerSystem
__DYNASTY : CIM_ManagedSystemElement
__RELPATH : Win32_ComputerSystem.Name="MRED1"
__PROPERTY_COUNT : 54
__DERIVATION : {CIM_UnitaryComputerSystem, CIM_ComputerSystem,
 CIM_System, CIM_LogicalElement...}
__SERVER : MRED1
__NAMESPACE : root\cimv2
__PATH : \\MRED1\root\cimv2:Win32_ComputerSystem.Name=
 "MRED1"
AutomaticResetBootOption : True
AutomaticResetCapability : True
BootOptionOnLimit :
BootOptionOnWatchDog :
BootROMSupported : True
Caption : MRED1
CreationClassName : Win32_ComputerSystem
CurrentTimeZone : 60
DaylightInEffect : False
Description : AT/AT COMPATIBLE
Domain : northamerica.corp.microsoft.com
DomainRole : 1
EnableDaylightSavingsTime : True
InfraredSupported : False
InitialLoadInfo :
InstallDate :
LastLoadInfo :
Manufacturer : TOSHIBA
Model : TECRA M3
NameFormat :
NetworkServerModeEnabled :
NumberOfProcessors : 1
OEMLogoBitmap :
OEMStringArray : {PTM30U-0H001V59,SQ003648A83,138}

 CHAPTER 11 Querying WMI 311

PartOfDomain : True
PauseAfterReset : -1
PrimaryOwnerContact :
PrimaryOwnerName : Mred
ResetCapability : 1
ResetCount : -1
ResetLimit : -1
Roles :
SupportContactDescription :
SystemStartupDelay : 15
SystemStartupOptions : {"Microsoft Windows XP Professional" /noexecute=
 optin /fastdetect}
SystemStartupSetting : 0
SystemType : X86-based PC
TotalPhysicalMemory : 2146680832
UserName : NORTHAMERICA\edwils
WakeUpType : 6
Workgroup :

6. To remove the system properties from the list, use the up arrow key to retrieve the
Get-WmiObject win32_computersystem | Format-List * command. Delete the asterisk in the
Format-List command and replace it with an expression that limits the results to property
names that are returned to only those that begin with the letters a through z. This command
is shown here:

Get-WmiObject WIN32_computersystem | Format-List [a-z]*

7. To see a listing of properties that begin with the letter d, use the up arrow key to retrieve the
Get-WmiObject win32_computersystem | Format-List [a-z]* command and change the Format-
List cmdlet to retrieve only properties that begin with the letter d. To do this, substitute d* for
[a-z]*. The revised command is shown here:

Get-WmiObject WIN32_computersystem | Format-List D*

8. Retrieve a listing of all the properties and their values that begin with either the letter d or
the letter t from the WIN32_computersystem WMI class. Use the up arrow key to retrieve the
previous Get-WmiObject win32_computersystem | Format-List D* command. Use a comma to
separate the t* from the previous command. The revised command is shown here:

Get-WmiObject WIN32_computersystem | Format-List d*,t*

This concludes the procedure.

tip After you use the Get-WmiObject cmdlet for a while, you may get tired of using tab
completion and having to type Get-W<tab>. It may be easier to use the default alias of
gwmi. This alias can be discovered by using the following command:

Get-Alias | where definition -eq 'Get-WmiObject'

312 Windows PowerShell 3 Step by Step

Working with disk drives

1. Open the Windows PowerShell console.

2. Use the gwmi alias to retrieve the default properties for each drive defined on your system. To
do this, use the WIN32_LogicalDisk WMI class. This command is shown here:

gwmi win32_logicaldisk

The results of the gwmi win32_logicaldisk command are shown here:

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 6164701184
Size : 36701163520
VolumeName : c

DeviceID : D:
DriveType : 3
ProviderName :
FreeSpace : 11944701952
Size : 23302184960
VolumeName : d

DeviceID : E:
DriveType : 5
ProviderName :
FreeSpace :
Size :
VolumeName :

3. To limit the disks returned by the WMI query to only local disk drives, you can supply a value
of 3 for the DriveType property. Use the up arrow key to retrieve the previous command. Add
the DriveType property to the -filter parameter of the Get-WMIObject cmdlet with a value of 3.
This revised command is shown here:

gwmi win32_logicaldisk -filter drivetype=3

The resulting output from the gwmi win32_logicaldisk -filter drivetype=3 command is shown
here:

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 6163599360
Size : 36701163520
VolumeName : c
DeviceID : D:
DriveType : 3
ProviderName :
FreeSpace : 11944701952
Size : 23302184960
VolumeName : d

 CHAPTER 11 Querying WMI 313

4. Open the Windows PowerShell ISE or some other script editor, and save the file as
<yourname>Logical Disk.ps1.

5. Use the up arrow key in PowerShell to retrieve the gwmi win32_logicaldisk -filter drivetype=3
command. Highlight it with your mouse and press Enter.

6. Paste the command into the <yourname>LogicalDisk.ps1 script.

7. Declare a variable called $objDisk at the top of your script. This command is shown here:

$objDisk

8. Use the $objDisk variable to hold the object returned by the command you copied from your
PowerShell console. As you are planning on saving the script, replace the gwmi alias with the
actual name of the cmdlet. The resulting command is shown here:

$objDisk=Get-WmiObject win32_logicaldisk -filter drivetype=3

9. Use the Measure-Object cmdlet to retrieve the minimum and the maximum values for the
freespace property. To do this, pipeline the previous object into the Measure-Object cmdlet.
Specify freespace for the -property argument, and use the -minimum and -maximum switches.
Use the pipe character to break your code into two lines. This command is shown here:

$objDisk=Get-WmiObject win32_logicaldisk -filter drivetype=3 |
 Measure-Object -property freespace -Minimum -Maximum

10. Print out the resulting object that is contained in the $objDisk variable. This command is
shown here:

$objDisk

The resulting printout on my computer is shown here:

Count : 2
Average :
Sum :
Maximum : 11944701952
Minimum : 6163550208
Property : freespace

11. To dispose of the empty properties, pipeline the previous command into a Select-Object cmd-
let. Select the property and the minimum and maximum properties. Use the pipe character to
break your code into multiple lines The revised command is shown here:

$objDisk=Get-WmiObject win32_logicaldisk -filter drivetype=3 |
 Measure-Object -property freespace -Minimum -Maximum |
 Select-Object -Property property, maximum, minimum

12. Save and run the script. Notice how the output is spread over the console. To tighten up the
display, pipeline the resulting object into the Format-Table cmdlet. Use the -autosize switch.
The revised command is shown here:

314 Windows PowerShell 3 Step by Step

$objDisk=Get-WmiObject win32_logicaldisk -filter drivetype=3 |
 Measure-Object -property freespace -Minimum -Maximum |
 Select-Object -Property property, maximum, minimum |
 Format-Table -autosize

13. Save and run the script. The output on my computer is shown here:

Property Maximum Minimum
-------- ------- -------
freespace 11944685568 6164058112

note The WIN32_LogicalDisk WMI class property DriveType can have a value of 0 to 6
(inclusive). The most useful of these values are as follows: 3 (local disk), 4 (network drive), 5
(compact disk), and 6 (RAM disk).

tell me everything about everything!
When novices first write WMI scripts, they nearly all begin by asking for every property from
every instance of a class. That is, the queries will essentially say, “Tell me everything about every
process.” (This is also referred to as the infamous select * query.) This approach can often return
an overwhelming amount of data, particularly when you are querying a class such as installed
software or processes and threads. Rarely would one need to have so much data. Typically, when
looking for installed software, you’re looking for information about a particular software package.

There are, however, several occasions when you may want to use the “Tell me everything
about all instances of a particular class” query, including the following:

■■ During development of a script to see representative data

■■ When troubleshooting a more directed query—for example, when you’re possibly trying
to filter on a field that does not exist

■■ When the returned items are so few that being more precise doesn’t make sense.

To return all information from all instances, perform the following steps:

1. Make a connection to WMI by using the Get-WmiObject cmdlet.

2. Use the -query argument to supply the WQL query to the Get-WmiObject cmdlet.

3. In the query, use the Select statement to choose everything:

Select *.

4. In the query, use the From statement to indicate the class from which you wish to
retrieve data. For example, From Win32_Share.

 CHAPTER 11 Querying WMI 315

In the next script, you’ll make a connection to the default namespace in WMI and return all the
information about all the shares on a local machine. Reviewing the shares on your system is actually
good practice, because in the past, numerous worms have propagated through unsecured shares,
and you might have unused shares around. For example, a user might create a share for a friend and
then forget to delete it. In the script that follows, called ListShares.ps1, all the information about
shares present on the machine are reported. The information returned by ListShares.ps1 will include
the properties for the WIN32_Share class that appear in Table 11-1.

ListShares.Ps1

$strComputer = "."
$wmiNS = "root\cimv2"
$wmiQuery = "Select * from win32_share"

$objWMIServices = Get-WmiObject -computer $strComputer -namespace $wmiNS `
 -query $wmiQuery
 $objWMIServices | Format-List *

TABLE 11-1 Win32_Share properties

Data type Property Meaning

Boolean AllowMaximum Allow maximum number of connec-
tions? (True or false)

String Caption Short one-line description

String Description Description

Datetime InstallDate When the share was created
(optional)

Uint32 MaximumAllowed Number of concurrent connec-
tions allowed (only valid when
AllowMaximum is set to false)

String Name Share name

String Path Physical path to the share

String Status Current status of the share (degraded,
OK, or failed)

Uint32 Type Type of resource shared (disk, file,
printer, etc.)

Quick check
Q. What is the syntax for a query that returns all properties of a given WMI object?

a. Select * from <WMI class name> returns all properties of a given object.

Q. What is one reason for using Select * instead of a more directed query?

a. In troubleshooting, Select * is useful because it returns any available data. In addition, Select
* is useful for trying to characterize the data that might be returned from a query.

316 Windows PowerShell 3 Step by Step

Selective data from all instances
The next level of sophistication (from using Select *) is to return only the properties you are interested
in. This is a more efficient strategy than returning everything from a class. For instance, in the previ-
ous example, you entered Select * and were returned a lot of data you may not necessarily have been
interested in. Suppose you want to know only what shares are on each machine.

To select specific data, perform the following steps:

1. Make a connection to WMI by using the Get-WmiObject cmdlet.

2. Use the -query argument to supply the WMI query to the Get-WmiObject cmdlet.

3. In the query, use the Select statement to choose the specific property you are interested in—
for example, Select name.

4. In the query, use the From statement to indicate the class from which you want to retrieve
data—for example, From Win32_Share.

Only two small changes in the ListShares.ps1 script are required to enable garnering specific data
through the WMI script. In place of the asterisk in the Select statement assigned at the beginning of
the script, substitute the property you want. In this case, only the name of the shares is required.

The second change is to eliminate all unwanted properties from the Output section. The strange
thing here is the way that PowerShell works. In the Select statement, you selected only the name
property. However, if you were to print out the results without further refinement, you would retrieve
unwanted system properties as well. By using the Format-List cmdlet and selecting only the property
name, you eliminate the unwanted excess. Here is the modified ListNameOnlyShares.ps1 script:

ListnameOnlyShares.Ps1

$strComputer = "."
$wmiNS = "root\cimv2"
$wmiQuery = "Select name from win32_Share"

$objWMIServices = Get-WmiObject -computer $strComputer -namespace $wmiNS `
 -query $wmiQuery
$objWMIServices | Sort-Object -property name | Format-List -property name

Selecting multiple properties
If you’re interested in only a certain number of properties, you can use Select to specify that. All you
have to do is separate the properties by a comma. Suppose you run the preceding script and find a
number of undocumented shares on one of the servers—you might want a little bit more informa-
tion, such as the path to the share and how many people are allowed to connect to it. By default,
when a share is created, the “maximum allowed” bit is set, which basically says anyone who has rights
to the share can connect. This can be a problem, because if too many people connect to a share,
they can degrade the performance of the server. To preclude such an eventuality, I always specify
a maximum number of connections to the server. The commands to list these properties are in the
ListNamePathShare.ps1 script, which follows.

 CHAPTER 11 Querying WMI 317

note I occasionally see people asking whether spaces or capitalization in the property list
matter. In fact, when I first started writing scripts and they failed, I often modified spacing
and capitalization in feeble attempts to make the script work. Spacing and capitalization do
not matter for WMI properties.

ListnamePathShare.ps1

$strComputer = "."
$wmiNS = "root\cimv2"
$wmiQuery = "Select name,path, AllowMaximum from win32_share"

$objWMIServices = Get-WmiObject -computer $strComputer -namespace $wmiNS `
 -query $wmiQuery
$objWMIServices | Sort-Object -property name |
Format-List -property name,path,allowmaximum

Working with running processes

1. Open the Windows PowerShell console.

2. Use the Get-Process cmdlet to obtain a listing of processes on your machine.

A portion of the results from the command is shown here:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 101 5 1132 3436 32 0.03 660 alg
 439 7 1764 2856 60 6.05 1000 csrss
 121 5 912 3532 37 0.22 1256 ctfmon
 629 19 23772 23868 135 134.13 788 explorer
 268 7 12072 18344 109 1.66 1420 hh

3. To return information about the Explorer process, use the -name argument. This command is
shown here:

Get-Process -name explorer

The results of this command are shown here:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 619 18 21948 22800 115 134.28 788 explorer

4. Use the Get-WmiObject cmdlet to retrieve information about processes on the machine. Pipe
the results into the more function, as shown here:

Get-WmiObject win32_process |more

318 Windows PowerShell 3 Step by Step

5. Notice that the results go on for page after page. The last few lines of one of those pages is
shown here:

QuotaPagedPoolUsage : 0
QuotaPeakNonPagedPoolUsage : 0
QuotaPeakPagedPoolUsage : 0
ReadOperationCount : 0
<SPACE> next page; <CR> next line; Q quit

6. To retrieve information only about the Explorer.exe process, use the -filter argument and
specify that the name property is equal to Explorer.exe. The revised command is shown here:

Get-WmiObject win32_process -Filter "name='explorer.exe'"

7. To display a table that is similar to the one produced by Get-Process, use the up arrow key to
retrieve the previous Get-WmiObject command. Copy it to the clipboard by selecting it with
the mouse and then pasting it into Notepad or some other script editor. Pipeline the results
into the Format-Table cmdlet and choose the appropriate properties, as shown following.
Saving this command into a script makes it easier to work with later. It also makes it easier to
write the script by breaking the lines instead of requiring you to type one long command. I
called the script ExplorerProcess.ps1, and it is shown here:

Get-WmiObject win32_process -Filter "name='explorer.exe'" |
Format-Table handlecount,quotaNonPagedPoolUsage, PeakVirtualSize,
WorkingSetSize, VirtualSize, UserModeTime,KernelModeTime,
ProcessID, Name

This concludes the working with running processes procedure.

Caution When using the -filter argument of the Get-WmiObject cmdlet, pay attention to
the use of quotation marks. The -filter argument is surrounded by double quotation marks.
The value being supplied for the property is surrounded by single quotes—for example,
-Filter "name='explorer.exe'". This can cause a lot of frustration if not followed exactly.

adding logging

1. Open the Windows PowerShell console.

2. Use the alias for the Get-WmiObject cmdlet and supply the WIN32_logicalDisk class as the
argument to it. Use the redirection arrow (>) to redirect output to a file called Diskinfo.txt.
Place this file in the C:\Mytest folder. This command is shown here:

gwmi win32_logicaldisk >c:\mytest\DiskInfo.txt

 CHAPTER 11 Querying WMI 319

3. Use the up arrow key and retrieve the previous command. This time, change the class name to
WIN32_OperatingSystem and call the text file OSinfo.txt. This command is shown here:

gwmi win32_operatingsystem >c:\mytest\OSinfo.txt

4. Use the up arrow key and retrieve the previous gwmi WIN32_OperatingSystem command.
Change the WMI class to WIN32_ComputerSystem and use two redirection arrows (>>)
to cause the output to append to the file. Use Notepad to open the file, but include the
Get-WmiObject (gwmi) command, separated by a semicolon. This is illustrated next. (I’ve con-
tinued the command to the next line using the grave accent character (`) for readability.)

gwmi win32_ComputerSystem >>c:\mytest\OSinfo.txt; `
notepad c:\mytest\OSinfo.txt

This concludes the procedure.

Quick check
Q. To select specific properties from an object, what do you need to do on the Select line?

a. You need to separate the specific properties of an object with a comma on the Select line of
the execQuery method.

Q. To avoid error messages, what must be done when selecting individual properties on the
Select line?

a. Errors can be avoided if you make sure each property used is specified on the Select
line. For example, the WMI query is just like a paper bag that gets filled with items that
are picked up using the Select statement. If you do not put something in the paper bag,
you cannot pull anything out of it. In the same manner, if you do not select a property, you
cannot later print or sort on that property. This is exactly the way that an SQL Select state-
ment works.

Q. What can you check for in your script if it fails with an “object does not support this method
or property” error?

a. If you are getting this type of error message, you might want to ensure you have referenced
the property in your Select statement before to trying to work with it in an Output section.
In addition, you may want to check to ensure that the property actually exists.

Choosing specific instances
In many situations, you will want to limit the data you return to a specific instance of a particular
WMI class in the data set. If you go back to your query and add a Where clause to the Select state-
ment, you’ll be able to greatly reduce the amount of information returned by the query. Notice that

320 Windows PowerShell 3 Step by Step

in the value associated with the WMI query, you added a dependency that indicated you wanted only
information with share name C$. This value is not case sensitive, but it must be surrounded with single
quotation marks, as you can see in the WMI Query string in the following script. These single quota-
tion marks are important because they tell WMI that the value is a string value and not some other
programmatic item. Because the addition of the Where statement was the only thing you really added
to the ListShares.ps1 script, I won’t provide a long discussion of the ListSpecificShares.ps1 script.

To limit specific data, do the following:

1. Make a connection to WMI by using the Get-WmiObject cmdlet.

2. Use the Select statement in the WMI Query argument to choose the specific property you are
interested in—for example, Select name.

3. Use the From statement in the WMI Query argument to indicate the class from which you
want to retrieve data—for example, From Win32_Share.

4. Add a Where clause in the WMI Query argument to further limit the data set that is returned.
Make sure the properties specified in the Where clause are first mentioned in the Select state-
ment—for example, Where name.

5. Add an evaluation operator. You can use the equal sign (=), or the less-than (<) or greater-than
(>) symbols—for example, Where name = 'C$'.

Eliminating the WMI Query argument

1. Open the Windows PowerShell ISE or the Windows PowerShell script editor.

2. Declare a variable called $strComputer and assign the WMI shortcut dot (.) to it. The shortcut
dot means, “Connect to the WMI service on the local computer.” This command is shown here:

$strComputer = "."

3. Declare another variable and call it $wmiClass. Assign the string WIN32_Share to the variable.
This code is shown here:

$wmiClass = "win32_Share"

4. Declare a variable and call it $wmiFilter. This variable will be used to hold the string that will
contain the WMI filter to be used with the Get-WmiObject command. The variable and the
associated string value are shown here:

$wmifilter = "name='c$'"

5. Declare a variable called objWMIServices and assign the object that is returned from the
Get-WmiObject cmdlet to the variable. Specify the -computer argument and supply the value

 CHAPTER 11 Querying WMI 321

contained in the $strComputer variable to it. At the end of the line, use the grave accent char-
acter (`) to indicate line continuation. This line of code is shown here:

$objWMIServices = Get-WmiObject -computer $strComputer `

6. Use the -class argument to supply the class name for the WMI query to the Get-WmiObject
cmdlet. The class name to query is contained in the $wmiClass variable. On the same line,
use the -filter argument to supply the filter string contained in the $wmiFilter variable to the
Get-WmiObject cmdlet. This line of code is shown here:

-class $wmiClass -filter $wmiFilter

7. On the next line, use the object contained in the $objWMIServices variable and pipeline it to
the Format-List cmdlet. Use the asterisk to tell the Format-List cmdlet you wish to retrieve all
properties. This line of code is shown here:

$objWMIServices | Format-List *

The completed script is shown here:

$strComputer = "."
$wmiClass = "win32_Share"
$wmiFilter = "name='c$'"
$objWMIServices = Get-WmiObject -computer $strComputer `
 -class $wmiClass -filter $wmiFilter
 $objWMIServices | Format-List *

Sample output is shown here:

Status : OK
Type : 2147483648
Name : C$
__GENUS : 2
__CLASS : Win32_Share
__SUPERCLASS : CIM_LogicalElement
__DYNASTY : CIM_ManagedSystemElement

8. If your results are not similar, compare your script with the ShareNoQuery.ps1 script.

This completes the procedure.

Utilizing an operator
One of the nice things you can do is use greater-than and less-than operators in your evaluation
clause. What is so great about greater-than? It makes working with some alphabetic and numeric
characters easy. If you work on a server that hosts home directories for users (which are often named
after their user names), you can easily produce a list of all home directories from the letters D through
Z by using the > D operation. Keep in mind that D$ is greater than D, and if you really want shares
that begin with the letter E, then you can specify “greater than or equal to E.” This command would
look like >='E'.

322 Windows PowerShell 3 Step by Step

ListGreaterthanShares.ps1

$strComputer = "."
$wmiNS = "root\cimv2"
$wmiQuery = "Select name from win32_Share where name > 'd'"

$objWMIServices = Get-WmiObject -computer $strComputer `
 -namespace $wmiNS -query $wmiQuery
 $objWMIServices | Sort-Object -property name |
 Format-List -property name

Identifying service accounts

1. Open Notepad or some other script editor.

2. On the first line, declare a variable called $strComputer. Use the dot (.) WMI shortcut to point
to the local computer. This line of code is shown here:

$strComputer = "."

3. On the next line, declare a variable called $wmiNS. Assign the string Root\cimv2 to the vari-
able. This will cause the WMI query to use the Root\cimv2 WMI namespace. This line of code is
shown here:

$wmiNS = "root\cimv2"

4. On the next line, declare a variable called $wmiQuery. You will select only the startname prop-
erty and the name property from the WIN32_Service WMI class. This line of code is shown
here:

$wmiQuery = "Select startName, name from win32_service"

5. On the next line, declare the $objWMIServices variable. Use the $objWMIServices variable to
hold the object that comes back from using the Get-WmiObject cmdlet. Use the -computer
argument of the Get-WmiObject cmdlet to point the query to the local computer. To do this,
use the dot (.) value that is contained in the variable $strComputer. Because you will continue
the command on the next line, use the grave accent character (`) to tell Windows PowerShell
to continue the command on the next line. The code that does this is shown here:

$objWMIServices = Get-WmiObject -computer $strComputer `

6. Use the -namespace argument of the Get-WmiObject cmdlet to specify the WMI namespace
specified in the $wmiNS variable. Use the -query argument of the Get- WmiObject cmdlet to
specify the WMI query contained in the variable $wmiQuery. This code is shown here:

-namespace $wmiNS -query $wmiQuery

7. Use the object that comes back from the Get-WmiObject cmdlet that is contained in the
$objWMIServices variable and pipeline it into the Sort-Object cmdlet. Use the Sort-Object

 CHAPTER 11 Querying WMI 323

cmdlet to sort the list first by the startName property and second by the name property. Place
the pipe character at the end of the line because you will pipeline this object into another
cmdlet. The code that does this is shown here:

$objWMIServices | Sort-Object startName, name |

8. Finally, you will receive the pipelined object into the Format-List cmdlet. You first format the
list by the name property from WIN32_Service and then print out the startName. This code is
shown here:

Format-List name, startName

The completed script is shown here:

$strComputer = "."
$wmiNS = "root\cimv2"
$wmiQuery = "Select startName, name from win32_service"

$objWMIServices = Get-WmiObject -computer $strComputer `
 -namespace $wmiNS -query $wmiQuery
 $objWMIServices | Sort-Object startName, name |
 Format-List name, startName

9. Save the script as <yourname>IdentifyServiceAccounts.ps1. Run the script. You should see
output similar that shown here. If not, compare your script to the IdentifyServiceAccounts.ps1
script.

name : BITS
startName : LocalSystem

name : Browser
startName : LocalSystem

name : CcmExec
startName : LocalSystem

name : CiSvc
startName : LocalSystem

This completes the procedure.

Logging service accounts

1. Open the IdentifyServiceAccounts.ps1 script in Notepad or your favorite script editor. Save the
script as <yourname>IdentifyServiceAccountsLogged.ps1.

2. Declare a new variable called $strFile. This variable will be used for the -filePath argument of
the Out-File cmdlet. Assign the string C:\Mytest\ServiceAccounts.txt to the $strFile variable.
This code is shown here:

$strFile = "c:\mytest\ServiceAccounts.txt"

324 Windows PowerShell 3 Step by Step

3. Under the line of code where you declared the $strFile variable, use the New-Variable cmd-
let to create a constant called constASCII. When you assign the constASCII value to the
-name argument of the New-Variable cmdlet, remember to leave off the dollar sign. Use
the -value argument of the New-Variable cmdlet to assign a value of ASCII to the constASCII
constant. Use the -option argument and supply constant as the value for the argument. The
completed command is shown here:

New-Variable -name constASCII -value "ASCII" `
 -option constant

4. At the end of the Format-List line, place the pipe character (|). This is shown here:

Format-List name, startName |

5. On the next line, use the Out-File cmdlet to produce an output file containing the results
of the previous command. Use the -filepath argument to specify the path and file name to
create. Use the value contained in the $strFile variable. To ensure that the output file is easily
read, use ASCII encoding. To do this, use the -encoding argument of the Out-File cmdlet and
supply the value contained in the $constASCII variable. Use the grave accent character (`) to
indicate the command will continue to the next line. The resulting code is shown here:

Out-File -filepath $strFile -encoding $constASCII `

6. On the next line, use two arguments of the Out-File cmdlet. The first argument tells Out-File
to append to a file if it exists. The second argument tells Out-File not to overwrite any existing
files. This code is shown here:

-append -noClobber

7. Save and run your script. You should see a file called ServiceAccounts.txt in your Mytest direc-
tory on drive C. The contents of the file will be similar to the output shown here:

name : AppMgmt
startName : LocalSystem

name : AudioSrv
startName : LocalSystem

name : BITS
startName : LocalSystem

8. If you do not find output similar to this, compare your script with IdentifyServiceAccountsLogged.ps1.

This concludes the procedure.

 CHAPTER 11 Querying WMI 325

Where is the where?
To more easily modify the Where clause in a WMI query, substitute the Where clause with a vari-
able. This configuration can be modified to include command-line input as well. This is shown in the
ListSpecificWhere.ps1 script, which follows.

ListSpecificWhere.ps1

$strComputer = "."
$wmiNS = "root\cimv2"
$strWhere = "'ipc$'"
$wmiQuery = "Select * from win32_Share where name="+$strWhere

"Properties of Share named: " + $strWhere

$objWMIServices = Get-WmiObject -computer $strComputer `
 -namespace $wmiNS -query $wmiQuery
 $objWMIServices |
 Format-List -property [a-z]*

Quick check
Q. To limit the specific data returned by a query, what WQL technique can be used?

a. The Where clause of the WMIquery argument is very powerful in limiting the specific data
returned by a query.

Q. What are three possible operators that can be employed in creating powerful Where
clauses for WMI queries?

a. The equal sign (=) and the greater-than and the less-than symbols (> and <) can be used to
evaluate the data before returning the data set.

Shortening the syntax
Windows PowerShell is a great tool to use interactively from the command line. The short syntax,
cmdlet and function parameters, and shortcut aliases to common cmdlets all work together to create
a powerful command-line environment. WMI also benefits from this optimization. Rather than typ-
ing complete WQL select statements and where clauses and storing them into a variable, and then
using the query parameter from the Get-WMIObject, you can use the -property and -filter parameters
from the cmdlet. Use the -property parameter to replace the property names normally supplied as
part of the select clause, and the -filter parameter to replace the portion of code usually contained in
the where clause of the WQL statement.

326 Windows PowerShell 3 Step by Step

Using the -property parameter
In the code that follows, the traditional WQL select statement retrieves the name and handle
properties from the WIN32_Process WMI class. The $query variable stores the WQL query, and the
Get-WmiObject command utilizes this query to retrieve the desired information from the WMI class.

$query = "Select name, handle from win32_process"
Get-WmiObject -Query $query

You can obtain the exact same information in a single line by using the -class parameter to
specify the WMI class name and the -property parameter to specify the two properties from the
WIN32_Process WMI class to select. The revised code appears here:

Get-WmiObject -Class WIN32_Process -Property name, handle

The difference between the two commands—the one that uses the WQL syntax and the one that
supplies values directly for parameters—is not in the information returned, but rather the approach
to using the Get-WmiObject cmdlet. For some people, the WQL syntax may be more natural, and for
others, the use of direct parameters may be easier. On the back end, WMI treats both types of com-
mands in the same manner.

It is possible to shorten the length of the WQL type of command by supplying the WQL query
directly to the query parameter. This technique appears here:

Get-WmiObject -Query "Select name, handle from win32_process"

For short WQL queries, this technique is perfectly valid; however, for longer WQL queries that
extend to multiple lines of code, it is more readable to store the query in a variable and supply the
variable to the query parameter instead of using the query directly.

Using the -filter parameter
The -filter parameter of the Get-WmiObject cmdlet replaces the where clause of a WQL query. For
example, in the code that follows, the WQL query chooses the name and handle properties from the
WIN32_Process WMI class, where the name of the process begins with a letter greater than t in the
alphabet. The WQL query stored in the $query variable executes via the Get-WmiObject cmdlet, and
the results pipeline to the Format-Table cmdlet, where the column’s name and handle are automati-
cally sized to fit the Windows PowerShell console. The commands appear here:

$query = "Select name, handle from win32_process where name > 't'"
Get-WmiObject -Query $query | Format-Table name, handle -autosize

To perform the exact same WMI query by using the parameters of the Get-WmiObject cmdlet
instead of composing a WQL query, you simply use the property names that follow the select state-
ment in the original WQL query, as well as the filter that follows the where clause. The resulting com-
mand appears here:

Get-WmiObject -Class win32_process -Filter "name > 't'"

 CHAPTER 11 Querying WMI 327

To display succinct output from the previous command, pipeline the results to the Format-Table
cmdlet and select the two properties named in the properties parameter, and use the -autosize switch
to tighten up the output in the Windows PowerShell console. The revised commands, along with the
associated output, appear in Figure 11-2.

FIGURE 11-2 WMI output derived from a WQL query and use of the Get-WmiObject parameters.

Working with software: step-by-step exercises

In the first exercise, you will explore the use of WIN32_product and classes provided by the Windows
installer provider. In the second exercise, you will work with the environment provider.

Using WMI to find installed software

1. Open the Windows PowerShell ISE or your favorite script editor.

2. At the top of your script, declare a variable called $strComputer. Assign the WMI shortcut dot
character (.) to indicate you want to connect to WMI on your local machine. This line of code is
shown here:

$strComputer = "."

3. On the next line, declare the variable $wmiNS, which will be used to hold the WMI namespace
for your query. Assign the string Root\cimv2 to the variable. This line of code is shown here:

$wmiNS = "root\cimv2"

328 Windows PowerShell 3 Step by Step

4. On the next line, you will use the variable $wmiQuery to hold your WMI query. This query will
select everything from the WIN32_product WMI class. This code is shown here:

$wmiQuery = "Select * from win32_product"

5. Because this query can take a rather long time to complete (depending on the speed of your
machine, CPU load, and number of installed applications), use the Write-Host cmdlet to inform
the user that the script could take a while to run. As long as you’re using Write-Host, let’s have
a little fun and specify the -foregroundcolor argument of the Write-Host cmdlet, which will
change the color of your font. I chose blue, but you can choose any color you wish. Use the `n
escape sequence to specify a new line at the end of your command. I used the grave accent
character (`) to break the line of code for readability, but this certainly is not necessary for you.
The completed code is shown here:

Write-Host "Counting Installed Products. This" `
 "may take a little while. " -foregroundColor blue `n

6. On the next line, use the variable $objWMIServices to hold the object that is returned by
the Get-WmiObject cmdlet. Supply the -computer argument with the value contained in the
$strComputer variable. Use the grave accent to continue to the next line. This code is shown
here:

$objWMIServices = Get-WmiObject -computer $strComputer `

7. On the next line, use the -namespace argument to specify the WMI namespace for the WMI
query. Use the value contained in the $wmiNS variable. Use the -query argument to supply the
WMI query contained in the $wmiQuery variable to the Get-WmiObject cmdlet. This line of
code is shown here:

-namespace $wmiNS -query $wmiQuery

8. Use the for statement to print out a progress indicator. Use the variable $i as the counter.
Continue counting until the value of $i is less than or equal to the value of the count prop-
erty of the IwbemObjectSet object contained in the $objWMIServices variable. (If you need to
review the use of the for statement, refer to Chapter 5.) The for statement code is shown here:

for ($i=1; $i -le $objWMIServices.count;$i++)

9. The code that will be run as a result of the for statement uses the Write-Host cmdlet. You will
write “/\” to the console. To keep the Write-Host cmdlet from writing everything on a new line,
use the -noNewLine argument. To make the progress bar different from the first prompt, use
the -foregroundcolor argument and specify an appropriate color. I chose red. This line of code
is shown here:

{Write-Host "/\" -noNewLine -foregroundColor red}

 CHAPTER 11 Querying WMI 329

10. Use the Write-Host cmdlet to print out the number of installed applications on the machine.
To make the value a little easier to read, use two `n escape sequences to produce two blank
lines from the progress indicator. This line of code is shown here:

Write-Host `n`n "There are " $objWMIServices.count `
 " products installed."

11. Save and run your script. Call it <yourname>CountInstalledApplications.ps1. You should see
output similar to that shown here. If you do not, compare it with CountInstalledApplications.ps1.

Counting Installed Products. This may take a little while.

/\
/\
/\/\/\/\/\/\/\

There are 87 products installed.

12. Now you’ll add a timer to your script to see how long it takes to execute. On the fourth line of
your script, under the $wmiQuery line, declare a variable called $dteStart and assign the date
object that is returned by the Get-Date cmdlet to it. This line of code is shown here:

$dteStart = Get-Date

13. At the end of your script, under the last Write-Host command, declare a variable called
$dteEnd and assign the date object that is returned by the Get-Date cmdlet to it. This line of
code is shown here:

$dteEnd = Get-Date

14. Declare a variable called $dteDiff and assign the date object that is returned by the New-
TimeSpan cmdlet to it. Use the New-TimeSpan cmdlet to subtract the two date objects
contained in the $dteStart and $dteEnd variables. The $dteStart variable will go first. This com-
mand is shown here:

$dteDiff = New-TimeSpan $dteStart $dteEnd

15. Use the Write-Host cmdlet to print out the total number of seconds it took for the script to
run. This value is contained in the totalSeconds property of the date object held in the $dteDiff
variable. This command is shown here:

Write-Host "It took " $dteDiff.totalSeconds " Seconds" `
 " for this script to complete"

330 Windows PowerShell 3 Step by Step

16. Save your script as <yourname>CountInstalledApplicationsTimed.ps1. Run your script and
compare your output with that shown here. If your results are not similar, then compare your
script with the CountInstalledApplicationsTimed.ps1 script.

Counting Installed Products. This may take a little while.

/\
/\
/\/\/\/\/\/\/\

There are 87 products installed.
It took 120.3125 Seconds for this script to complete

This concludes the exercise.

In the following exercise, you’ll explore Windows environment variables.

Windows environment variables

1. Open Windows PowerShell.

2. Use the Get-WmiObject cmdlet to view the common properties of the WIN32_Environment
WMI class. Use the gwmi alias to make it easier to type. This command is shown here:

gwmi win32_environment

Partial output from this command is shown here:

VariableValue Name UserName
------------- ---- --------
C:\PROGRA~1\CA\SHARED~1... AVENGINE <SYSTEM>
%SystemRoot%\system32\c... ComSpec <SYSTEM>
NO FP_NO_HOST_CHECK <SYSTEM>

3. To view all the properties of the WIN32_Environment class, pipeline the object returned by
the Get-WmiObject cmdlet to the Format-List cmdlet while specifying the asterisk. Use the up
arrow key to retrieve the previous gwmi command. This command is shown here:

gwmi win32_environment | Format-List *

The output from the previous command will be similar to that shown here:

Status : OK
Name : TMP
SystemVariable : False
__GENUS : 2
__CLASS : Win32_Environment
__SUPERCLASS : CIM_SystemResource

 CHAPTER 11 Querying WMI 331

4. Scroll through the results returned by the previous command, and examine the properties and
their associated values. Name, UserName, and VariableValue are the most important variables
from the class. Use the up arrow key to retrieve the previous gwmi command and change
Format-List to Format-Table. After the Format-Table cmdlet, type the three variables you want
to retrieve: Name, VariableValue, and Username. This command is shown here:

gwmi win32_environment | Format-Table name, variableValue, userName

5. The results from this command will be similar to the partial results shown here:

name variableValue userName
---- ------------- --------
AVENGINE C:\PROGRA~1\CA\SHARED~1... <SYSTEM>
ComSpec %SystemRoot%\system32\c... <SYSTEM>
FP_NO_HOST_CHECK NO <SYSTEM>
INOCULAN C:\PROGRA~1\CA\ETRUST~1 <SYSTEM>

6. Use the up arrow key to retrieve the previous gwmi command, and delete the variable user-
Name and the trailing comma. This command is shown here:

gwmi win32_environment | Format-Table name, variableValue

The results from this command will be similar to those shown here:

name variableValue
---- -------------
AVENGINE C:\PROGRA~1\CA\SHARED~1\SCANEN~1
ComSpec %SystemRoot%\system32\cmd.exe
FP_NO_HOST_CHECK NO
INOCULAN C:\PROGRA~1\CA\ETRUST~1

7. Notice how the spacing is a little strange. To correct this, use the up arrow key to retrieve the
previous command. Add the -autosize argument to the Format-Table command. You can use
tab completion to finish the command by typing -a <tab>. The completed command is shown
here:

gwmi win32_environment | Format-Table name, variableValue -AutoSize

8. Now that you have a nicely formatted list, you’ll compare the results with those produced by
the environment provider. To do this, you’ll use the Env PS drive. Use the Set-Location cmdlet
to set your location to the Env PS drive. The command to do this is shown here. (You can, of
course, use the sl alias if you prefer.)

Set-Location env:

9. Use the Get-ChildItem cmdlet to produce a listing of all the environment variables on the
computer. The command to do this is shown here:

Get-ChildItem

332 Windows PowerShell 3 Step by Step

Partial output from the Get-ChildItem cmdlet is shown here:

Name Value
---- -----
Path C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\Sys...
TEMP C:\DOCUME~1\EDWILS~1.NOR\LOCALS~1\Temp

10. Set your location back to drive C. The command to do this is shown here:

Set-Location c:\

11. Retrieve the alias for the Get-History cmdlet. To do this, use the Get-Alias cmdlet and pipe
the resulting object to the Where-Object. Use the special variable $_ to indicate the current
pipeline object, and look for a match to the definition property that is equal to the Get-History
cmdlet. The command to do this is shown here:

Get-Alias | where definition -eq "Get-History"

The resulting output, shown here, tells you there are three aliases defined for Get-History:

CommandType Name ModuleName
----------- ---- ----------
Alias ghy -> Get-History
Alias h -> Get-History
Alias history -> Get-History

12. Use the up arrow key and retrieve the previous Get-Alias command. Change the definition
from Get-History to Invoke-History. This command is shown here:

Get-Alias | where definition -eq "Invoke-History"

13. The resulting output, shown here, tells you there are two aliases defined for Get-History:

CommandType Name ModuleName
----------- ---- ----------
Alias ihy -> Invoke-History
Alias r -> Invoke-History

14. Use the Get-History cmdlet to retrieve a listing of all the commands you have typed into
Windows PowerShell. I prefer to use ghy for Get-History because of similarity with ihy (for
Invoke-History). The Get-History command using ghy is shown here:

ghy

 CHAPTER 11 Querying WMI 333

15. Examine the output from the Get-History cmdlet. You will see a list similar to the one shown
here:

 1 gwmi win32_environment
 2 gwmi win32_environment | Format-List *
 3 gwmi win32_environment | Format-Table name, variableValue, userName
 4 gwmi win32_environment | Format-Table name, variableValue
 5 gwmi win32_environment | Format-Table name, variableValue -AutoSize
 6 sl env:
 7 gci
 8 sl c:\
 9 Get-Alias | where {$_.definition -eq "Get-History"}
10 Get-Alias | where {$_.definition -eq "Invoke-History"}

16. Produce the listing of environment variables by using the Environment PS drive. This time, you
will do it in a single command. Use Set-Location to set the location to the Env PS drive. Then
continue the command by using a semicolon and then Get-ChildItem to produce the list. Use
the sl alias and the gci alias to type this command. The command is shown here:

sl env:;gci

17. Note that your PS drive is still set to the Env PS drive. Use the Set-Location cmdlet to change
back to the C PS drive. This command is shown here:

sl c:\

18. Use the up arrow key to bring up the sl env:;gci command, and this time, add another semico-
lon and another sl command to change back to the C PS drive. The revised command is shown
here:

sl env:;gci;sl c:\

You should now have output similar to that shown here, and you should also be back at the C
PS drive.

Name Value
---- -----
ALLUSERSPROFILE C:\ProgramData
APPDATA C:\Users\ed.IAMMRED\AppData\Roaming
CommonProgramFiles C:\Program Files\Common Files
CommonProgramFiles(x86) C:\Program Files (x86)\Common Files
CommonProgramW6432 C:\Program Files\Common Files
COMPUTERNAME EDLT
ComSpec C:\WINDOWS\system32\cmd.exe
FP_NO_HOST_CHECK NO
HOMEDRIVE C:
HOMEPATH \Users\ed.IAMMRED
LOCALAPPDATA C:\Users\ed.IAMMRED\AppData\Local
LOGONSERVER \\DC1
NUMBER_OF_PROCESSORS 8

334 Windows PowerShell 3 Step by Step

OS Windows_NT
Path C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32...
PATHEXT .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;....
PROCESSOR_ARCHITECTURE AMD64
PROCESSOR_IDENTIFIER Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
PROCESSOR_LEVEL 6
PROCESSOR_REVISION 2a07
ProgramData C:\ProgramData
ProgramFiles C:\Program Files
ProgramFiles(x86) C:\Program Files (x86)
ProgramW6432 C:\Program Files
PSModulePath C:\Users\ed.IAMMRED\Documents\WindowsPowerShell\Mo...
PUBLIC C:\Users\Public
SESSIONNAME Console
SystemDrive C:
SystemRoot C:\WINDOWS
TEMP C:\Users\ED6C0B~1.IAM\AppData\Local\Temp
TMP C:\Users\ED6C0B~1.IAM\AppData\Local\Temp
USERDNSDOMAIN IAMMRED.NET
USERDOMAIN IAMMRED
USERDOMAIN_ROAMINGPROFILE IAMMRED
USERNAME ed
USERPROFILE C:\Users\ed.IAMMRED
windir C:\WINDOWS

19. Now use the ghy alias to retrieve a history of your commands. Identify the command that
contains your previous gwmi command that uses Format-Table with the -autosize argument.
This command is shown here:

gwmi win32_environment | Format-Table name, variableValue -AutoSize

20. Use the ihy alias to invoke the history command that corresponds to the command identified
in step 19. For me, the command is ihy 5, as shown here:

ihy 5

21. When the command runs, it prints out the value of the command you are running on the first
line. After this, you obtain the results normally associated with the command. Partial output is
shown here:

gwmi win32_environment | Format-Table name, variableValue -AutoSize

name variableValue
---- -------------
FP_NO_HOST_CHECK NO
USERNAME SYSTEM
Path %SystemRoot%\system32;%SystemRoot%;%SystemRoot%\System32\W...
ComSpec %SystemRoot%\system32\cmd.exe
TMP %SystemRoot%\TEMP
OS Windows_NT
windir %SystemRoot%
PROCESSOR_ARCHITECTURE AMD64
TEMP %SystemRoot%\TEMP

 CHAPTER 11 Querying WMI 335

PATHEXT .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC
PSModulePath %SystemRoot%\system32\WindowsPowerShell\v1.0\Modules\
NUMBER_OF_PROCESSORS 8
PROCESSOR_LEVEL 6
PROCESSOR_IDENTIFIER Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
PROCESSOR_REVISION 2a07
TMP %USERPROFILE%\AppData\Local\Temp
TEMP %USERPROFILE%\AppData\Local\Temp
TMP %USERPROFILE%\AppData\Local\Temp
TEMP %USERPROFILE%\AppData\Local\Temp

22. Scroll up in the Windows PowerShell console, and compare the output from the gwmi com-
mand you just ran with the output from the sl env:;gci command.

This concludes this exercise.

Commands used are stored in the OneStepFurtherWindowsEnvironment.txt file.

Chapter 11 quick reference

To Do this

Simplify connecting to WMI while using default security
permissions

Use the Get-WmiObject cmdlet.

Control security when making a remote connection Specify the impersonation levels in your script.

Allow a script to use the credentials of the person launch-
ing the script

Use the impersonate impersonation level.

Allow a script to load a driver Use the loadDriver privilege.

Control security when making a remote connection Specify the impersonation levels in your script.

Get rid of system properties when printing out all proper-
ties of a WMI class

Use the Format-List cmdlet and specify that the -property
argument must be in the range of [a-z]*.

Get the current date and time Use the Get-Date cmdlet.

Subtract two dates Use the New-TimeSpan cmdlet. Supply two date objects
as arguments.

Retrieve a listing of all commands typed during a
Windows PowerShell session

Use the Get-History cmdlet.

Run a command from the Windows PowerShell session
history

Use the Invoke-History cmdlet.

Retrieve the minimum and maximum values from an
object

Use the Measure-Object cmdlet while specifying the
-property argument as well as the -minimum and -maximum
arguments.

Produce paged output from a long-scrolling command Pipeline the resulting object from the command into the
more function.

 337

C H A P T E R 1 2

remoting WMI

after completing this chapter, you will be able to:

■■ Use native WMI remoting to connect to a remote system.

■■ Use Windows PowerShell remoting to run WMI commands on a remote system.

■■ Use the CIM cmdlets to run WMI classes on a remote system.

■■ Receive the results of remote WMI commands.

■■ Run WMI remote commands as a job.

Using WMI against remote systems

Microsoft Windows Management Instrumentation (WMI) remoting is an essential part of Windows
PowerShell. In fact, way back in Windows PowerShell 1.0, WMI remoting was one of the primary ways
of making configuration changes on remote systems. Windows Server 2012 permits remote WMI by
default. The Windows 8 client does not. The best way to manage the Windows 8 client is to use group
policy to permit the use of WMI inbound. Keep in mind, the issue here is the Windows firewall, not
WMI itself. The steps to use group policy to configure WMI appear here:

1. Open the group policy management console.

2. Expand the Computer Config | Policies | Windows Settings | Security Settings | Windows
Firewall With Advanced Security | Windows Firewall With Advanced Security | Inbound Rules
node.

3. Right-click in the working area and choose New Rule.

4. Choose the Predefined option, and select Windows Management Instrumentation (WMI) from
the drop-down list.

5. There are a number of options here, but you should start with one: the (WMI-In) option with
the Domain profile value. If you aren’t sure what you need, then just remember you can come
back and add the others later. Click Next.

6. Allow the connection to finish.

338 Windows PowerShell 3 Step by Step

Until the Windows firewall permits WMI connection, attempts to connect result in a remote pro-
cedure call (RPC) error. This error appears here, where an attempt to connect to a computer named
w8c504 fails due to the firewall not permitting WMI traffic to pass.

PS C:\> gwmi win32_bios -cn w8c504
gwmi : The RPC server is unavailable. (Exception from HRESULT: 0x800706BA)
At line:1 char:1
+ gwmi win32_bios -cn w8c504
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidOperation: (:) [Get-WmiObject], COMException
 + FullyQualifiedErrorId : GetWMICOMException,Microsoft.PowerShell.Commands.
 GetWmiObjectCommand

Additionally, the remote caller must be a member of the local administrators group on the target
machine. By default, members of the Domain Admin group are placed into the local administrators
group when the system joins the domain. If you attempt to make a remote WMI connection without
membership in the local admin group on the target system, an Access Denied error is raised. This
error appears as follows when a user attempts to connect to a remote system without permission:

PS C:\Users\ed.IAMMRED> gwmi win32_bios -cn w8s504
gwmi : Access is denied. (Exception from HRESULT: 0x80070005 (E_ACCESSDENIED))
At line:1 char:1
+ gwmi win32_bios -cn w8s504
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : NotSpecified: (:) [Get-WmiObject],
 UnauthorizedAccessException
 + FullyQualifiedErrorId : System.UnauthorizedAccessException,Microsoft.PowerShell.
 Commands.GetWmiObjectCommand

Important Pay close attention to the specific errors returned by WMI when attempting to
make a remote connection. The error tells you if the problem is related to the firewall or
security access. This information is vital in making remote WMI work.

Supplying alternate credentials for the remote connection
A low-level user can make a remote WMI connection by supplying credentials that have local admin
rights on the target system. The Get-WMIObject Windows PowerShell cmdlet accepts a credential
object. There are two common ways of supplying the credential object for the remote connection.
The first way is to type the domain and the user name values directly into the credential parameter.
When the Get-WMIObject cmdlet runs, it prompts for the password. The syntax of this command
appears here:

PS C:\Users\ed.IAMMRED> gwmi win32_bios -cn w8s504 -Credential iammred\administrator

When you run the command, a dialog box appears prompting for the password to use for the con-
nection. Once supplied, the command continues. The dialog box appears in Figure 12-1.

 CHAPTER 12 Remoting WMI 339

FIGURE 12-1 When run with the credential parameter, the Get-WMIObject cmdlet prompts for the account
password.

Storing the credentials for a remote connection
There is only one problem with supplying the credential directly to the credential parameter for the
Get-WMIObject cmdlet—it requires you to supply the credential each time you run the command.
This requirement is enforced when you use the up arrow key to retrieve the command, as well as for
any subsequent connections to the same remote system.

When opening a Windows PowerShell console session that may involve connection to numerous
remote systems, or even multiple connections to the same system, it makes sense to store the creden-
tial object in a variable for the duration of the Windows PowerShell session. To store your credentials
for later consumption, use the Get-Credential Windows PowerShell cmdlet to retrieve your credentials
and store the resulting credential object in a variable. If you work with multiple systems with different
passwords, it makes sense to create variables that will facilitate remembering which credentials go to
which system. Remember that the Windows PowerShell console has tab expansion; therefore, it is not
necessary to use short cryptic variable names just to reduce typing. The command appearing here
obtains a credential object and stores the resulting object in the $credential variable.

$credential = Get-Credential -Credential iammred\administrator

The use of the credential object to make a remote WMI connection appears here:

PS C:\Users\ed.IAMMRED> $credential = Get-Credential -Credential iammred\administrator
PS C:\Users\ed.IAMMRED> gwmi win32_bios -cn w8s504 -Credential $credential

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 0385-4074-3362-4641-2411-8229-09
Version : VRTUAL - 3000919

When the same query must be executed against remote systems that use the same credential,
the Get-WMIObject cmdlet makes it easy to execute the command. The following code runs the
same query with the same credentials against three different systems. The remote computers are a

340 Windows PowerShell 3 Step by Step

combination of three Windows Server 2012 and Windows 2008 R2 servers. The commands and the
related output appear here:

PS C:\Users\ed.IAMMRED> $credential = Get-Credential -Credential iammred\administrator
PS C:\Users\ed.IAMMRED> $cn = "w8s504","hyperv2","hyperv3"
PS C:\Users\ed.IAMMRED> gwmi win32_bios -cn $cn -Credential $credential

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 0385-4074-3362-4641-2411-8229-09
Version : VRTUAL - 3000919

SMBIOSBIOSVersion : A11
Manufacturer : Dell Inc.
Name : Phoenix ROM BIOS PLUS Version 1.10 A11
SerialNumber : BDY91L1
Version : DELL - 15

SMBIOSBIOSVersion : BAP6710H.86A.0072.2011.0927.1425
Manufacturer : Intel Corp.
Name : BIOS Date: 09/27/11 14:25:42 Ver: 04.06.04
SerialNumber :
Version : INTEL - 1072009

One problem with the preceding output is that it does not contain the name of the remote system.
The returned WMI object contains the name of the system in the __Server variable, but the default
display does not include this information. Therefore, a Select-Object cmdlet (which has an alias of
select) is required to pick up the __server property. The revised command and associated output
appear here:

PS C:\Users\ed.IAMMRED> gwmi win32_bios -cn $cn -Credential $credential | select
smbiosbiosversion, manufacturer, name, serialnumber, __server

smbiosbiosversion : 090004
manufacturer : American Megatrends Inc.
name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
serialnumber : 0385-4074-3362-4641-2411-8229-09
__SERVER : W8S504

smbiosbiosversion : A11
manufacturer : Dell Inc.
name : Phoenix ROM BIOS PLUS Version 1.10 A11
serialnumber : BDY91L1
__SERVER : HYPERV2

smbiosbiosversion : BAP6710H.86A.0072.2011.0927.1425
manufacturer : Intel Corp.
name : BIOS Date: 09/27/11 14:25:42 Ver: 04.06.04
serialnumber :
__SERVER : HYPERV3

 CHAPTER 12 Remoting WMI 341

Besides just using WMI remoting, Windows PowerShell also permits using Windows PowerShell
remoting. The advantage to using Windows PowerShell remoting is that in addition to permit-
ting WMI to connect to remote systems with elevated permissions, Windows PowerShell remoting
also permits running WMI commands with alternate credentials from within the same Windows
PowerShell session against the local computer. WMI does not support alternate credentials for a local
connection, but Windows PowerShell remoting does. In the code that follows, the Get-WMIObject
cmdlet queries the WIN32_loggedonuser WMI class. It returns only the antecedent property from this
association class. The results show that the logged-on user is iammred\ed. Next, the credentials of
the administrator account are retrieved via the Get-Credential Windows PowerShell cmdlet and stored
in the $credential variable. The invoke-Command cmdlet runs the Get-WMIObject cmdlet and queries
the WIN32_loggedonuser WMI class against the local machine using the administrator credentials. The
results reveal all of the logged-on users, not merely the non-admin user, illustrating the different user
context that was used for the query.

PS C:\Users\ed.IAMMRED> (gwmi win32_loggedonuser).antecedent
\\.\root\cimv2:Win32_Account.Domain="IAMMRED",Name="ed"
PS C:\Users\ed.IAMMRED> $credential = Get-Credential iammred\administrator
PS C:\Users\ed.IAMMRED> Invoke-Command -cn localhost -ScriptBlock
 {(gwmi Win32_loggedonuser).antecedent} -Credential $credential
\\.\root\cimv2:Win32_Account.Domain="W8C504",Name="SYSTEM"
\\.\root\cimv2:Win32_Account.Domain="W8C504",Name="LOCAL SERVICE"
\\.\root\cimv2:Win32_Account.Domain="W8C504",Name="NETWORK SERVICE"
\\.\root\cimv2:Win32_Account.Domain="IAMMRED",Name="ed"
\\.\root\cimv2:Win32_Account.Domain="IAMMRED",Name="ed"
\\.\root\cimv2:Win32_Account.Domain="IAMMRED",Name="Administrator"
\\.\root\cimv2:Win32_Account.Domain="IAMMRED",Name="Administrator"
\\.\root\cimv2:Win32_Account.Domain="IAMMRED",Name="Administrator"
\\.\root\cimv2:Win32_Account.Domain="IAMMRED",Name="Administrator"
\\.\root\cimv2:Win32_Account.Domain="IAMMRED",Name="Administrator"
\\.\root\cimv2:Win32_Account.Domain="W8C504",Name="ANONYMOUS LOGON"
\\.\root\cimv2:Win32_Account.Domain="W8C504",Name="DWM-1"
\\.\root\cimv2:Win32_Account.Domain="W8C504",Name="DWM-1"
\\.\root\cimv2:Win32_Account.Domain="W8C504",Name="DWM-2"
\\.\root\cimv2:Win32_Account.Domain="W8C504",Name="DWM-2"
PS C:\Users\ed.IAMMRED>

Using Windows PowerShell remoting to run WMI
Use of the Get-WMIObject cmdlet is a requirement for using WMI to talk to down-level systems—
systems that will not even run Windows PowerShell 2.0. There are several disadvantages to using
native WMI remoting. These appear here:

■■ WMI remoting requires special firewall rules to permit access to client systems.

■■ WMI remoting requires opening multiple holes in the firewall.

■■ WMI remoting requires local administrator rights.

■■ WMI remoting provides no support for alternate credentials on a local connection.

■■ WMI remoting output does not return the name of the target system by default.

342 Windows PowerShell 3 Step by Step

Beginning with Windows PowerShell 2.0, you can use Windows PowerShell remoting to run your
WMI commands. Using Windows PowerShell remoting, you can configure different access rights
for the remote endpoint that do not require admin rights on the remote system. In addition, use of
Enable-PSRemoting simplifies configuration of the firewall and the services. In addition, Windows
PowerShell remoting requires that only a single port be open, not the wide range of ports required by
the WMI protocols (RPC and DCOM). In addition, Windows PowerShell remoting supports alternate
credentials for a local connection. (For more information about Windows PowerShell remoting, see
Chapter 4, “Using PowerShell Remoting and Jobs”).

In the code appearing here, the Get-Credential cmdlet stores a credential object in the $credential
variable. Next, this credential is used with the Invoke-Command cmdlet to run a script block contain-
ing a WMI command. The results return to the Windows PowerShell console.

PS C:\Users\ed.IAMMRED> $credential = Get-Credential iammred\administrator
PS C:\Users\ed.IAMMRED> Invoke-Command -cn w8s504
 -ScriptBlock {gwmi win32_bios} -Credential $credential

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 0385-4074-3362-4641-2411-8229-09
Version : VRTUAL - 3000919
PSComputerName : w8s504

Use Windows PowerShell remoting to communicate to any system that runs Windows PowerShell
2.0 or Windows PowerShell 3.0. As shown here, you can run WMI commands against remote systems
with a single command, and engage multiple operating systems. The nice thing is the inclusion of
the PSComputerName property. Because the Invoke-Command cmdlet accepts an array of computer
names, the command is very simple.

PS C:\Users\ed.IAMMRED> $credential = Get-Credential iammred\administrator
PS C:\Users\ed.IAMMRED> $cn = "dc1","dc3","hyperv1","W8s504"
PS C:\Users\ed.IAMMRED> Invoke-Command -cn $cn -cred $credential -ScriptBlock {gwmi win32_
operatingsystem}

SystemDirectory : C:\Windows\system32
Organization :
BuildNumber : 8504
RegisteredUser : Windows User
SerialNumber : 00184-70000-00072-AA253
Version : 6.2.8504
PSComputerName : W8s504

SystemDirectory : C:\Windows\system32
Organization :
BuildNumber : 7601
RegisteredUser : Windows User
SerialNumber : 55041-507-3502855-84574
Version : 6.1.7601
PSComputerName : hyperv1

 CHAPTER 12 Remoting WMI 343

SystemDirectory : C:\Windows\system32
Organization :
BuildNumber : 6002
RegisteredUser : Windows User
SerialNumber : 55041-222-5263084-76207
Version : 6.0.6002
PSComputerName : dc1

SystemDirectory : C:\Windows\system32
Organization :
BuildNumber : 7601
RegisteredUser : Windows User
SerialNumber : 55041-507-0212466-84605
Version : 6.1.7601
PSComputerName : dc3

Using CIM classes to query WMI classes
There are several ways of using the Common Information Model (CIM) classes to perform remote
WMI queries. The most basic way is to use the Get-CimInstance cmdlet. In fact, this generic method
is required if no specific CIM implementation class exists. There are steps required to use the
Get-CimInstance cmdlet to query a remote system. These steps appear here.

Using CIM to query remote WMI data
Use the New-CimSession cmdlet to create a new CIM session. Store the returned session in a variable.

Supply the stored CIM session from the variable to the -cimsession parameter when querying with
the Get-CIMInstance cmdlet.

In the code that appears here, the New-CimSession cmdlet creates a new CIM session with a target
computer of W8s504 and a user name of Iammred\administrator. The cmdlet returns a CIM session
that it stores in the $w8s504 variable. Next, the Get-CimInstance cmdlet uses the CIM session to con-
nect to the remote w8s504 system and to return the data from the Win32_bios WMI class. The output
is displayed in the Windows PowerShell console.

PS C:\Users\ed.IAMMRED> $w8s504 = New-CimSession -ComputerName w8s504
-Credential iammred\administrator
PS C:\Users\ed.IAMMRED> Get-CimInstance -CimSession $w8s504 -ClassName win32_bios

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 0385-4074-3362-4641-2411-8229-09
Version : VRTUAL - 3000919
PSComputerName : w8s504

Besides automatically returning the target computer name, Get-CimInstance automatically
converts the date from a UTC string to a datetime type. As shown here, an extra step is required to
convert the WMI UTC string to a datetime type:

344 Windows PowerShell 3 Step by Step

PS C:\Users\ed.IAMMRED> $bios = gwmi win32_bios
PS C:\Users\ed.IAMMRED> $bios.ReleaseDate
20090319000000.000000+000
PS C:\Users\ed.IAMMRED> $bios.ConvertToDateTime($bios.ReleaseDate)

Wednesday, March 18, 2009 8:00:00 PM

However, if you use the Get-CIMInstance cmdlet, CIM automatically converts the UTC string to a
datetime type. This appears here:

PS C:\Users\ed.IAMMRED> $bios = Get-CimInstance -CimSession $w8s504 -ClassName win32_bios
PS C:\Users\ed.IAMMRED> $bios.ReleaseDate

Wednesday, March 18, 2009 8:00:00 PM
PS C:\Users\ed.IAMMRED> $bios.ReleaseDate.gettype()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True DateTime System.ValueType

As long as the credentials work, you can create a new CIM session connection for multiple com-
puters, and even for multiple operating systems. This works because the -computername parameter
of the New-CIMSession cmdlet accepts an array of computer names. In the code appearing here, the
New-CIMSession cmdlet creates a new CIM session with two target computers and the same creden-
tials. It then stores the returned CIM session in the $cn variable. Next, the Get-CimInstance cmdlet
queries the Win32_OperatingSystem WMI class from the CIM session stored in the $cn variable. The
code and the results from the code appear here:

PS C:\Users\ed.IAMMRED> $cn = New-CimSession -ComputerName w8s504,w8c504
-Credential iammred\administrator
PS C:\Users\ed.IAMMRED> Get-CimInstance -CimSession $cn -ClassName win32_operatingsystem

System Organization BuildNumber Registered SerialNumber Version PSComputer
Directory User Name
------------ ------------ ----------- ------------ ------------ ------- -----------
C:\Window... 8504 ed 00178-101... 6.2.8504 w8c504
C:\Window... 8504 Windows User 00184-700... 6.2.8504 w8s504

Working with remote results

When working with remote systems, it may be important to consider the network bandwidth and the
cost of repeatedly retrieving unfiltered data. There are basically two choices—the first choice involves
gathering the information and storing it in a local variable. Using this technique, you incur the band-
width cost once, and you can use the same data in multiple ways without incurring the bandwidth hit
again. But if your data changes rapidly, this technique does not help much.

 CHAPTER 12 Remoting WMI 345

Important In potentially bandwidth-constrained situations, it is a best practice to store
data retrieved locally to facilitate reuse of the information at a later time. The easiest place
to store the data is in a variable, but do not forget about storing the data in XML for a more
persisted storage. Using the Export-CliXML cmdlet is extremely easy and preserves the data
relationships well.

In the command appearing here, the Get-CimInstance cmdlet retrieves all of the process informa-
tion from the remote computer session stored in the $session variable. The process information is
stored in the $process variable. Next, the data is explored and the name and process IDs returned.

PS C:\Users\ed.IAMMRED> $process = Get-CimInstance -CimSession $session
-ClassName win32_process
PS C:\Users\ed.IAMMRED> $process | ft name, processID -AutoSize

name processID
---- ---------
System Idle Process 0
System 4
smss.exe 268
csrss.exe 356
csrss.exe 408
wininit.exe 416
winlogon.exe 444
services.exe 508
lsass.exe 516
svchost.exe 608
svchost.exe 644
svchost.exe 716
LogonUI.exe 748
dwm.exe 764
svchost.exe 784
svchost.exe 828
svchost.exe 908
svchost.exe 284
spoolsv.exe 1092
svchost.exe 1144
svchost.exe 1484
svchost.exe 1536
msdtc.exe 1132
csrss.exe 1760
winlogon.exe 1848
dwm.exe 916
taskhostex.exe 520
rdpclip.exe 2172
explorer.exe 2240
svchost.exe 1756
powershell.exe 760
conhost.exe 2276
more.com 2468
WmiPrvSE.exe 496

346 Windows PowerShell 3 Step by Step

Upon examining the data, the next command returns only processes with the name svchost.exe.
Once again, the data is displayed in a table.

PS C:\Users\ed.IAMMRED> $process | where name -eq 'svchost.exe' | ft name, processID
-AutoSize

name processID
---- ---------
svchost.exe 608
svchost.exe 644
svchost.exe 716
svchost.exe 784
svchost.exe 828
svchost.exe 908
svchost.exe 284
svchost.exe 1144
svchost.exe 1484
svchost.exe 1536
svchost.exe 1756

Now a different property needs to be added to the data—the commandline property, which is
used to launch the process. This information provides clues as to what process runs in the particular
svchost.exe process. The command appears here:

PS C:\Users\ed.IAMMRED> $process | where name -eq 'svchost.exe' | ft name, processID,
commandline -AutoSize

name processID commandline
---- --------- -----------
svchost.exe 608 C:\Windows\system32\svchost.exe -k DcomLaunch
svchost.exe 644 C:\Windows\system32\svchost.exe -k RPCSS
svchost.exe 716 C:\Windows\System32\svchost.exe -k LocalServiceNetworkRestricted
svchost.exe 784 C:\Windows\system32\svchost.exe -k netsvcs
svchost.exe 828 C:\Windows\system32\svchost.exe -k LocalService
svchost.exe 908 C:\Windows\system32\svchost.exe -k NetworkService
svchost.exe 284 C:\Windows\system32\svchost.exe -k LocalServiceNoNetwork
svchost.exe 1144 C:\Windows\System32\svchost.exe -k LocalSystemNetworkRestricted
svchost.exe 1484 C:\Windows\System32\svchost.exe -k termsvcs
svchost.exe 1536 C:\Windows\system32\svchost.exe -k ICService
svchost.exe 1756 C:\Windows\system32\svchost.exe -k NetworkServiceNetworkRestricted

Now, home in on the data a bit more to see which of the svchost.exe processes requires the largest
working set size of memory, and is using the most kernel mode time. The answer to the question of
which instance uses most resources appears in the code is shown here:

PS C:\Users\ed.IAMMRED> $process | where name -eq 'svchost.exe' | ft processID, workingset
size, kernel* -AutoSize

processID workingsetsize KernelModeTime
--------- -------------- --------------
 608 8998912 115312500
 644 7143424 3281250
 716 15360000 31250000

 CHAPTER 12 Remoting WMI 347

 784 32837632 29218750
 828 11382784 8906250
 908 23146496 5781250
 284 10878976 1875000
 1144 15548416 17968750
 1484 31571968 45156250
 1536 7712768 43125000
 1756 4079616 0

The second approach involves filtering the data at the source and only returning the needed infor-
mation to the local client machine. There are two ways of doing this: the first is to use the Windows
PowerShell -property and -filter parameters to reduce the data returned; the second is to use a native
WQL query to reduce the data.

reducing data via Windows PowerShell parameters
The first method to reduce data and filter it at the source involves using two Windows PowerShell
parameters. The first parameter, the -property parameter, reduces properties returned, but it does
not reduce instances. The second parameter, the -filter parameter, reduces the instances returned, but
does not reduce the number of properties. For example, the code that follows retrieves only the name
and the start mode of services on a remote server named w8s504. The command executes as the
administrator from the domain.

$session = New-CimSession -ComputerName w8s504 -Credential iammred\administrator
Get-CimInstance -ClassName win32_service -CimSession $session -Property name, startmode

The command that follows uses the previously created session on the remote computer named
w8s504, and this time it introduces the -filter parameter as well. Now the command returns the name
and start mode of only the running services on the remote system. The services are sorted by start
mode, and a table displays the results. The command and the associated output appear here:

PS C:\Users\ed.IAMMRED> Get-CimInstance -ClassName win32_service -CimSession $session
-Property name, startmode -Filter "state = 'running'" | sort startmode | ft name, startmode
-AutoSize

name startmode
---- ---------
NlaSvc Auto
MSDTC Auto
Netlogon Auto
Winmgmt Auto
nsi Auto
Power Auto
ProfSvc Auto
RpcEptMapper Auto
MpsSvc Auto
RpcSs Auto
Schedule Auto
SENS Auto
ShellHWDetection Auto
Spooler Auto

348 Windows PowerShell 3 Step by Step

Themes Auto
TrkWks Auto
UALSVC Auto
SamSs Auto
LSM Auto
WinRM Auto
LanmanWorkstation Auto
BFE Auto
BrokerInfrastructure Auto
CryptSvc Auto
lmhosts Auto
Dhcp Auto
Dnscache Auto
DPS Auto
EventLog Auto
EventSystem Auto
DcomLaunch Auto
gpsvc Auto
IKEEXT Auto
iphlpsvc Auto
FontCache Auto
LanmanServer Auto
PolicyAgent Manual
W32Time Manual
vmicvss Manual
vmictimesync Manual
vmicshutdown Manual
vmickvpexchange Manual
vmicheartbeat Manual
BITS Manual
TermService Manual
CertPropSvc Manual
Netman Manual
SessionEnv Manual
netprofm Manual
PlugPlay Manual
UmRdpService Manual
Appinfo Manual

You can obtain the same results by using a WQL query. The easiest way to do this is to create a
new variable named $query to hold the WQL query. In the WQL query, choose the WMI properties
and the WMI class name, and limit the instances to only those that are running. Next, supply the
WMI query stored in the $query variable to the -query parameter of the Get-CimInstance cmdlet.
The parameter sets do not permit use of the -query parameter at the same time as the use of the
-classname parameter or the -property or -filter parameter. Once the change is made, the sorting and
formatting of the output is the same. The results, as expected, are the same as well. The code and the
output associated with the code appear here:

PS C:\Users\ed.IAMMRED> $query = "Select name, startmode from win32_Service where state =
'running'"
PS C:\Users\ed.IAMMRED> Get-CimInstance -Query $query -CimSession $session | sort
startmode | ft name, startmode -AutoSize

 CHAPTER 12 Remoting WMI 349

name startmode
---- ---------
NlaSvc Auto
MSDTC Auto
Netlogon Auto
Winmgmt Auto
nsi Auto
Power Auto
ProfSvc Auto
RpcEptMapper Auto
MpsSvc Auto
RpcSs Auto
Schedule Auto
SENS Auto
ShellHWDetection Auto
Spooler Auto
Themes Auto
TrkWks Auto
UALSVC Auto
SamSs Auto
LSM Auto
WinRM Auto
LanmanWorkstation Auto
BFE Auto
BrokerInfrastructure Auto
CryptSvc Auto
lmhosts Auto
Dhcp Auto
Dnscache Auto
DPS Auto
EventLog Auto
EventSystem Auto
DcomLaunch Auto
gpsvc Auto
IKEEXT Auto
iphlpsvc Auto
FontCache Auto
LanmanServer Auto
PolicyAgent Manual
W32Time Manual
vmicvss Manual
vmictimesync Manual
vmicshutdown Manual
vmickvpexchange Manual
vmicheartbeat Manual
BITS Manual
TermService Manual
CertPropSvc Manual
Netman Manual
SessionEnv Manual
netprofm Manual
PlugPlay Manual
UmRdpService Manual
Appinfo Manual

350 Windows PowerShell 3 Step by Step

Running WMI jobs

If DCOM is not an issue and you are using the Get-WMIObject cmdlet to work with remote sys-
tems, it is easy to run a remote WMI job. To do this, use the Get-WMIObject cmdlet and specify the
-asjob parameter. Once you do this, use the Get-Job cmdlet to check on the status of the job, and
use Receive-Job to receive the job results. (For more information about Windows PowerShell remot-
ing and jobs, see Chapter 4.) In the following code, the Get-WMIObject cmdlet retrieves information
from the Win32_Bios WMI class from a machine named dc3. The -asjob switched parameter is used to
ensure that the command runs as a job. The output is a pswmijob object.

PS C:\Users\administrator.IAMMRED> gwmi win32_bios -ComputerName dc3 -AsJob

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
2 Job2 WmiJob Running True dc3

The Get-Job cmdlet is used to retrieve the status of the WMI job. From the output appearing here,
it is apparent that the job with an ID of 2 has completed, and that the job has more data to deliver.

PS C:\Users\administrator.IAMMRED> Get-Job -id 2

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
2 Job2 WmiJob Completed True dc3

As with any other job in Windows PowerShell, to receive the results of the WMI job, use the
Receive-Job cmdlet. This appears here:

PS C:\Users\administrator.IAMMRED> Receive-Job -id 2

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 8994-9999-0865-2542-2186-8044-69
Version : VRTUAL - 3000919

If you do not have DCOM and RPC access to the remote system, you can use the Invoke-Command
cmdlet to run the WMI command on the remote system as a job. To do this, use the -asjob parameter on
the Invoke-Command cmdlet. This technique appears here, where first the Get-Credential cmdlet creates
a new credential object for the remote system. The Invoke-Command cmdlet uses Windows PowerShell
remoting to connect to the remote system and query WMI by using the Get-WMIObject cmdlet to ask
for information from the WIN32_Service class. The -asjob parameter causes the query to occur as a job.

PS C:\Users\ed.IAMMRED> $credential = Get-Credential iammred\administrator
PS C:\Users\ed.IAMMRED> Invoke-Command -ComputerName w8s504 -Credential $credential
-ScrtBlock {gwmi win32_service} -AsJob

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
4 Job4 RemoteJob Running True w8s504

 CHAPTER 12 Remoting WMI 351

The Get-Job cmdlet queries for the status of job 4, and as shown following, the job has completed
and it has more data. Notice this time that the job is of type remotejob, not wmijob, as was created
earlier. Next, the Receive-Job cmdlet is used to receive the results of the WMI query. The -keep switch
tells Windows PowerShell to retain the results for further analysis.

PS C:\Users\ed.IAMMRED> Get-Job -Id 4

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
4 Job4 RemoteJob Completed True w8s504

PS C:\Users\ed.IAMMRED> Receive-Job -id 4 -Keep

ExitCode : 1077
Name : AeLookupSvc
ProcessId : 0
StartMode : Manual
State : Stopped
Status : OK
PSComputerName : w8s504

ExitCode : 1077
Name : ALG
ProcessId : 0
StartMode : Manual
State : Stopped
Status : OK
PSComputerName : w8s504
<output truncated>

You can also use the CIM cmdlets as jobs by using the Invoke-Command cmdlet. The following
example uses Get-Credential to retrieve a credential object. Next, the Invoke-Command cmdlet runs
the Get-CimInstance cmdlet on a remote computer named w8s504. The command runs as a job. The
Get-Job cmdlet checks on the status of the job, and the Receive-Job cmdlet retrieves the results. The
code and output appear here:

PS C:\Users\ed.IAMMRED> $credential = Get-Credential iammred\administrator
PS C:\Users\ed.IAMMRED> Invoke-Command -ComputerName w8s504 -ScriptBlock {Get-CimInstance
win32_bios} -Credential $credential -AsJob

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
8 Job8 RemoteJob Running True w8s504

PS C:\Users\ed.IAMMRED> Get-Job -Id 8

Id Name PSJobTypeName State HasMoreData Location
-- ---- ------------- ----- ----------- --------
8 Job8 RemoteJob Completed True w8s504

PS C:\Users\ed.IAMMRED> Receive-Job -Id 8

352 Windows PowerShell 3 Step by Step

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 0385-4074-3362-4641-2411-8229-09
Version : VRTUAL - 3000919
PSComputerName : w8s504

Using Windows PowerShell remoting and WMI:
Step-by-step exercises

In this exercise, you will practice using Windows PowerShell remoting to run remote commands. For
the purpose of this exercise, you can use your local computer, but commands designed to fail (in the
exercise) will more than likely succeed instead of creating the errors appearing here.

Using PowerShell remoting to retrieve remote information

1. Log on to your computer with a user account that does not have administrator rights.

2. Open the Windows PowerShell console.

3. Use the Get-CimInstance cmdlet to retrieve process information from a remote system that
has WMI remoting enabled on it. Do not supply alternate credentials. The command appears
here:

Get-CimInstance -CimSession w8s504 -ClassName win32_process

4. The command fails due to an Access Denied error. Now create a new CIM session to the
remote system and connect with alternate credentials. Store the CIM session in a variable
named $session. This command appears following. (Use a remote system accessible to you and
credentials appropriate to that system.)

$session = New-CimSession -Credential iammred\administrator -ComputerName w8s504

5. Use the stored CIM session from the $session variable to retrieve process information from the
remote system. The command appears here:

Get-CimInstance -CimSession $session -ClassName win32_process

6. Use the stored CIM session from the $session variable to retrieve the name and the status of
all services on the remote system. Sort the output by state, and format a table with the name
and the state. The command appears here:

Get-CimInstance -CimSession $session -ClassName win32_service -Property name, state |
sort state | ft name, state -AutoSize

 CHAPTER 12 Remoting WMI 353

7. Use the Get-WMIObject cmdlet to run a WMI command on a remote system. Use the Win32_
Bios WMI class and target the same remote system you used earlier. Specify appropriate
credentials for the connection. Here is an example:

$credential = Get-Credential iammred\administrator
Get-WmiObject -Class win32_bios -ComputerName w8s504 -Credential $credential

8. Use Windows PowerShell remoting by using the Invoke-Command cmdlet to run a WMI
command against a remote system. Use the credentials you stored earlier. Use the Get-
CimInstance cmdlet to retrieve BIOS information from WMI. The command appears here:

Invoke-Command -ComputerName w8s504 -ScriptBlock {Get-CimInstance win32_bios} -Credential
$credential

This concludes the exercise. Leave the Windows PowerShell console open for the next exercise.

In the following exercise, you will create and receive Windows PowerShell jobs.

Creating and receiving WMI jobs

1. Open the Windows PowerShell console as a non-elevated user.

2. Use the Get-WMIObject cmdlet to retrieve BIOS information from a remote system. Use the
-asjob parameter to run the command as a job. Use the credentials you stored in the $creden-
tial variable in the previous exercise.

Get-WmiObject win32_bios -ComputerName w8s504 -Credential $credential -AsJob

3. Check on the success or failure of the job by using the Get-Job cmdlet. Make sure you use the
job ID from the previous command. A sample appears here:

Get-Job -Id 10

4. If the job was successful, receive the results of the job by using the Receive-Job cmdlet. Do
not bother with storing the results in a variable or keeping the results because you will not
need them.

5. Create a new PowerShell session object by using the New-PSSession cmdlet. Store the results
in a variable named $psSession. The command appears following. (Use appropriate computer
names and credentials for your network.)

$PSSession = New-PSSession -Credential iammred\administrator -ComputerName w8s504

6. Use the Invoke-Command cmdlet to make the Get-WMIObject cmdlet retrieve BIOS informa-
tion from the remote system. Use the session information stored in the $psSession variable.
Make sure you use the -asjob parameter with the command. The command appears here:

Invoke-Command -Session $PSSession -ScriptBlock {gwmi win32_bios} -AsJob

354 Windows PowerShell 3 Step by Step

7. Use the Get-Job cmdlet with the job ID returned by the previous command to check on the
status of the job. The command will be similar to the one shown here:

Get-Job -id 12

8. Use the Receive-Job cmdlet to retrieve the results of the WMI command. Store the returned
information in a variable named $bios. The command appears here (ensure you use the job ID
number from your system):

$bios = Receive-Job -id 12

9. Now query the BIOS version by accessing the version property from the $bios variable. This
appears here:

$bios.Version

This concludes the exercise.

Chapter 12 quick reference

To Do this

Retrieve WMI information from a remote legacy system Use the Get-WMIObject cmdlet and specify credentials as
needed, and the target system.

Retrieve WMI information from a Windows 8 system or a
Windows Server 2012 system

Use the Get-CimInstance cmdlet and specify the target
computer and WMI class.

Run a WMI command on multiple Windows 8 or Windows
Server 2012 computers

Use the New-CIMSession cmdlet to create a CIM session
for the multiple systems. Then specify that session for
Get-CimInstance.

Filter returning WMI data Use the -filter parameter with either Get-WMIObject or
Get-CimInstance.

Reduce the number of returned properties Use the -property parameter with either Get-WMIObject
or Get-CimInstance.

Use a legacy WQL type of query Use the -query parameter with either Get-WMIObject or
Get-CimInstance.

Retrieve the WMI results with a job Use the Start-Job and Receive-Job cmdlets with Get-
CimInstance or the -asjob parameter with Get-WmiObject.

 355

C H A P T E R 1 3

Calling WMI Methods
on WMI Classes

after completing this chapter, you will be able to:

■■ Use WMI cmdlets to execute instance methods.

■■ Use WMI cmdlets to execute static methods.

Using WMI cmdlets to execute instance methods

There are actually several ways to call Microsoft Windows Management Instrumentation (WMI)
methods in Windows PowerShell. One reason for this is that some WMI methods are instance meth-
ods, which means they only work on an instance of a class. Other methods are static methods, which
mean they do not operate on an instance of the class. For example, the Terminate method from
the WIN32_Process class is an instance method—it will only operate against a specific instance of the
WIN32_Process class. If you do not have a reference to a process, you cannot terminate the process—
which makes sense. On the other hand, if you want to create a new instance of a WIN32_Process class,
you do not grab a reference to an instance of the class. For example, you do not grab an instance of
a running Calculator process to create a new instance of a Notepad process. Therefore, you need a
static method that is always available.

Let’s examine the first of these two approaches—using instance methods—with a short example.
First, create an instance of notepad.exe. Then use the Get-WmiObject cmdlet to view the process. (As
you may recall from earlier chapters, gwmi is an alias for Get-WmiObject). This appears here:

PS C:\> Start-Process notepad
PS C:\> gwmi win32_process -Filter "name = 'notepad.exe'"

__GENUS : 2
__CLASS : Win32_Process
__SUPERCLASS : CIM_Process
__DYNASTY : CIM_ManagedSystemElement
__RELPATH : Win32_Process.Handle="1888"
__PROPERTY_COUNT : 45
__DERIVATION : {CIM_Process, CIM_LogicalElement, CIM_ManagedSystemElement}
__SERVER : W8C504

356 Windows PowerShell 3 Step by Step

__NAMESPACE : root\cimv2
__PATH : \\W8C504\root\cimv2:Win32_Process.Handle="1888"
Caption : notepad.exe
CommandLine : "C:\Windows\system32\notepad.exe"
CreationClassName : Win32_Process
CreationDate : 20120707150100.342933-240
CSCreationClassName : Win32_ComputerSystem
CSName : W8C504
Description : notepad.exe
ExecutablePath : C:\Windows\system32\notepad.exe
ExecutionState :
Handle : 1888
HandleCount : 75
InstallDate :
KernelModeTime : 156250
MaximumWorkingSetSize : 1380
MinimumWorkingSetSize : 200
Name : notepad.exe
OSCreationClassName : Win32_OperatingSystem
OSName : Microsoft Windows 8
 Pro|C:\Windows|\Device\Harddisk0\Partition2
OtherOperationCount : 67
OtherTransferCount : 110
PageFaults : 1559
PageFileUsage : 1236
ParentProcessId : 2964
PeakPageFileUsage : 1236
PeakVirtualSize : 91176960
PeakWorkingSetSize : 6088
Priority : 8
PrivatePageCount : 1265664
ProcessId : 1888
QuotaNonPagedPoolUsage : 8
QuotaPagedPoolUsage : 174
QuotaPeakNonPagedPoolUsage : 8
QuotaPeakPagedPoolUsage : 175
ReadOperationCount : 1
ReadTransferCount : 60
SessionId : 2
Status :
TerminationDate :
ThreadCount : 1
UserModeTime : 156250
VirtualSize : 91172864
WindowsVersion : 6.2.8504
WorkingSetSize : 6234112
WriteOperationCount : 0
WriteTransferCount : 0
PSComputerName : W8C504
ProcessName : notepad.exe
Handles : 75
VM : 91172864
WS : 6234112
Path : C:\Windows\system32\notepad.exe

 CHAPTER 13 Calling WMI Methods on WMI Classes 357

Once you have the instance of the Notepad process you want to terminate, there are at least four
choices to stop the process:

■■ You can call the method directly using dotted notation (because there is only one instance of
notepad).

■■ You can store the reference in a variable and then terminate it directly.

■■ You can use the Invoke-WmiMethod cmdlet.

■■ You can use the [wmi] type accelerator.

These techniques are described in the following sections.

Using the terminate method directly
Notice that each time the method is called, a ReturnValue property is returned from the method call.
This value is used to determine if the method completed successfully. Return codes are documented
for the terminate method on MSDN (each method has its return codes detailed on MSDN).

Because there is only one instance of the notepad.exe process running on the system, it is possible
to use the group-and-dot process. Grouping characters (that is, opening and closing parentheses)
placed around the expression return an instance of the object. From there, you can directly call the
terminate method by using dotted notation. An example of this syntax appears next. (This technique
works in the same manner when there is more than one instance of the object.)

PS C:\Users\ed.IAMMRED> (gwmi win32_process -Filter "name = 'notepad.exe'").terminate()

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0
PSComputerName :

The second way of calling the terminate method directly is to use WMI to return an instance of the
object, store the returned object in a variable, and then call the method via dotted notation.

To directly call an instance method, use the Get-WmiObject cmdlet to return objects containing
an instance method, and store the returned object in a variable. Once stored, instance methods are
directly available to you.

358 Windows PowerShell 3 Step by Step

The example that follows uses the group-and-dot dotted notation to call the method. In this
example, two instances of the notepad.exe process start. The Get-WmiObject cmdlet returns both
instances of the process and stores them in a variable. Next, dotted notation calls the terminate
method. This technique of calling the method is new for Windows PowerShell 3.0. In Windows
PowerShell 2.0, a direct call to the terminate method fails because the object contained in the variable
is an array.

note Tab expansion does not enumerate the terminate method when the underlying
object is an array; therefore, this is one instance where you will need to type out the entire
method name.

PS C:\> notepad
PS C:\> notepad
PS C:\> $a = gwmi win32_process -Filter "name = 'notepad.exe'"
PS C:\> $a.terminate()

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0
PSComputerName :

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0
PSComputerName :

Using the Invoke-WmiMethod cmdlet
If you want to use the Invoke-WmiMethod Windows PowerShell cmdlet to call an instance method,
you must pass a path to the instance to be operated upon. The easiest way to obtain the path to
the instance is to first perform a WMI query, and then to use the __RelPath system property. The

 CHAPTER 13 Calling WMI Methods on WMI Classes 359

__RelPath system property contains the relative path to the instance of the class. In the example that
appears here, an instance of the notepad.exe process starts. Next, the Get-WmiObject cmdlet retrieves
an instance of the process. Next, the __RELPATH system property is retrieved from the object stored
in the $a variable.

PS C:\> notepad
PS C:\> $a = gwmi win32_process -Filter "name = 'notepad.exe'"
PS C:\> $a.__RELPATH
Win32_Process.Handle="1872"

If working against a remote machine, you will want the complete path to the instance. The com-
plete path includes the machine name and the WMI namespace, as well as the class and the key to the
class. The complete path appears in the __Path system property as shown following. (Do not get con-
fused; the WIN32_Process WMI class also contains a path property). The complete path to the current
notepad.exe process stored in the $a variable appears here:

PS C:\> $a.__PATH
\\W8C504\root\cimv2:Win32_Process.Handle="1872"

If you have multiple instances of the notepad.exe process stored in the $a variable, you can still
access the __path and __relpath properties. This appears here:

PS C:\> notepad
PS C:\> notepad
PS C:\> notepad
PS C:\> $a = gwmi win32_process -Filter "name = 'notepad.exe'"
PS C:\> $a.__RELPATH
Win32_Process.Handle="1644"
Win32_Process.Handle="2940"
Win32_Process.Handle="828"
PS C:\> $a.__PATH
\\W8C504\root\cimv2:Win32_Process.Handle="1644"
\\W8C504\root\cimv2:Win32_Process.Handle="2940"
\\W8C504\root\cimv2:Win32_Process.Handle="828"

As shown following, first create an instance of the Notepad process, use the Get-WmiObject cmdlet
to retrieve that instance of the process, display the value of the __RELPATH property, and then call
the Invoke-WmiMethod cmdlet. When calling the Invoke-WmiMethod cmdlet, pass the path to the
instance and the name of the method to use. This appears in the following commands:

PS C:\> notepad
PS C:\> $a = gwmi win32_process -Filter "name = 'notepad.exe'"
PS C:\> $a.__RELPATH
Win32_Process.Handle="1264"
PS C:\> Invoke-WmiMethod -Path $a.__RELPATH -Name terminate

360 Windows PowerShell 3 Step by Step

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0
PSComputerName :

Using the [wmi] type accelerator
Another way to call an instance method is to use the [wmi] type accelerator. The [wmi] type accelera-
tor works with WMI instances. Therefore, if you pass a path to the [wmi] type accelerator, you can call
instance methods directly. For this example, start an instance of the Notepad process. Next, use the
Get-WmiObject cmdlet to retrieve all instances of Notepad (there is only one instance). Next, pass the
value of the __RELPATH system property to the [wmi] type accelerator. This command returns the
entire instance of the WIN32_Process class. That is, it returns all properties and methods that are avail-
able. All of the properties associated with the WIN32_Process WMI class (the same properties shown
earlier) for the specific instance of WIN32_Process are available via the __RelPath system property
(keep in mind that __RelPath is preceded with two underscores—a double underscore—not one). To
see this object in action, select only the name property from the object and display it on the screen.
To this point, you can retrieve a specific instance of a WIN32_Process WMI class via the [wmi] type
accelerator. Therefore, it is time to call the Terminate method. This technique appears here, along with
the associated output:

PS C:\> notepad
PS C:\> $a = gwmi win32_process -Filter "name = 'notepad.exe'"
PS C:\> [wmi]$a.__RELPATH | select name

name

notepad.exe
PS C:\> ([wmi]$a.__RELPATH).terminate()

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0
PSComputerName :

 CHAPTER 13 Calling WMI Methods on WMI Classes 361

Using WMI to work with static methods

When working with WMI and Windows PowerShell, it is common to think about using the
Get-WmiObject cmdlet. Unfortunately, when using the Get-WmiObject cmdlet with the Win32_
SecurityDescriptorHelper class, nothing happens. When you attempt to pipeline the results to Get-
Member, an error is produced. The two commands appear here (note that gwmi is an alias for Get-
WmiObject, and gm is an alias for Get-Member):

PS C:\> gwmi win32_SecurityDescriptorHelper
PS C:\> gwmi win32_SecurityDescriptorHelper | gm
gm : No object has been specified to the Get-Member cmdlet.
At line:1 char:39
+ gwmi win32_SecurityDescriptorHelper | gm
+ ~~
 + CategoryInfo : CloseError: (:) [Get-Member], InvalidOperationException
 + FullyQualifiedErrorId : NoObjectInGetMember,Microsoft.PowerShell.Commands.
 GetMemberCommand

Look up the class in the Windows Management Instrumentation Tester (WbemTest). The WbemTest
utility always exists with WMI. To find it, you can type WbemTest from within Windows PowerShell.
From WbemTest, you can see that Win32_SecurityDescriptorHelper is a dynamic class, and that there
are many methods available from the class. This appears in Figure 13-1.

FIGURE 13-1 The WbemTest utility shows that the Win32_SecurityDescriptorHelper WMI class is dynamic and
contains many methods.

When you click the Instances button (the sixth button from the top on the right side), you will
see that there are no instances available. Next, click the Show MOF button (the third button from
the top on the right side), and you’ll see that all methods are implemented. A method will only work
if it is marked as “implemented.” For example, the WIN32_Processor WMI class has two methods

362 Windows PowerShell 3 Step by Step

listed—Reset and SetPowerState—but unfortunately, neither method is implemented, and therefore
neither method works (in the case of WIN32_Processor, the methods are defined on the abstract class
CIM_LogicalDevice and are inherited). The MOF description for the Win32_SecurityDescriptorHelper
WMI class appears in Figure 13-2.

FIGURE 13-2 The Win32_SecurityDescriptorHelper methods are implemented. They are also static.

Notice that each method is static. Static methods do not use an instance of the WMI class—
the Get-WmiObject command does not work with Win32_SecurityDescriptorHelper because
Get-WmiObject returns instances of the class. With this WMI class, there are no instances.

Perhaps the easiest way to work with the static WMI method is to use the [wmiclass] type accel-
erator. The SDDLToBinarySD method will translate a Security Descriptor Definition Language (SDDL)
string into binary byte array security descriptor (binary SD) format. The best way to talk about this
technique is to walk through an example of converting an SDDL string to binary SD format. First, you
need to obtain an SDDL string—you can do that by using the Get-Acl cmdlet. The first thing to do is
give the Get-Acl cmdlet (ACL stands for Access Control List) the path to a file on your computer. Then
store the resulting object in the $acl variable, and examine the SDDL string associated with the file by
querying the SDDL property. These two lines of code appear here:

$acl = Get-Acl C:\bootmgr
$acl.Sddl

The two commands and associated output appear in Figure 13-3.

FIGURE 13-3 Use the Get-Acl cmdlet to retrieve the ACL from a directory. Next, obtain the SDDL via the sddl
property.

 CHAPTER 13 Calling WMI Methods on WMI Classes 363

To convert the SDDL string to binary SD format, use the [wmiclass] type accelerator and call the
method directly while supplying an SDDL string to the SDDLToBinarySD method. The syntax for the
command appears here:

([wmiclass]"Win32_SecurityDescriptorHelper").SDDLToBinarySD($acl.Sddl)

One thing that is a bit confusing is that in Windows PowerShell, double colons are required to call
a static method. For example, to obtain the sine of a 45 degree angle, use the SIN static method from
the system.math class. This appears here:

[math]::sin(45)

But, here, in WMI, there appears to be no difference between calling a static method or calling an
instance method.

All the methods return both the returnvalue property, which provides the status of the command,
and the specific output for the converted security descriptor. To retrieve only the binary SD output,
you can add that to the end of the method call. The syntax of this command appears here:

([wmiclass]"Win32_SecurityDescriptorHelper").SDDLToBinarySD($acl.Sddl).BinarySD

One of the cool things that you can do with the static methods from the Win32_
SecurityDescriptorHelper class is convert an SDDL security descriptor into an instance of the Win32_
SecurityDescriptor WMI class. The Win32_SecurityDescriptor WMI class is often used to provide secu-
rity for various resources. For example, if you create a new share and want to assign security to the
share, you will need to provide an instance of Win32_SecurityDescriptor. Using the SDDLToWin32SD
method, you can use an SDDL string to get the Win32_SecurityDescriptor you need. To illustrate using
the SDDLToWin32SD method, use the Invoke-WmiMethod cmdlet to perform the conversion. The fol-
lowing one-line command illustrates using the Invoke-WmiMethod cmdlet to call the SDDLToWin32SD
method.

PS C:\> Invoke-WmiMethod -Class Win32_SecurityDescriptorHelper -Name SDDLToWin32SD
-ArgumentList $acl.Sddl

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
Descriptor : System.Management.ManagementBaseObject
ReturnValue : 0
PSComputerName :

The other WMI methods from this class behave in a similar fashion, and therefore will not be
explored.

364 Windows PowerShell 3 Step by Step

Executing instance methods: step-by-step exercises

In this exercise, you will use the terminate instance method from the WIN32_Process WMI class. This
provides practice calling WMI instance methods. In the next exercise, you will practice calling static
class methods.

Stopping several instances of a process using WMI

1. Log on to your computer with a user account that does not have administrator rights.

2. Open the Windows PowerShell console.

3. Start five copies of Notepad. The command appears here:

1..5 | % {notepad}

4. Use the Get-WmiObject cmdlet to retrieve all instances of the notepad.exe process. The com-
mand appears here:

gwmi win32_process -Filter "name = 'notepad.exe'"

5. Now pipeline the resulting objects to the Remove-WmiObject cmdlet.

gwmi win32_process -Filter "name = 'notepad.exe'" | Remove-WmiObject

6. Start five instances of notepad. The command appears here:

1..5 | % {notepad}

7. Use the up arrow key to retrieve the Get-WmiObject command that retrieves all instances of
Notepad.exe. The command appears here:

gwmi win32_process -Filter "name = 'notepad.exe'"

8. Store the returned WMI objects in a variable named $process. This command appears here:

$process = gwmi win32_process -Filter "name = 'notepad.exe'"

9. Call the terminate method from the $process variable. The command appears here:

$process.terminate()

10. Start five copies of notepad back up. The command appears here:

1..5 | % {notepad}

11. Use the up arrow key to retrieve the Get-WmiObject command that retrieves all instances of
Notepad.exe. The command appears here:

gwmi win32_process -Filter "name = 'notepad.exe'"

 CHAPTER 13 Calling WMI Methods on WMI Classes 365

12. Call the terminate method from the above expression. Put parentheses around the expression,
and use dotted notation to call the method. The command appears here:

(gwmi win32_process -Filter "name = 'notepad.exe'").terminate()

This concludes the exercise.

In the following exercise, you will use the static create method from the Win32_Share WMI class to
create a new share.

Executing static WMI methods

1. Open the Windows PowerShell console as a user that has admin rights on the local computer.
To do this, you can right-click the Windows PowerShell console shortcut and select Run As
Administrator from the menu.

2. Create a test folder off of the root named testshare. Here is the command using the MD alias
for the mkdir function:

MD c:\testshare

3. Create the Win32_Share object and store it in a variable named $share. Use the [wmiclass]
type accelerator. The code appears here:

$share = [wmiclass]"win32_share"

4. Call the static create method from the Win32_Share object stored in the $share variable. The
arguments are path, name, type, maximumallowed, description, password, and access. However,
you only need to supply the first three. type is 0, which is a disk drive share. The syntax of the
command appears here:

$share.Create("C:\testshare","testshare",0)

5. Use the Get-WmiObject cmdlet and the Win32_Share class to verify that the share was prop-
erly created. The syntax of the command appears here:

gwmi win32_share

6. Now add a filter so that the Get-WmiObject cmdlet only returns the newly created share. The
syntax appears here:

gwmi win32_share -Filter "name = 'testshare'"

7. Remove the newly created share by pipelining the results of the previous command to the
Remove-WmiObject cmdlet. The syntax of the command appears here:

gwmi win32_share -Filter "name = 'testshare'" | Remove-WmiObject

366 Windows PowerShell 3 Step by Step

8. Use the Get-WmiObject cmdlet and the Win32_Share WMI class to verify that the share was
properly removed. The command appears here:

gwmi win32_share

This concludes the exercise.

Chapter 13 quick reference

To Do this

Use the terminate method directly Group the returning WMI object and use dotted notation
to call the terminate method.

Use the terminate method from a variable containing the
WMI object

Use dotted notation to call the terminate method.

Call a static method via the Invoke-WMIMethod cmdlet Use the -class parameter to specify the WMI class name,
and specify the name of the method via the name
parameter.

Call a static WMI method without using the Invoke-
WMIMethod cmdlet

Use the [wmi] type accelerator to retrieve the WMI class,
store the resulting object in a variable, and use dotted
notation to call the method.

Stop processes via WMI and not call the terminate
method

Use the Get-WMIObject cmdlet to return the process ob-
jects and pipeline the results to the Remove-WMIObject
cmdlet.

Find static WMI methods Use the [wmiclass] type accelerator to create the WMI ob-
ject and pipeline the resulting object to the Get-Member
cmdlet.

Find the relative path to a particular WMI instance Use the Get-WMIObject cmdlet to retrieve instances and
choose the __RELPATH system property.

 367

C H A P T E R 1 4

Using the CIM Cmdlets

after completing this chapter, you will be able to:

■■ Use the CIM cmdlets to explore WMI classes.

■■ Use CIM classes to obtain WMI data classes.

■■ Use the CIM cmdlets to create a remote session.

Using the CIM cmdlets to explore WMI classes

In Microsoft Windows PowerShell 3.0, the Common Information Model (CIM) exposes a new applica-
tion programming interface (API) for working with Windows Management Instrumentation (WMI)
information. The CIM cmdlets support multiple ways of exploring WMI. They work well when work-
ing in an interactive fashion. For example, tab expansion expands the namespace when you use the
CIM cmdlets, thereby permitting exploring namespaces in a simple fashion. These namespaces might
not otherwise be very discoverable. You can even drill down into namespaces by using this technique
of tab expansion. All CIM classes support tab expansion of the namespace parameter, as well as the
-class parameter. But to explore WMI classes, you want to use the Get-CimClass cmdlet.

note The default WMI namespace on all operating systems after Windows NT 4.0 is Root/
Cimv2. Therefore, all of the CIM cmdlets default to Root/Cimv2. The only time you need to
change the default WMI namespace (via the namespace parameter) is when you need to
use a WMI class from a nondefault WMI namespace.

Using the -classname parameter
Using the Get-CimClass cmdlet, you can use wildcards for the -classname parameter to enable you to
quickly identify potential WMI classes for perusal. You can also use wildcards for the -qualifiername
parameter. In the example appearing here, the Get-CimClass cmdlet looks for WMI classes related to
computers.

368 Windows PowerShell 3 Step by Step

PS C:\> Get-CimClass -ClassName *computer*

 NameSpace: ROOT/CIMV2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_ComputerSystemEvent {} {SECURITY_DESCRIPTOR, TIME_CR...
Win32_ComputerShutdownEvent {} {SECURITY_DESCRIPTOR, TIME_CR...
CIM_ComputerSystem {} {Caption, Description, Instal...
CIM_UnitaryComputerSystem {SetPowerState} {Caption, Description, Instal...
Win32_ComputerSystem {SetPowerState, R... {Caption, Description, Instal...
CIM_ComputerSystemResource {} {GroupComponent, PartComponent}
CIM_ComputerSystemMappedIO {} {GroupComponent, PartComponent}
CIM_ComputerSystemDMA {} {GroupComponent, PartComponent}
CIM_ComputerSystemIRQ {} {GroupComponent, PartComponent}
Win32_ComputerSystemProcessor {} {GroupComponent, PartComponent}
CIM_ComputerSystemPackage {} {Antecedent, Dependent}
Win32_ComputerSystemProduct {} {Caption, Description, Identi...
Win32_NTLogEventComputer {} {Computer, Record}

note If you try to use a wildcard for the -classname parameter of the Get-CimInstance
cmdlet, an error returns because the parameter design does not permit wildcard characters.

Finding WMI class methods
If you want to find WMI classes related to processes that contain a method that begins with the let-
ters term*, you use a command similar to the one appearing here:

PS C:\> Get-CimClass -ClassName *process* -MethodName term*

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_Process {Create, Terminat... {Caption, Description, Instal...

To find all WMI classes related to processes that expose any methods, you would use the com-
mand appearing here:

PS C:\> Get-CimClass -ClassName *process* -MethodName *

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_Process {Create, Terminat... {Caption, Description, Instal...
CIM_Processor {SetPowerState, R... {Caption, Description, Instal...
Win32_Processor {SetPowerState, R... {Caption, Description, Instal...

 CHAPTER 14 Using the CIM Cmdlets 369

To find any WMI class in the root/cimv2 WMI namespace that expose a method called create, use
the command appearing here:

PS C:\> Get-CimClass -ClassName * -MethodName create

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_Process {Create, Terminat... {Caption, Description, Instal...
Win32_ScheduledJob {Create, Delete} {Caption, Description, Instal...
Win32_DfsNode {Create} {Caption, Description, Instal...
Win32_BaseService {StartService, St... {Caption, Description, Instal...
Win32_SystemDriver {StartService, St... {Caption, Description, Instal...
Win32_Service {StartService, St... {Caption, Description, Instal...
Win32_TerminalService {StartService, St... {Caption, Description, Instal...
Win32_Share {Create, SetShare... {Caption, Description, Instal...
Win32_ClusterShare {Create, SetShare... {Caption, Description, Instal...
Win32_ShadowCopy {Create, Revert} {Caption, Description, Instal...
Win32_ShadowStorage {Create} {AllocatedSpace, DiffVolume, ...

Filtering classes by qualifier
To find WMI classes that possess a particular WMI qualifier, use the -QualifierName parameter.
For example, the following command finds WMI classes that relate to computers and have the
supportsupdate WMI qualifier.

PS C:\> Get-CimClass -ClassName *computer* -QualifierName *update

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_ComputerSystem {SetPowerState, R... {Caption, Description, Instal...

The parameters can be combined to produce powerful searches that without using the CIM
cmdlets would require rather complicated scripting. For example, the following command finds all
WMI classes in the root/Cimv2 namespace that have the singleton qualifier and also expose a method.

PS C:\> Get-CimClass -ClassName * -QualifierName singleton -MethodName *

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
__SystemSecurity {GetSD, GetSecuri... {}
Win32_OperatingSystem {Reboot, Shutdown... {Caption, Description, Instal...
Win32_OfflineFilesCache {Enable, RenameIt... {Active, Enabled, Location}

370 Windows PowerShell 3 Step by Step

One qualifier that is important to review is the deprecated qualifier. Deprecated WMI classes are
not recommended for use because they are being phased out. Using the Get-CimClass cmdlet makes
it easy to spot these WMI classes. This technique appears here:

PS C:\> Get-CimClass * -QualifierName deprecated

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_PageFile {TakeOwnerShip, C... {Caption, Description, Instal...
Win32_DisplayConfiguration {} {Caption, Description, Settin...
Win32_DisplayControllerConfigura... {} {Caption, Description, Settin...
Win32_VideoConfiguration {} {Caption, Description, Settin...
Win32_AllocatedResource {} {Antecedent, Dependent}

Using this technique, it is easy to find association classes. Association classes relate two differ-
ent WMI classes. For example, the Win32_DisplayConfiguration WMI class relates displays and the
associated configuration. The code that follows finds all of the WMI classes in the root/cimv2 WMI
namespace that relate to sessions. In addition, it looks for the association qualifier. Luckily, you can
use wildcards for the qualifier names; in keeping with this, the following code uses assoc* instead of
the typed-out association.

PS C:\> Get-CimClass -ClassName *session* -QualifierName assoc*

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_SubSession {} {Antecedent, Dependent}
Win32_SessionConnection {} {Antecedent, Dependent}
Win32_LogonSessionMappedDisk {} {Antecedent, Dependent}
Win32_SessionResource {} {Antecedent, Dependent}
Win32_SessionProcess {} {Antecedent, Dependent}

One qualifier you should definitely look for is the dynamic qualifier. This is because querying
abstract WMI classes is unsupported. An abstract WMI class is basically a template class that is used
by WMI when creating new WMI classes. Therefore, all dynamic WMI classes will derive from an
abstract class. Therefore, when looking for WMI classes, you will want to ensure that at some point
you run your list through the dynamic filter. In the code that follows, three WMI classes related to
time are returned.

PS C:\> Get-CimClass -ClassName *time

 NameSpace: ROOT/cimv2

 CHAPTER 14 Using the CIM Cmdlets 371

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_CurrentTime {} {Day, DayOfWeek, Hour, Millis...
Win32_LocalTime {} {Day, DayOfWeek, Hour, Millis...
Win32_UTCTime {} {Day, DayOfWeek, Hour, Millis...

By adding the query for the qualifier, you identify the appropriate WMI classes. One class is
abstract, and the other two are dynamic classes that could prove to be useful. In the following code,
the dynamic qualifier is first used, and the abstract qualifier appears second.

PS C:\> Get-CimClass -ClassName *time -QualifierName dynamic

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_LocalTime {} {Day, DayOfWeek, Hour, Millis...
Win32_UTCTime {} {Day, DayOfWeek, Hour, Millis...

PS C:\> Get-CimClass -ClassName *time -QualifierName abstract

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_CurrentTime {} {Day, DayOfWeek, Hour, Millis...

Retrieving WMI instances

To query for WMI data, use the Get-CimInstance cmdlet. The easiest way to use the Get-CimInstance
cmdlet is to query for all properties and all instances of a particular WMI class on the local machine.
This is extremely easy to do. The following command illustrates returning BIOS information from the
local computer:

PS C:\> Get-CimInstance win32_bios

SMBIOSBIOSVersion : 090004
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 03/19/09 22:51:32 Ver: 09.00.04
SerialNumber : 4429-0046-2083-1237-7579-8937-43
Version : VRTUAL - 3000919

The Get-CimInstance cmdlet returns the entire WMI object, but it honors the *.format.ps1xml
files that Windows PowerShell uses to determine which properties are displayed by default for
a particular WMI class. The command appearing here shows the properties available from the
Win32_Bios WMI class:

372 Windows PowerShell 3 Step by Step

PS C:\> $b = Get-CimInstance win32_bios
PS C:\> $b.CimClass.CimClassProperties | fw name -Column 3

Caption Description InstallDate
Name Status BuildNumber
CodeSet IdentificationCode LanguageEdition
Manufacturer OtherTargetOS SerialNumber
SoftwareElementID SoftwareElementState TargetOperatingSystem
Version PrimaryBIOS BiosCharacteristics
BIOSVersion CurrentLanguage InstallableLanguages
ListOfLanguages ReleaseDate SMBIOSBIOSVersion
SMBIOSMajorVersion SMBIOSMinorVersion SMBIOSPresent

reducing returned properties and instances
To limit the amount of data returned from a remote connection, you can reduce the number of prop-
erties returned, as well as the number of instances. To reduce properties, use the -property parameter.
To reduce the number of returned instances, use the -filter parameter. The command following uses
gcim, which is an alias for the Get-CimInstance cmdlet. The command also abbreviates the -classname
parameter and the -filter parameter. As shown here, the command only returns the name and the
state of the bits service. The default output, however, shows all of the property names as well as the
system properties. As shown here, however, only the two selected properties contain data.

PS C:\> gcim -clas win32_service -Property name, state -Fil "name = 'bits'"

Name : BITS
Status :
ExitCode :
DesktopInteract :
ErrorControl :
PathName :
ServiceType :
StartMode :
Caption :
Description :
InstallDate :
CreationClassName :
Started :
SystemCreationClassName :
SystemName :
AcceptPause :
AcceptStop :
DisplayName :
ServiceSpecificExitCode :
StartName :
State : Running
TagId :
CheckPoint :
ProcessId :
WaitHint :

 CHAPTER 14 Using the CIM Cmdlets 373

PSComputerName :
CimClass : root/cimv2:Win32_Service
CimInstanceProperties : {Caption, Description, InstallDate, Name...}
CimSystemProperties : Microsoft.Management.Infrastructure.CimSystemProperties

Cleaning up output from the command
To produce cleaner output, send the selected data to the Format-Table cmdlet (you can use the ft
alias for the Format-Table cmdlet to reduce typing).

PS C:\> gcim -clas win32_service -Property name, state -Fil "name = 'bits'" | ft name, state

name state
---- -----
BITS Running

Make sure you choose properties you have already selected in the -property parameter, or else
they will not display. In the command appearing here, the status property is selected in the Format-
Table cmdlet. There is a status property on the WIN32_Service WMI class, but it was not chosen when
the properties were selected.

PS C:\> gcim -clas win32_service -Property name, state -Fil "name = 'bits'" |
ft name, state, status

name state status
---- ----- ------
BITS Running

The Get-CimInstance cmdlet does not accept a wildcard parameter for property names (neither
does the Get-WmiObject cmdlet, for that matter). One thing that can simplify some of your coding
is to put your property selection into a variable. This permits you to use the same property names
in both the Get-CimInstance cmdlet and the Format-Table cmdlet (or Format-List or Select-Object, or
whatever you are using after you get your WMI data) without having to type things twice. This tech-
nique appears here:

PS C:\> $property = "name","state","startmode","startname"
PS C:\> gcim -clas win32_service -Pro $property -fil "name = 'bits'" | ft $property -A

name state startmode startname
---- ----- --------- ---------
BITS Running Manual LocalSystem

Working with associations

In the old-fashioned VBScript days, working with association classes was extremely complicated. This
is unfortunate, because WMI association classes are extremely powerful and useful. Earlier versions
of Windows PowerShell simplified working with association classes, primarily because it simplified
working with WMI data in general. However, figuring out how to utilize the Windows PowerShell

374 Windows PowerShell 3 Step by Step

advantage was still pretty much an advanced technique. Luckily, Windows PowerShell 3.0 has the CIM
classes that introduce the Get-CimAssociatedInstance cmdlet.

The first thing to do when attempting to find a WMI association class is retrieve a CIM instance
and store it in a variable. In the example that follows, instances of the Win32_LogonSession WMI
class are retrieved and stored in the $logon variable. Next, the Get-CimAssociatedInstance cmdlet is
used to retrieve instances associated with this class. To see what type of objects will return from the
command, pipe the results to the Get-Member cmdlet. As shown here, two things are returned:
the Win32_UserAccount class, and all processes that are related to the corresponding user account
in the form of instances of the WIN32_Process class.

PS C:\> $logon = Get-CimInstance win32_logonsession
PS C:\> Get-CimAssociatedInstance $logon | Get-Member

 TypeName: Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_UserAccount

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object ICloneable.Clone()
Dispose Method void Dispose(), void IDisposable.Dispose()
Equals Method bool Equals(System.Object obj)
GetCimSessionComputerName Method string GetCimSessionComputerName()
GetCimSessionInstanceId Method guid GetCimSessionInstanceId()
GetHashCode Method int GetHashCode()
GetObjectData Method void GetObjectData(System.Runtime.Serialization....
GetType Method type GetType()
ToString Method string ToString()
AccountType Property uint32 AccountType {get;}
Caption Property string Caption {get;}
Description Property string Description {get;}
Disabled Property bool Disabled {get;set;}
Domain Property string Domain {get;}
FullName Property string FullName {get;set;}
InstallDate Property CimInstance#DateTime InstallDate {get;}
LocalAccount Property bool LocalAccount {get;set;}
Lockout Property bool Lockout {get;set;}
Name Property string Name {get;}
PasswordChangeable Property bool PasswordChangeable {get;set;}
PasswordExpires Property bool PasswordExpires {get;set;}
PasswordRequired Property bool PasswordRequired {get;set;}
PSComputerName Property string PSComputerName {get;}
SID Property string SID {get;}
SIDType Property byte SIDType {get;}
Status Property string Status {get;}
PSStatus PropertySet PSStatus {Status, Caption, PasswordExpires}

 CHAPTER 14 Using the CIM Cmdlets 375

 TypeName: Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_Process

Name MemberType Definition
---- ---------- ----------
Handles AliasProperty Handles = Handlecount
ProcessName AliasProperty ProcessName = Name
VM AliasProperty VM = VirtualSize
WS AliasProperty WS = WorkingSetSize
Clone Method System.Object ICloneable.Clone()
Dispose Method void Dispose(), void IDisposable.Dispose()
Equals Method bool Equals(System.Object obj)
GetCimSessionComputerName Method string GetCimSessionComputerName()
GetCimSessionInstanceId Method guid GetCimSessionInstanceId()
GetHashCode Method int GetHashCode()
GetObjectData Method void GetObjectData(System.Runtime.Serializat...
GetType Method type GetType()
ToString Method string ToString()
Caption Property string Caption {get;}
CommandLine Property string CommandLine {get;}
CreationClassName Property string CreationClassName {get;}
CreationDate Property CimInstance#DateTime CreationDate {get;}
CSCreationClassName Property string CSCreationClassName {get;}
CSName Property string CSName {get;}
Description Property string Description {get;}
ExecutablePath Property string ExecutablePath {get;}
ExecutionState Property uint16 ExecutionState {get;}
Handle Property string Handle {get;}
HandleCount Property uint32 HandleCount {get;}
InstallDate Property CimInstance#DateTime InstallDate {get;}
KernelModeTime Property uint64 KernelModeTime {get;}
MaximumWorkingSetSize Property uint32 MaximumWorkingSetSize {get;}
MinimumWorkingSetSize Property uint32 MinimumWorkingSetSize {get;}
Name Property string Name {get;}
OSCreationClassName Property string OSCreationClassName {get;}
OSName Property string OSName {get;}
OtherOperationCount Property uint64 OtherOperationCount {get;}
OtherTransferCount Property uint64 OtherTransferCount {get;}
PageFaults Property uint32 PageFaults {get;}
PageFileUsage Property uint32 PageFileUsage {get;}
ParentProcessId Property uint32 ParentProcessId {get;}
PeakPageFileUsage Property uint32 PeakPageFileUsage {get;}
PeakVirtualSize Property uint64 PeakVirtualSize {get;}
PeakWorkingSetSize Property uint32 PeakWorkingSetSize {get;}
Priority Property uint32 Priority {get;}
PrivatePageCount Property uint64 PrivatePageCount {get;}
ProcessId Property uint32 ProcessId {get;}
PSComputerName Property string PSComputerName {get;}
QuotaNonPagedPoolUsage Property uint32 QuotaNonPagedPoolUsage {get;}
QuotaPagedPoolUsage Property uint32 QuotaPagedPoolUsage {get;}
QuotaPeakNonPagedPoolUsage Property uint32 QuotaPeakNonPagedPoolUsage {get;}
QuotaPeakPagedPoolUsage Property uint32 QuotaPeakPagedPoolUsage {get;}
ReadOperationCount Property uint64 ReadOperationCount {get;}
ReadTransferCount Property uint64 ReadTransferCount {get;}
SessionId Property uint32 SessionId {get;}
Status Property string Status {get;}

376 Windows PowerShell 3 Step by Step

TerminationDate Property CimInstance#DateTime TerminationDate {get;}
ThreadCount Property uint32 ThreadCount {get;}
UserModeTime Property uint64 UserModeTime {get;}
VirtualSize Property uint64 VirtualSize {get;}
WindowsVersion Property string WindowsVersion {get;}
WorkingSetSize Property uint64 WorkingSetSize {get;}
WriteOperationCount Property uint64 WriteOperationCount {get;}
WriteTransferCount Property uint64 WriteTransferCount {get;}
Path ScriptProperty System.Object Path {get=$this.ExecutablePath;}

When the command runs without piping to the Get-Member object, the instance of the Win32_
UserAccount WMI class is returned. The output shows the user name, account type, SID, domain, and
caption of the user account. As shown in the output from Get-Member, a lot more information is
available, but this is the default display. Following the user account information, the default process
information displays the process ID, name, and a bit of performance information related to the pro-
cesses associated with the user account.

PS C:\> $logon = Get-CimInstance win32_logonsession
PS C:\> Get-CimAssociatedInstance $logon

Name Caption AccountType SID Domain
---- ------- ----------- --- ------
ed IAMMRED\ed 512 S-1-5-21-14579... IAMMRED

ProcessId : 2780
Name : taskhostex.exe
HandleCount : 215
WorkingSetSize : 8200192
VirtualSize : 242356224

ProcessId : 2804
Name : rdpclip.exe
HandleCount : 225
WorkingSetSize : 8175616
VirtualSize : 89419776

ProcessId : 2352
Name : explorer.exe
HandleCount : 1078
WorkingSetSize : 65847296
VirtualSize : 386928640

ProcessId : 984
Name : powershell.exe
HandleCount : 577
WorkingSetSize : 94527488
VirtualSize : 690466816

 CHAPTER 14 Using the CIM Cmdlets 377

ProcessId : 296
Name : conhost.exe
HandleCount : 54
WorkingSetSize : 7204864
VirtualSize : 62164992

If you do not want to retrieve both classes from the association query, you can specify the result-
ing class by name. To do this, use the resultclassname parameter from the Get-CimAssociatedInstance
cmdlet. In the code that follows, only the Win32_UserAccount WMI class is returned from the query.

PS C:\> $logon = Get-CimInstance win32_logonsession
PS C:\> Get-CimAssociatedInstance $logon -ResultClassName win32_useraccount

Name Caption AccountType SID Domain
---- ------- ----------- --- ------
ed IAMMRED\ed 512 S-1-5-21-14579... IAMMRED

When working with the Get-CimAssociatedInstance cmdlet, the inputobject you supply must be
a single instance. If you supply an object that contains more than one instance of the class, an error
is raised. This error is shown following, where more than one disk is provided to the inputobject
parameter:

PS C:\> $disk = Get-CimInstance win32_logicaldisk
PS C:\> Get-CimAssociatedInstance $disk
Get-CimAssociatedInstance : Cannot convert 'System.Object[]' to the type
'Microsoft.Management.Infrastructure.CimInstance' required by parameter 'InputObject'.
Specified method is not supported.
At line:1 char:27
+ Get-CimAssociatedInstance $disk
+ ~~~~~
 + CategoryInfo : InvalidArgument: (:) [Get-CimAssociatedInstance],
 ParameterBindingException
 + FullyQualifiedErrorId : CannotConvertArgument,Microsoft.Management.Infrastructure.
 CimCmdlets.GetCimAssociatedInstanceCommand

There are two ways to correct this particular error. The first, and the easiest, is to use array index-
ing. This technique places square brackets beside the variable holding the collection and retrieves
a specific instance from the collection. This appears here, where the first disk returns associated
instances:

PS C:\> $disk = Get-CimInstance win32_logicaldisk
PS C:\> Get-CimAssociatedInstance $disk[0]

Name PrimaryOwner Domain TotalPhysical Model Manufacturer
 Name Memory
---- -------------- ------ -------------- ----- ------------
W8C504 ed iammred.net 2147012608 Virtual Ma... Microsoft ...

378 Windows PowerShell 3 Step by Step

PS C:\> Get-CimAssociatedInstance $disk[1]

Name Hidden Archive Writeable LastModified
---- ------ ------- --------- ------------
c:\

NumberOfBlocks : 265613312
BootPartition : False
Name : Disk #0, Partition #1
PrimaryPartition : True
Size : 135994015744
Index : 1

Domain : iammred.net
Manufacturer : Microsoft Corporation
Model : Virtual Machine
Name : W8C504
PrimaryOwnerName : ed
TotalPhysicalMemory : 2147012608

Using array indexing is fine when you find yourself with an object that contains an array. However,
the results might be a bit inconsistent. A better approach is to ensure that you do not have an array
in the first place. To do this, use the -filter parameter to reduce the number of instances of your WMI
class that are returned. In the code appearing here, the filter returns the number of WMI instances to
drive C.

PS C:\> $disk = Get-CimInstance win32_logicaldisk -Filter "name = 'c:'"
PS C:\> Get-CimAssociatedInstance $disk

Name Hidden Archive Writeable LastModified
---- ------ ------- --------- ------------
c:\

NumberOfBlocks : 265613312
BootPartition : False
Name : Disk #0, Partition #1
PrimaryPartition : True
Size : 135994015744
Index : 1

Domain : iammred.net
Manufacturer : Microsoft Corporation
Model : Virtual Machine
Name : W8C504
PrimaryOwnerName : ed
TotalPhysicalMemory : 2147012608

An easy way to see the objects returned by the Get-CimAssociatedInstance cmdlet is to pipeline
the returned objects to the Get-Member cmdlet and then select the typename property. Because
more than one instance of the object may return and clutter the output, it is important to choose
unique type names. This command appears here:

 CHAPTER 14 Using the CIM Cmdlets 379

PS C:\> Get-CimAssociatedInstance $disk | gm | select typename -Unique

TypeName

Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_Directory
Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_DiskPartition
Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_ComputerSystem

Armed with this information, it is easy to explore the returned associations. This technique appears
here:

PS C:\> Get-CimAssociatedInstance $disk -ResultClassName win32_directory

Name Hidden Archive Writeable LastModified
---- ------ ------- --------- ------------
c:\

PS C:\> Get-CimAssociatedInstance $disk -ResultClassName win32_diskpartition

Name NumberOfBlocks BootPartition Primary Size Index
 Partition
---- -------------- ------------- -------------- ---- -----
Disk #0, Part... 265613312 False True 135994015744 1

PS C:\> Get-CimAssociatedInstance $disk -ResultClassName win32_Computersystem

Name PrimaryOwner Domain TotalPhysical Model Manufacturer
 Name Memory
---- -------------- ------ -------------- ----- ------------
W8C504 ed iammred.net 2147012608 Virtual Ma... Microsoft ...

Keep in mind that the entire WMI class is returned from the previous command, and is therefore
ripe for further exploration by IT professionals who are interested in the disk subsystems of their com-
puters. The easy way to do this exploring is to store the results into a variable, and then walk through
the data. Once you have what interests you, you may decide to display a nicely organized table. This
appears here:

PS C:\> $dp = Get-CimAssociatedInstance $disk -ResultClassName win32_diskpartition
PS C:\> $dp | FT deviceID, BlockSize, NumberOfBLocks, Size, StartingOffSet -AutoSize
deviceID BlockSize NumberOfBLocks Size StartingOffSet
-------- --------- -------------- ---- --------------
Disk #0, Partition #1 512 135994015744 368050176

Retrieving WMI instances: step-by-step exercises

In these exercises, you will practice using the CIM cmdlets to find and to retrieve WMI instances. The
first example uses the CIM cmdlets to explore WMI classes related to video. In the second exercise,
you will examine association WMI classes.

380 Windows PowerShell 3 Step by Step

Exploring WMI video classes

1. Log on to your computer with a user account that does not have administrator rights.

2. Open the Windows PowerShell console.

3. Use the Get-CimClass cmdlet to identify WMI classes related to video. The command and
associated output appear here:

PS C:\> Get-CimClass *video*

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
CIM_VideoBIOSElement {} {Caption, Description, Instal...
CIM_VideoController {SetPowerState, R... {Caption, Description, Instal...
CIM_PCVideoController {SetPowerState, R... {Caption, Description, Instal...
Win32_VideoController {SetPowerState, R... {Caption, Description, Instal...
CIM_VideoBIOSFeature {} {Caption, Description, Instal...
CIM_VideoControllerResolution {} {Caption, Description, Settin...
Win32_VideoConfiguration {} {Caption, Description, Settin...
CIM_VideoSetting {} {Element, Setting}
Win32_VideoSettings {} {Element, Setting}
CIM_VideoBIOSFeatureVideoBIOSEle... {} {GroupComponent, PartComponent}

4. Filter the output to only return dynamic WMI classes related to video. The command and
associated output appear here:

PS C:\> Get-CimClass *video* -QualifierName dynamic

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_VideoController {SetPowerState, R... {Caption, Description, Instal...
CIM_VideoControllerResolution {} {Caption, Description, Settin...
Win32_VideoSettings {} {Element, Setting}

5. Display the cimclassname and the cimclassqualifiers properties of each found WMI class. To do
this, use the Format-Table cmdlet. The command and associated output appear here:

PS C:\> Get-CimClass *video* -QualifierName dynamic | ft cimclassname, cimclassqualifiers

CimClassName CimClassQualifiers
------------ ------------------
Win32_VideoController {Locale, UUID, dynamic, provider}
CIM_VideoControllerResolution {Locale, UUID, dynamic, provider}
Win32_VideoSettings {Association, Locale, UUID, dynamic...}

 CHAPTER 14 Using the CIM Cmdlets 381

6. Change the $FormatEnumerationLimit value from the original value of 4 to 8 to permit view-
ing of the truncated output. Remember that you can use tab expansion to keep from typing
the entire variable name. The command appears here:

$FormatEnumerationLimit = 8

7. Now use the up arrow key to retrieve the previous Get-CimClass command. Add the autosize
command to the table. The command and associated output appear here:

PS C:\> Get-CimClass *video* -QualifierName dynamic | ft cimclassname, cimclassqualifiers
-autosize

CimClassName CimClassQualifiers
------------ ------------------
Win32_VideoController {Locale, UUID, dynamic, provider}
CIM_VideoControllerResolution {Locale, UUID, dynamic, provider}
Win32_VideoSettings {Association, Locale, UUID, dynamic, provider}

8. Query each of the three WMI classes. To do this, pipeline the result of the Get-CimClass com-
mand to the ForEach-Object command. Inside the script block, call Get-CimInstance and pass
the cimclassname property. The command appears here:

Get-CimClass *video* -QualifierName dynamic | % {Get-CimInstance $_.cimclassname}

This concludes the exercise. Leave your Windows PowerShell console for the next exercise.

In the next exercise, you will create and receive associated WMI classes.

retrieving associated WMI classes

1. Open the Windows PowerShell console as a non-elevated user.

2. Use the Get-CimInstance cmdlet to retrieve the Win32_VideoController WMI class. The com-
mand appears following. Store the returned WMI object in the $v variable.

$v = gcim Win32_VideoController

3. Use the Get-CimAssociatedInstance cmdlet and supply $v to the inputobject parameter. The
command appears here:

Get-CimAssociatedInstance -InputObject $v

4. Use the up arrow key to retrieve the previous command. Pipeline the returned WMI objects to
the Get-Member cmdlet. Pipeline the results from the Get-Member cmdlet to the Select-Object
cmdlet and use the -unique switched parameter to limit the amount of information returned.
The command appears here:

Get-CimAssociatedInstance -InputObject $v | Get-Member | select typename -Unique

382 Windows PowerShell 3 Step by Step

5. Use the up arrow key to retrieve the previous command and change it so that it only returns
instances of Win32_PNPEntity WMI classes. The command appears here:

Get-CimAssociatedInstance -InputObject $v -ResultClassName win32_PNPEntity

6. Display the complete information from each of the associated classes. To do this, pipeline the
result from the Get-CimAssociatedInstance cmdlet to a ForEach-Object cmdlet, and inside the
loop, pipeline the current object on the pipeline to the Format-List cmdlet. The command
appears here:

Get-CimAssociatedInstance -InputObject $v | ForEach-Object {$input | Format-List*}

This concludes the exercise.

Chapter 14 quick reference

To Do this

Find WMI classes related to disks Use the Get-CimClass cmdlet and use a wildcard pattern
such as *disk*.

Find WMI classes that have a method named create Use the Get-CimClass cmdlet and a wildcard for the
-classname parameter. Use the -methodname parameter
to specify that you want classes that have the create
method.

Find dynamic WMI classes Use the Get-CimClass cmdlet and specify that you want
the qualifier named dynamic.

Reduce the number of instances returned by the Get-
CimInstance cmdlet

Use the -filter parameter and supply a filter that reduces
the instances.

Reduce the number of properties returned by the Get-
CimInstance cmdlet

Use the -property parameter and enumerate the required
properties to return.

Find the types of WMI classes returned by the
Get-CimAssociatedInstance cmdlet

Pipeline the resulting objects to the Get-Member cmdlet
and select the typename property.

Only return a particular associated WMI class from the
Get-CimAssociatedInstance cmdlet

Use the resultclassname parameter and specify the name
of one of the returned objects.

 383

C H A P T E R 1 5

Working with active Directory

after completing this chapter, you will be able to:

■■ Make a connection to Active Directory.

■■ Understand the use of ADSI providers.

■■ Understand how to work with Active Directory namespaces.

■■ Create organizational units in Active Directory.

■■ Create users in Active Directory.

■■ Create groups in Active Directory.

■■ Modify both users and groups in Active Directory.

Creating objects in Active Directory

Network management in the Microsoft Windows world begins and ends with Active Directory. This
chapter will cover the user life cycle from a scripting and Active Directory perspective. You will learn
how to create organizational units (OUs), users, groups, and computer accounts. The chapter will then
describe how to modify the users and groups, and finally how to delete the user account. Along the
way, you will pick up some more Windows PowerShell techniques.

The most fundamental object in Active Directory is the OU. One of the most frustrating problems
for new network administrators is that by default, when Active Directory is installed, all users are put
in the users container, and all computers are put in the computers container—and of course you can-
not apply group policy to a container.

Creating an OU
The process of creating an OU in Active Directory provides the basis for creating other objects in
Active Directory because the technique is basically the same. The key to effectively using PowerShell
to create objects in Active Directory is using the Active Directory Service Interfaces (ADSI) accelerator.

384 Windows PowerShell 3 Step by Step

To create an object by using ADSI, perform the following steps:

1. Use the [ADSI] accelerator.

2. Use the appropriate ADSI provider.

3. Specify the path to the appropriate object in Active Directory.

4. Use the SetInfo() method to write the changes.

The CreateOU.ps1 script shown following illustrates each of the steps required to create an object
by using ADSI. The variable $strClass is used to hold the class of object to create in Active Directory.
For this script, you will be creating an OU. You could just as easily create a user or a computer—as
you will see shortly. You use the variable $strOUName to hold the name of the OU you are going to
create. For the CreateOU.ps1 script, you are going to create an OU called MyTestOU. Because you will
pass this variable directly to the Create method, it is important that you use the distinguished-name
form, shown here:

$strOUName="ou=MyTestOU"

The attribute that is used with the Create method to create an object in Active Directory is called
the relative distinguished name (RDN). Standard attribute types are expected by ADSI—such as ou
for “organizational unit.” The next line of code in the CreateOU.ps1 script makes the actual connec-
tion into Active Directory. To do this, it uses the [ADSI] accelerator. The [ADSI] accelerator wants to
be given the exact path to your connection point in Active Directory (or some other directory, as you
will see shortly) and the name of the ADSI provider. The target of the ADSI operation is called the
ADsPath.

In the CreateOU.ps1 script, you are connecting to the root of the NwTraders.msft domain, and you
are using the LDAP provider. The other providers you can use with ADSI are shown in Table 15-1. After
you make your connection into Active Directory, you hold the system.DirectoryServices.DirectoryEntry
object in the $objADSI variable.

Armed with the connection into Active Directory, you can now use the create method to create
your new object. The system.DirectoryServices.DirectoryEntry object that is returned is held in the
$objOU variable. You use this object on the last line of the script to call the SetInfo() method to write
the new object into the Active Directory database. The entire CreateOU.ps1 script is shown here:

CreateOU.ps1

$strCLass = "organizationalUnit"
$StrOUName = "ou=MyTestOU"
$objADSI = [ADSI]"LDAP://dc=nwtraders,dc=msft"
$objOU = $objADSI.create($strCLass, $StrOUName)
$objOU.setInfo()

 CHAPTER 15 Working with Active Directory 385

aDSI providers
Table 15-1 lists four providers available to users of ADSI. Connecting to a Microsoft Windows NT 4
system requires using the special WinNT provider. During Active Directory migrations, consultants
often write a script that copies users from a Windows NT 4 domain to a Microsoft Windows Server
2003 Active Directory OU or domain. In some situations (such as with customized naming schemes),
writing a script is easier than using the Active Directory Migration Tool (ADMT).

TABLE 15-1 ADSI-supported providers

Provider Purpose

WinNT To communicate with Windows NT 4.0 primary domain controllers (PDCs) and
backup domain controllers (BDCs), and with local account databases for Windows
2000 and newer workstations and servers

LDAP To communicate with LDAP servers, including Exchange 5.x directories and
Windows 2000 Server or Windows Server 2003 Active Directory

NDS To communicate with Novell Directory Services servers

NWCOMPAT To communicate with Novell NetWare 3.x servers

The first time I tried using ADSI to connect to a machine running Windows NT, I had a very frus-
trating experience because of the way the provider was implemented. Type the WinNT provider name
exactly as shown in Table 15-1. It cannot be typed using all lowercase letters or all uppercase letters.
All other provider names must be all uppercase letters, but the WinNT name is Pascal cased—that
is, it is partially uppercase and partially lowercase. Remembering this will save a lot of grief later. In
addition, you don’t get an error message telling you that your provider name is spelled or capitalized
incorrectly—rather, the bind operation simply fails to connect.

tip The ADSI provider names are case sensitive. LDAP is all caps; WinNT is Pascal-cased.
Keep this in mind to save a lot of time in troubleshooting.

After the ADSI provider is specified, you need to identify the path to the directory target. A little
knowledge of Active Directory comes in handy here, because of the way the hierarchical naming
space is structured. When connecting to an LDAP service provider, you must specify where in the
LDAP database hierarchy to make the connection, because the hierarchy is a structure of the database
itself—not the protocol or the provider. For instance, in the CreateOU.ps1 script, you create an OU
that resides off the root of the domain, which is called MyTestOU. This can get confusing, until you
realize that the MyTestOU OU is contained in a domain that is called NWTRADERS.MSFT. It is vital,
therefore, that you understand the hierarchy with which you are working. One tool you can use to
make sure you understand the hierarchy of your domain is ADSI Edit.

ADSI Edit is included with the feature called AD DS and AD LDS Tools. To install these tools on
Windows 8 Server, use the Add-WindowsFeature cmdlet from the ServerManager module. To deter-
mine installation status of the AD DS tools, use the Get-WindowsFeature cmdlet, as illustrated here:

386 Windows PowerShell 3 Step by Step

Get-WindowsFeature rsat-ad-tools

To determine everything that comes with AD DS and AD LDS Tools, pipe the result of the previous
command to the Format-List cmdlet. This technique, along with the associated output from the com-
mand, appears here:

PS C:\> Get-WindowsFeature rsat-ad-tools | Format-List *

Name : RSAT-AD-Tools
DisplayName : AD DS and AD LDS Tools
Description : <a href="features.chm::/html/529acbe5-8749-4fb4-9a2a-300
 6e9250329.htm">Active Directory Domain Services (AD DS)
 and Active Directory Lightweight Directory Services (AD
 LDS) Tools includes snap-ins and command-line tools
 for remotely managing AD DS and AD LDS.
Installed : False
InstallState : Available
FeatureType : Feature
Path : Remote Server Administration Tools\Role Administration
 Tools\AD DS and AD LDS Tools
Depth : 3
DependsOn : {}
Parent : RSAT-Role-Tools
ServerComponentDescriptor : ServerComponent_RSAT_AD_Tools
SubFeatures : {RSAT-AD-PowerShell, RSAT-ADDS, RSAT-ADLDS}
SystemService : {}
Notification : {}
BestPracticesModelId :
EventQuery :
PostConfigurationNeeded : False
AdditionalInfo : {MajorVersion, MinorVersion, NumericId, InstallName}

To install the tools, pipeline the results from the Get-WindowsFeature cmdlet to
Add-WindowsFeature. This is as easy as using the up arrow key to retrieve the previous command that
displayed the components of the AD DS tools and exchanging Format-List for Add-WindowsFeature.
If automatic updates are not enabled, a warning message is displayed. The command and associated
warning appear here:

PS C:\> Get-WindowsFeature rsat-ad-tools | Add-WindowsFeature

Success Restart Needed Exit Code Feature Result
------- -------------- --------- --------------
True No Success {Remote Server Administration Tools, Activ...
WARNING: Windows automatic updating is not enabled. To ensure that your
newly-installed role or feature is automatically updated, turn on Windows Update.

After installing the tools (the output from the Add-WindowsFeature cmdlet states that no reboot is
needed following this task), open a blank Microsoft Management Console (MMC) and add the ADSI
Edit snap-in.

 CHAPTER 15 Working with Active Directory 387

note Because I already have Windows PowerShell open due to adding Active Directory
tools, I launch the MMC by typing MMC at the Windows PowerShell prompt. I also add
additional Active Directory tools, such as Active Directory Users and Computers, Active
Directory Domains and Trusts, and Active Directory Sites and Services. Save this custom
MMC to your profile for quick ease of reuse.

After you install the snap-in, right-click the ADSI Edit icon, select Connect To, and specify your
domain, as illustrated in Figure 15-1.

FIGURE 15-1 Exploring the hierarchy of a forest to ensure the correct path for ADSI.

LDaP names
When specifying the OU and the domain name, you have to use the LDAP naming convention, in
which the namespace is described as a series of naming parts called RDNs (mentioned previously).
The RDN will always be a name part that assigns a value by using the equal sign. When you put
together all the RDNs, as well as the RDNs of each of the ancestors all the way back to the root, you
end up with a single globally unique distinguished name.

The RDNs are usually made up of an attribute type, an equal sign, and a string value. Table 15-2
lists some of the attribute types you will see when working with Active Directory. An example of a
distinguished name is shown in Figure 15-2.

388 Windows PowerShell 3 Step by Step

TABLE 15-2 Common relative distinguished name attribute types

Attribute Description

DC Domain component

CN Common name

OU Organizational unit

O Organization name

Street Street address

C Country name

UID User ID

FIGURE 15-2 Using the String Attribute Editor in ADSI Edit to quickly verify the distinguished name of a potential
target for ADSI scripting.

Binding
Whenever you want to do anything with ADSI, you must connect to an object in Active Directory—a
process also known as binding. Think of binding as being like tying a rope around an object to enable
you to work with it. Before you can do any work with an object in Active Directory, you must supply
binding information. The binding string enables you to use various ADSI elements, including methods
and properties. The target of the proposed action is specified as a computer, a domain controller, a
user, or another element that resides within the directory structure. A binding string consists of four
parts. These parts are illustrated in Table 15-3, which shows a binding string from a sample script.

TABLE 15-3 Sample binding string

Accelerator Variable Provider ADsPath

[ADSI] $objDomain LDAP:// OU=hr, dc=a, dc=com

 CHAPTER 15 Working with Active Directory 389

note Avoid a mistake I made early on: make sure that when you finish connecting and cre-
ating, you actually commit your changes to Active Directory. Changes to Active Directory
are transactional in nature, so your change will roll back if you don’t commit it. Committing
the change requires you to use the SetInfo() method, as illustrated in the following line
from the CreateOU.ps1 script:

$objOU.SetInfo()

Also keep in mind when calling a method such as SetInfo() that you must append empty
parentheses to the method call.

Working with errors

1. Open the Windows PowerShell ISE or some other Windows PowerShell script editor.

2. On the first line of your script, type a line that will generate an error by trying to create an
object called test. Use the variable $a to hold this object. The code to do this is shown here:

$a = New-Object test #creates an error

3. Print out the value of $error.count. The count property should contain a single error when the
script is run. This line of code is shown here:

$error.count

4. Save your script as <yourname>WorkWithErrors.ps1. Run your script; you should see it print
out the number 1 to let you know there is an error on the Error object.

5. The most recent error will be contained on the variable error[0]. Use this to return the
CategoryInfo property the error. This code is shown here:

$error[0].CategoryInfo

6. Print out the details of the most recent error. This code to do this is shown here:

$error[0].ErrorDetails

7. Print out the exception information. To do this, print out the value of the Exception property
of the $error variable. This is shown here:

$error[0].Exception

8. Print out the fully qualified error ID information. This is contained in the FullyQualifiedErrorId
property of the $error variable. The code to do this is shown here:

$error[0].FullyQualifiedErrorId

390 Windows PowerShell 3 Step by Step

9. Print out the invocation information about the error. To do this, use the InvocationInfo prop-
erty of the $error variable. The code to do this is shown here:

$error[0].InvocationInfo

10. The last property to query from $error is the TargetObject property. This is shown here:

$error[0].TargetObject

11. Save and run your script. Notice that you will not obtain information from all the properties.

12. The $error variable contains information about all errors that occur during the particular
Windows PowerShell session, so it is quite likely to contain more than a single error. To intro-
duce an additional error into your script, try to create a new object called testB. Assign the
object that comes back to the variable $b. This code is shown here:

$b = New-Object testB

13. Because you now have more than a single error on the Error object, you need to walk through
the collection of errors. To do this, you can use the for statement. Use a variable called $i
as the counter variable and proceed until you reach the value of $error.count. Make sure you
enclose the statement in parentheses and increment the value of $i at the end of the state-
ment. The first line of this code is shown here:

for ($i = 0 ; $error.count ; $i++)

14. Now change each of the error[0] statements that print out the various properties of the Error
object to use the counter variable $i. Because this will be the code block for the for statement,
place an opening curly bracket at the beginning of the first statement and a closing one at the
end of the last statement. The revised code block is shown here:

{$error[$i].CategoryInfo
 $error[$i].ErrorDetails
 $error[$i].Exception
 $error[$i].FullyQualifiedErrorId
 $error[$i].InvocationInfo
 $error[$i].TargetObject}

15. Save and run your script. You will see output similar to that shown here:

New-Object : Cannot find type [test]: make sure the assembly containing this
 type is loaded.
At D:\BookDocs\WindowsPowerShell\scripts\ch15\WorkWithErrors.PS1:14 char:16
 + $a = New-Object <<<< test #creates an error
New-Object : Cannot find type [testB]: make sure the assembly containing this
 type is loaded.
At D:\BookDocs\WindowsPowerShell\scripts\ch15\WorkWithErrors.PS1:15 char:16
 + $b = New-Object <<<< testB #creates another error

Category : InvalidType
Activity : New-Object
Reason : PSArgumentException

 CHAPTER 15 Working with Active Directory 391

16. The first error shown is a result of the Windows PowerShell command interpreter. The last
error shown—with the category, activity, and reason—is a result of your error handling. To
remove the first run-time error, use the $erroractionpreference variable and assign a value of
SilentlyContinue to it. This code is shown here:

$erroractionpreference = "SilentlyContinue"

17. Save and run your script. Notice that the run-time error disappears from the top of your
screen.

18. To find out how many errors are on the Error object, you can print out the value of $error.
count. However, just having a single number at the top of the screen would be a little confus-
ing. To take care of that, add a descriptive string, such as "There are currently " + $error.count
+ "errors". The code to do this is shown here:

"There are currently " + $error.count + "errors"

19. Save and run your script. Notice that the string is printed out at the top of your script, as
shown here:

There are currently 2 errors

20. In your Windows PowerShell window, use the $error.clear() method to clear the errors from
the Error object because it continues to count errors until a new Windows PowerShell window
is opened. This command is shown here:

$Error.clear()

21. Now comment out the line that creates the testB object. This revised line of code is shown
here:

#$b = New-Object testB

22. Now save and run your script. Notice that the string at the top of your Windows PowerShell
window looks a little strange because of the grammatical error. This is shown here:

There is currently 1 errors

23. To fix this problem, you need to add some logic to detect if there is one error or more than
one error. To do this, you will use an if…else statement. The first line will evaluate whether
$error.count is equal to 1. If it is, then you will print out There is currently 1 error. This code is
shown here:

if ($error.count -eq 1)
 {"There is currently 1 error"}

392 Windows PowerShell 3 Step by Step

24. You can simply use an else clause and add curly brackets around your previous error state-
ment. This revised code is shown here:

else
 {"There are currently " + $error.count + "errors"}

25. Save and run the script. It should correctly detect that there is only one error.

26. Now remove the comment from the beginning of the line of code that creates the testB object
and run the script. It should detect two errors.

This concludes the procedure.

adding error handling

1. Use the CreateOU.ps1 script (from earlier in this chapter) and save it as
<yourname>CreateOUwithErrorHandler.ps1.

2. On the first line of the script, use the $erroractionpreference variable to assign the
SilentlyContinue parameter. This will tell the script to suppress error messages and continue
running the script if possible. This line of code is shown here:

$erroractionpreference = "SilentlyContinue"

3. To ensure there are no current errors on the Error object, use the clear method. To do this, use
the $error variable. This line of code is shown here:

$error.clear()

4. At the end of the script, use an if statement to evaluate the error count. If an error has
occurred, then the count will not be equal to 0. This line of code is shown here:

if ($error.count -ne 0)

5. If the condition occurs, the code block to run should return a message stating that an error
has occurred. It should also print out the categoryInfo and invocationinfo properties from the
current $error variable. The code to do this is shown here:

{"An error occurred during the operation. Details follow:"
 $error[0].categoryInfo
 $error[0].invocationinfo
 $error[0].tostring()}

6. Save and run your script. You should see an error generated (due to a duplicate attempt to
create MyTestOU).

7. Change the OU name to MyTestOU1 and run the script. You should not see an error gener-
ated. The revised line of code is shown here:

$StrOUName = "ou=MyTestOU1"

 CHAPTER 15 Working with Active Directory 393

This concludes the procedure. If you do not get the results you were expecting, compare your
script with the CreateOUWithErrorHandler.ps1 script.

Quick check
Q. What is the process of connecting to Active Directory called?

a. The process of connecting to Active Directory is called binding.

Q. When specifying the target of an ADSI operation, what is the target called?

a. The target of the ADSI operation is called the ADsPath.

Q. An LDAP name is made up of several parts. What do you call each part separated by a
comma?

a. An LDAP name is made up of multiple parts that are called relative distinguished names
(RDNs).

Creating users

One fundamental technique you can use with ADSI is creating users. Although using the graphi-
cal user interface (GUI) to create a single user is easy, using the GUI to create a dozen or more users
would certainly not be. In addition, as you’ll see, because there is a lot of similarity among ADSI
scripts, deleting a dozen or more users is just as simple as creating them. And because you can use
the same input text file for all the scripts, ADSI makes creating temporary accounts for use in a lab or
school a real snap.

To create users, do the following:

1. Use the appropriate provider for your network.

2. Connect to the container for your users.

3. Specify the domain.

4. Specify the User class of the object.

5. Bind to Active Directory.

6. Use the Create method to create the user.

7. Use the Put method to at least specify the sAMAccountName attribute.

8. Use SetInfo() to commit the user to Active Directory.

394 Windows PowerShell 3 Step by Step

The CreateUser.ps1 script, which follows, is very similar to the CreateOU.ps1 script. In fact,
CreateUser.ps1 was created from CreateOU.ps1, so a detailed analysis of the script is unnecessary. The
only difference is that $strClass is equal to the User class instead of an organizationalUnit class.

tip These scripts use a Windows PowerShell trick. When using VBScript to create a user
or a group, you must supply a value for the sAMAccountName attribute. When using
Windows PowerShell on Windows 2000, this is also the case. With Windows PowerShell
on Windows Server 2003 (or later), however, the sAMAccountName attribute will be auto-
matically created for you. In the CreateUser.ps1 script, I have included the $objUser.Put
command, which would be required for Windows 2000, but it is not required for Windows
Server 2003 (or later). Keep in mind that the sAMAccountName property, when auto-
generated, is not very user friendly. Here is an example of such an autogenerated name:
$441000-1A0UVA0MRB0T. Any legacy application requiring the sAMAccountName value
would therefore require users to type a value that is difficult to use at best.

CreateUser.ps1

$strCLass = "User"
$StrName = "CN=MyNewUser"
$objADSI = [ADSI]"LDAP://ou=myTestOU,dc=nwtraders,dc=msft"
$objUser = $objADSI.create($strCLass, $StrName)
$objUser.Put("sAMAccountName", "MyNewUser")
$objUser.setInfo()

Quick check
Q. To create a user, which class must be specified?

a. You need to specify the User class to create a user.

Q. What is the Put method used for?

a. The Put method is used to write additional property data to the object that it is bound to.

Creating groups

1. Open the CreateUser.ps1 script in Notepad and save it as <yourname>CreateGroup.ps1.

2. Declare a variable called $intGroupType. This variable will be used to control the type of group
to create. Assign the number 2 to the variable. When used as the group type, a type 2 group
will be a distribution group. This line of code is shown here:

$intGroupType = 2

 CHAPTER 15 Working with Active Directory 395

3. Change the value of $strClass from User to Group. This variable will be used to control the
type of object that gets created in Active Directory. This is shown here:

$strGroup = "Group"

4. Change the name of the $objUser variable to $objGroup (it’s less confusing that way). This will
need to be done in two places, as shown here:

$objGroup = $objADSI.create($strCLass, $StrName)
$objGroup.setInfo()

5. Above the $objGroup.setInfo() line, use the Put method to create a distribution group. The
distribution group has a group type of 2, and you can use the value held in the $intGroupType
variable. This line of code is shown here:

$ObjGroup.put("GroupType",$intGroupType)

6. Save and run the script. It should create a group called MyNewGroup in the MyTestOU in
Active Directory. If the script does not perform as expected, compare your script with the
CreateGroup.ps1 script.

This concludes the procedure.

Creating a computer account

1. Open the CreateUser.ps1 script in Notepad and save it as <yourname>CreateComputer.ps1.

2. Change the $strClass value from user to computer. The revised command is shown here:

$strCLass = "computer"

3. Change the $strName value from CN=MyNewUser to CN=MyComputer. This command is
shown here:

$StrName = "CN=MyComputer"

The [ADSI] accelerator connection string is already connecting to ou=myTestOU and should
not need modification.

4. Change the name of the $objUser variable used to hold the object that is returned from the
Create method to $objComputer. This revised line of code is shown here:

$objComputer = $objADSI.create($strCLass, $StrName)

5. Use the Put method from the DirectoryEntry object created in the previous line to put the
value MyComputer in the sAMAccountName attribute. This line of code is shown here:

$objComputer.put("sAMAccountName", "MyComputer")

396 Windows PowerShell 3 Step by Step

6. Use the SetInfo() method to write the changes to Active Directory. This line of code is shown
here:

$objComputer.setInfo()

7. After the Computer object has been created in Active Directory, you can modify the
UserAccountControl attribute. The value 4128 in UserAccountControl means the workstation is
a trusted account and does not need to change the password. This line of code is shown here:

$objComputer.put("UserAccountControl",4128)

8. Use the SetInfo() method to write the change back to Active Directory. This line of code is
shown here:

$objComputer.setinfo()

9. Save and run the script. You should see a computer account appear in the Active Directory
Users and Computers utility. If your script does not produce the expected results, compare it
with CreateComputer.ps1.

This concludes the procedure.

What is user account control?
UserAccountControl is an attribute stored in Active Directory that is used to enable or disable a user
account, computer account, or other object defined in Active Directory. It is not a single string attri-
bute; rather, it is a series of bit flags that get computed from the values listed in Table 15-4. Because
of the way the UserAccountControl attribute is created, simply examining the numeric value is of
little help, unless you can decipher the individual numbers that make up the large number. These
flags, when added together, control the behavior of the user account on the system. In the script
CreateComputer.ps1, you set two user account control flags: the ADS_UF_PASSWD_NOTREQD flag
and the ADS_UF_WORKSTATION_TRUST_ACCOUNT flag. The password-not-required flag has a hexa-
decimal value of 0x20, and the trusted-workstation flag has a hexadecimal value of 0x1000. When
added together and turned into a decimal value, they equal 4128, which is the value actually shown in
ADSI Edit.

 CHAPTER 15 Working with Active Directory 397

TABLE 15-4 User account control values

ADS constant Value

ADS_UF_SCRIPT 0X0001

ADS_UF_ACCOUNTDISABLE 0X0002

ADS_UF_HOMEDIR_REQUIRED 0X0008

ADS_UF_LOCKOUT 0X0010

ADS_UF_PASSWD_NOTREQD 0X0020

ADS_UF_PASSWD_CANT_CHANGE 0X0040

ADS_UF_ENCRYPTED_TEXT_PASSWORD_ALLOWED 0X0080

ADS_UF_TEMP_DUPLICATE_ACCOUNT 0X0100

ADS_UF_NORMAL_ACCOUNT 0X0200

ADS_UF_INTERDOMAIN_TRUST_ACCOUNT 0X0800

ADS_UF_WORKSTATION_TRUST_ACCOUNT 0X1000

ADS_UF_SERVER_TRUST_ACCOUNT 0X2000

ADS_UF_DONT_EXPIRE_PASSWD 0X10000

ADS_UF_MNS_LOGON_ACCOUNT 0X20000

ADS_UF_SMARTCARD_REQUIRED 0X40000

ADS_UF_TRUSTED_FOR_DELEGATION 0X80000

ADS_UF_NOT_DELEGATED 0X100000

ADS_UF_USE_DES_KEY_ONLY 0x200000

ADS_UF_DONT_REQUIRE_PREAUTH 0x400000

ADS_UF_PASSWORD_EXPIRED 0x800000

ADS_UF_TRUSTED_TO_AUTHENTICATE_FOR_DELEGATION 0x1000000

Working with users
In this section, you will use ADSI to modify user properties stored in Active Directory. The following
list summarizes a few of the items you can change or configure:

■■ Office and telephone contact information

■■ Mailing address information

■■ Department, title, manager, and direct reports (people who report to the user inside the chain
of command)

398 Windows PowerShell 3 Step by Step

User information that is stored in Active Directory can easily replace data that used to be con-
tained in separate disparate places. For instance, you might have an internal website that contains
a telephone directory; you can put phone numbers into Active Directory as attributes of the User
object. You might also have a website containing a social roster that includes employees and their
hobbies; you can put hobby information in Active Directory as a custom attribute. You can also add to
Active Directory information such as an organizational chart. The problem, of course, is that during a
migration, information such as a user’s title is the last thing the harried mind of the network admin-
istrator thinks about. To leverage the investment in Active Directory, you need to enter this type of
information because it quickly becomes instrumental in the daily lives of users. This is where ADSI and
Windows PowerShell really begin to shine. You can update hundreds or even thousands of records
easily and efficiently using scripting. Such a task would be unthinkable using conventional point-and-
click methods.

To modify user properties in Active Directory, do the following:

1. Implement the appropriate protocol provider.

2. Perform binding to Active Directory.

3. Specify the appropriate ADsPath.

4. Use the Put method to write selected properties to users.

5. Use the SetInfo() method to commit changes to Active Directory.

General user information
One of the more confusing issues when you use Windows PowerShell to modify information in
Active Directory is that the names displayed on the property page do not correspond with the ADSI
nomenclature. This was not done to make your life difficult; rather, the names you see in ADSI are
derived from LDAP standard naming convention. Although this naming convention makes traditional
LDAP programmers happy, it does nothing for the network administrator who is a casual scripter. This
is where the following script, ModifyUserProperties.ps1, comes in handy. The LDAP properties cor-
responding to each field in Figure 15-3 are used in this script.

 CHAPTER 15 Working with Active Directory 399

FIGURE 15-3 ADSI attribute names on the General tab of Active Directory Users and Computers.

Some of the names make sense, but others appear to be rather obscure. Notice the series of
objUser.Put statements. Each lines up with the corresponding field in Figure 15-3. Use the values to
see which display name maps to which LDAP attribute name. Two of the attributes accept an array:
OtherTelephone and url. The url attribute is particularly misleading—first because it is singular, and
second because the othertelephone value uses the style otherTelephone. In addition, the primary
webpage uses the name wwwHomePage. When supplying values for the OtherTelephone and url
attributes, ensure the input value is accepted as an array by using the @() characters to cast the string
into an array. The use of all these values is illustrated in ModifyUserProperties.ps1, shown here:

ModifyUserProperties.ps1

$objUser = [ADSI]"LDAP://cn=MyNewUser,ou=myTestOU,dc=iammred,dc=net"
$objUser.put("SamaccountName", "myNewUser")
$objUser.put("givenName", "My")
$objUser.Put("initials", "N.")
$objUser.Put("sn", "User")
$objUser.Put("DisplayName", "My New User")
$objUser.Put("description" , "simple new user")
$objUser.Put("physicalDeliveryOfficeName", "RQ2")
$objUser.Put("telephoneNumber", "999-222-1111")
$objUser.Put("OtherTelephone",@("555-555-1212","555-555-1213"))
$objUser.Put("mail", "mnu@hotmail.com")
$objUser.Put("wwwHomePage", "http://www.ScriptingGuys.com")
$objUser.Put("url",@("http://www.ScriptingGuys.Com/blog","http://www.ScriptingGuys.com/
LearnPowerShell"))
$objUser.setInfo()

400 Windows PowerShell 3 Step by Step

Quick check
Q. What is the field name for the user’s first name?

a. The field for the user’s first name is GivenName. You can find field-mapping information in
the Platform SDK.

Q. Why do you need to use the SetInfo() command?

a. Without the SetInfo() command, all changes introduced during the script are lost because
the changes are made to a cached set of attribute values for the object being modified.
Nothing is committed to Active Directory until you call SetInfo().

Creating the address page
One of the more useful tasks you can perform with Active Directory is exposing address informa-
tion. This ability is particularly important when a company has more than one location and more
than a few hundred employees. I remember one of my first intranet projects was to host a centralized
list of employees. Such a project quickly paid for itself because the customer no longer needed an
administrative assistant to modify, copy, collate, and distribute hundreds of copies of the up-to-date
employee directory—potentially a full-time job for one person. After the intranet site was in place,
personnel at each location were given rights to modify the list. This was the beginning of a company-
wide directory. With Active Directory, you avoid this duplication of work by keeping all information
in a centralized location. The second tab in Active Directory Users and Computers is the Address tab,
shown in Figure 15-4 with the appropriate Active Directory attribute names filled in.

 CHAPTER 15 Working with Active Directory 401

FIGURE 15-4 Every item on the Address tab in Active Directory Users and Computers can be filled in via ADSI and
Windows PowerShell.

In the ModifySecondPage.ps1 script, you use ADSI to set the Street, PostOfficeBox, City, State,
PostalCode, C, CO, and CountryCode values for the User object. Table 15-5 lists the Active Directory
attribute names and their mappings to the Active Directory Users and Computers “friendly” display
names.

TABLE 15-5 Address page mappings

Active Directory Users and Computers label Active Directory attribute name

Street streetAddress

P.O. Box postOfficeBox

City l (Note that this is lowercase L.)

State/province st

Zip/Postal Code postalCode

Country/region C ,CO, CountryCode

When working with address-type information in Windows PowerShell, the hard thing is keeping
track of the country codes. These values must be properly supplied. Table 15-6 illustrates some typical
country codes. At times, the country codes seem to make sense; at others times, they do not. Rather
than guess, you can simply make the changes in Active Directory Users and Computers and use ADSI
Edit to examine the modified values, or you can look up the codes in ISO 3166-1.

402 Windows PowerShell 3 Step by Step

ModifySecondPage.ps1

$objUser = [ADSI]"LDAP://cn=MyNewUser,ou=myTestOU,dc=iammred,dc=net"
$objUser.put("streetAddress", "123 main st")
$objUser.put("postOfficeBox", "po box 12")
$objUser.put("l", "Charlotte")
$objUser.put("st", "SC")
$objUser.put("postalCode" , "12345")
$objUser.put("c", "US")
$objUser.put("co", "United States")
$objUser.put("countryCode", "840")
$objUser.setInfo()

TABLE 15-6 ISO 3166-1 country codes

Country code Country name

AF AFGHANISTAN

AU AUSTRALIA

EG EGYPT

LV LATVIA

ES SPAIN

US UNITED STATES

Caution The three country fields are not linked in Active Directory. You could easily have a
C code value of US, a CO code value of Zimbabwe, and a CountryCode value of 470 (Malta).
This could occur if someone uses the Active Directory Users and Computers to make a
change to the country property. When this occurs, it updates all three fields. If some-
one later runs a script to only update the CountryCode value or the CO code value, then
Active Directory Users and Computers will still reflect the translated value of the C code.
This could create havoc if your enterprise resource planning (ERP) application uses the CO
or CountryCode value and not the C attribute. Best practice is to update all three fields
through your script.

 CHAPTER 15 Working with Active Directory 403

Quick check
Q. To set the country name on the address page for Active Directory Users and Computers,

what is required?

a. To update the country name on the address page for Active Directory Users and
Computers, you must specify the C field and feed it a two-letter code that is found in ISO
publication 3166.

Q. What field name in ADSI is used to specify the city information?

a. You set the city information by assigning a value to the l (lowercase L) field after making the
appropriate connection to Active Directory.

Q. If you put an inappropriate letter code in the C field, what error message is displayed?

a. None.

Modifying the user profile settings

1. Open the ModifySecondPage.ps1 script you created earlier and save it as
<yourname>ModifyUserProfile.ps1.

2. The user profile page in Active Directory is composed of four attributes. Delete all but four of
the $objUser.put commands. The actual profile attributes are shown in Figure 15-5.

404 Windows PowerShell 3 Step by Step

FIGURE 15-5 ADSI attributes used to fill out the Profile tab in Active Directory.

3. The first attribute you need to supply a value for is ProfilePath. This controls where the user’s
profile will be stored. On my server, the location is \\London\Profiles in a folder named after
the user, which in this case is myNewUser. Edit the first of the $objUser.put commands you left
in your script to match your environment. The modified $objUser.put command is shown here:

$objUser.put("profilePath", "\\London\profiles\myNewUser")

4. The next attribute you need to supply a value for is ScriptPath. This controls which logon script
will be run when the user logs on. Even though this attribute is called ScriptPath, it does not
expect an actual path statement (it assumes the script is in the sysvol share); rather, it sim-
ply needs the name of the logon script. On my server, I use a logon script called logon.vbs.
Modify the second $objUser.put statement in your script to point to a logon script. The modi-
fied command is shown here:

$objUser.put("scriptPath", "logon.vbs")

5. The third attribute that needs to be set for the user profile is called HomeDirectory, and
it is used to control where the user’s home directory will be stored. This attribute needs a
Universal Naming Convention (UNC)–formatted path to a shared directory. On my server,
each user has a home directory named after his or her logon user name. The folders are
stored in a shared directory called Users. Modify the third $objUser.put statement in your

 CHAPTER 15 Working with Active Directory 405

script to point to the appropriate home directory location for your environment. The com-
pleted command is shown here:

$objUser.put("homeDirectory", "\\london\users\myNewUser")

6. The last user profile attribute that needs to be modified is HomeDrive. The HomeDrive attri-
bute in Active Directory is used to control the mapping of a drive letter to the user’s home
directory. On my server, all users’ home drives are mapped to drive H (for home). Please note
that Active Directory does not expect a trailing backslash for the HomeDirectory attribute.
Modify the last $objUser.put command to map the user’s home drive to the appropriate drive
letter for your environment. The modified command is shown here:

$objUser.put("homeDrive", "H:")

7. Save and run your script. If it does not modify the user’s profile page as expected, compare
your script with the ModifyUserProfile.ps1 script shown here.

$objUser = [ADSI]"LDAP://cn=MyNewUser,ou=myTestOU,dc=iammred,dc=net"
$objUser.put("profilePath", "\\DC1\shared\profiles\MyNewUser")
$objUser.put("ScriptPath", "Logon.PS1")
$objUser.put("HomeDrive", "H:")
$objUser.put("HomeDirectory", "\\DC1\users\MyNewUser")
$objUser.setInfo()

This concludes the procedure.

Modifying the user telephone settings

1. Open the ModifySecondPage.ps1 script you created earlier and save the file as
<yourname>ModifyTelephone Attributes.ps1.

2. The Telephones tab in Active Directory Users and Computers for a user account is composed
of six attributes. These attribute names are shown in Figure 15-6, which also illustrates the
field names, as shown in Active Directory Users and Computers on the Telephones tab for the
User object. Delete all but six of the $objUser.put commands from your script.

3. The first attribute you modify is the HomePhone attribute for the MyNewUser user account.
To do this, change the value of the first $objUser.put command so that it is now writing to the
HomePhone attribute in Active Directory. The phone number for the MyNewUser account
is (555) 555-1222. For this example, you are leaving off the country code and enclosing the
area code in parentheses. This is not required, however, for Active Directory. The modified line
of code is shown here:

$objUser.Put("homePhone", "(555)555-1222")

406 Windows PowerShell 3 Step by Step

4. The next telephone attribute in Active Directory is the Pager attribute. Your user account has a
pager number that is (555) 555-1333. Modify the second $objUser.put line of your script to put
this value into the Pager attribute. The revised line of code is shown here:

$objUser.Put("pager", "(555)555-1333")

5. The third telephone attribute you need to modify on your user account is
the mobile telephone attribute. The name of this attribute in Active Directory is Mobile. The
mobile telephone number for your user is (555) 555-1223. Edit the third $objUser.put com-
mand in your script so that you are writing this value into the Mobile attribute. The revised line
of code is shown here:

$objUser.Put("mobile", "(555)555-1223")

6. The fourth telephone attribute that needs to be assigned a value is for the fax machine.
The attribute in Active Directory that is used to hold the fax machine telephone number
is FacsimileTelephoneNumber. Our user has a fax number that is (555) 555-1224. Edit the
fourth $objUser.put command in your script to write the appropriate fax number into the
FacsimileTelephoneNumber attribute in Active Directory. The revised code is shown here:

$objUser.Put("facsimileTelephoneNumber", "(555)555-1224")

7. The fifth telephone attribute that needs to be assigned a value for your user is for the IP
address of the user’s IP telephone. In Active Directory, this attribute is called IPPhone. The
myNewUser account has an IP telephone with the IP address of 192.168.6.112. Modify the
fifth $objUser.put command so that it will supply this information to Active Directory when the
script is run. The revised command is shown here:

$objUser.Put("ipPhone", "192.168.6.112")

 CHAPTER 15 Working with Active Directory 407

FIGURE 15-6 Attributes on the Telephones tab in Active Directory.

8. Copy the previous telephone attributes and modify them for the other-type attributes.
These include the following: OtherFacsimileTelephoneNumber, OtherHomePhone, OtherPager,
OtherMobile, and OtherIPPhone.

9. Finally, the last telephone attribute is the notes. In Active Directory, this field is called the info
attribute. Use the put method to add the following information to the info attribute.

$objUser.Put("info", "All contact information is confidential")

10. Save and run your script. You should see the all the properties on the Telephones tab filled in
for the MyNewUser account. If this is not the case, you may want to compare your script with
the ModifyTelephoneAttributes.ps1 script shown here.

$objUser = [ADSI]"LDAP://cn=MyNewUser,ou=myTestOU,dc=iammred,dc=net"
$objUser.put("homePhone", "555-555-1222")
$objUser.put("pager", "555-555-1333")
$objUser.put("mobile", "555-555-1223")
$objUser.put("facsimileTelephoneNumber", "555-555-1224")
$objUser.put("ipPhone", "127.0.0.1")
$objUser.put("otherfacsimileTelephoneNumber", "555-555-1229")
$objUser.put("otherhomePhone", "555-555-1223")
$objUser.put("otherpager", "555-555-1334")

408 Windows PowerShell 3 Step by Step

$objUser.put("othermobile", @("555-555-1225","555-555-1226"))
$objUser.put("otheripPhone", @("127.0.0.2","127.0.0.3"))
$objUser.put("info", "All contact information is confidential")
$objUser.setInfo()

This concludes the procedure.

Creating multiple users

1. Open the CreateUser.ps1 script you created earlier and save it as
<yourname>CreateMultipleUsers.ps1.

2. On the second line of your script, change the name of the variable $strName to $aryNames
because the variable will be used to hold an array of user names. On the same line, change the
CN=MyNewUser user name to CN=MyBoss. Leave the quotation marks in place. At the end
of the line, place a comma and type in the next user name—CN=MyDIrect1—ensuring you
encase the name in quotation marks. The third user name is going to be CN=MyDirect2. The
completed line of code is shown here:

$aryNames = "CN=MyBoss","CN=MyDirect1","CN=MyDirect2"

3. Under the $objADSI line that uses the [ADSI] accelerator to connect into Active Directory, and
above the $objUser line that creates the user account, place a foreach statement. Inside the
parentheses, use the variable $strName as the single object and $aryNames as the name of
the array. This line of code is shown here:

foreach($StrName in $aryNames)

4. Below the foreach line, place an opening curly bracket to mark the beginning of the code
block. On the line after $objUser.setinfo(), close the code block with a closing curly bracket.
The entire code block is shown here:

{
 $objUser = $objADSI.create($strCLass, $StrName)

 $objUser.setInfo()
}

5. Save and run your script. You should see three user accounts—MyBoss, MyDirect1, and
MyDirect2—magically appear in the MyTestOU OU. If this does not happen, compare your
script with the CreateMultipleUsers.ps1 script shown here.

$strCLass = "User"
$aryNames = "CN=MyBoss","CN=MyDirect1","CN=MyDirect2"
$objADSI = [ADSI]"LDAP://ou=myTestOU,dc=iammred,dc=net"
foreach($StrName in $aryNames)

 CHAPTER 15 Working with Active Directory 409

{
 $objUser = $objADSI.create($strCLass, $StrName)
 $objUser.setInfo() }

This concludes the procedure.

note One interesting thing about Windows PowerShell is that it can read inside a string,
find a variable, and substitute the value of the variable, instead of just interpreting the vari-
able as a string literal. This makes it easy to build up compound strings from information
stored in multiple variables. Here’s an example:

$objUser = [ADSI]"LDAP://$strUser,$strOU,$strDomain"

Modifying the organizational settings

1. Open the ModifySecondPage.ps1 script and save it as
<yourname>ModifyOrganizationalPage.ps1.

2. In this script, you are going to modify four attributes in Active Directory, so you can delete all
but four of the $objUser.put commands from your script. The Organization tab from Active
Directory Users and Computers is shown in Figure 15-7, along with the appropriate attribute
names.

FIGURE 15-7 Organization attributes in Active Directory.

410 Windows PowerShell 3 Step by Step

3. To make your script more flexible, you are going to abstract much of the connection string
information into variables. The first variable you will use is one to hold the domain name. Call
this variable $strDomain and assign it a value of dc=nwtraders,dc=msft (assuming this is the
name of your domain). This code is shown here:

$strDomain = "dc=nwtraders,dc=msft"

4. The second variable you’ll declare is the one that will hold the name of the OU. In this proce-
dure, your users reside in an OU called ou=myTestOU, so you should assign this value to the
variable $strOU. This line of code is shown here:

$strOU = "ou=myTestOU"

5. The user name you are going to be working with is MyNewUser. Users are not domain com-
ponents (referred to with DC), nor are they OUs; rather, they are containers (referred to with
CN). Assign the string cn=MyNewUser to the variable $strUser. This line of code is shown here:

$strUser = "cn=MyNewUser"

6. The last variable you need to declare and assign a value to is the one that will hold
MyNewUser’s manager. His name is myBoss. The line of code that holds this information in the
$strManager variable is shown here:

$strManager = "cn=myBoss"

7. So far, you have hardly used any information from the ModifySecondPage.ps1 script. Edit the
$objUser line that holds the connection into Active Directory by using the [ADSI] accelerator
so that it uses the variables you created for the user, OU, and domain. Windows PowerShell
will read the value of the variables instead of interpreting them as strings. This makes it really
easy to modify the connection string. The revised line of code is shown here:

$objUser = [ADSI]"LDAP://$strUser,$strOU,$strDomain"

8. Modify the first $objUser.put command so that it assigns the value Mid-Level Manager to the
title attribute in Active Directory. This command is shown here:

$objUser.put("title", "Mid-Level Manager")

9. Modify the second $objUser.put command so that it assigns a value of sales to the department
attribute in Active Directory. This command is shown here:

$objUser.put("department", "sales")

10. Modify the third $objUser.put command and assign the string North Wind Traders to the com-
pany attribute. This revised line of code is shown here:

$objUser.put("company", "North Wind Traders")

 CHAPTER 15 Working with Active Directory 411

11. The last attribute you need to modify is the manager attribute. To do this, you will use the last
$objUser.put command. The manager attribute needs the complete path to the object, so you
will use the name stored in $strManager, the OU stored in $strOU, and the domain stored in
$strDomain. This revised line of code is illustrated here:

$objUser.put("manager", "$strManager,$strou,$strDomain")

12. Save and run your script. You should see the Organization tab filled out in Active Directory
Users and Computers. The only attribute that has not been filled out is the attribute for
the MyNewUser user direct reports. However, if you open the MyBoss user, you will see
MyNewUser listed as a direct report for the MyBoss user. If your script does not perform as
expected, then compare your script with the ModifyOrganizationalPage.ps1 script shown here.

$strDomain = "dc=iammred,dc=net"
$strOU = "ou=myTestOU"
$strUser = "cn=MyNewUser"
$strManager = "cn=myBoss"

$objUser = [ADSI]"LDAP://$strUser,$strOU,$strDomain"
$objUser.put("title", "Mid-Level Manager")
$objUser.put("department", "sales")
$objUser.put("company", "North Wind Traders")
$objUser.put("manager", "$strManager,$strou,$strDomain")

$objUser.setInfo()

This concludes the procedure.

Deleting users
There are times when you’ll need to delete user accounts, and with ADSI, you can very easily delete
large numbers of users with the single click of a mouse. Some reasons for deleting user accounts
follow:

■■ To clean up a computer lab environment—that is, to return machines to a known state.

■■ To clean up accounts at the end of a school year. Many schools delete all student-related
accounts and files at the end of each year. Scripting makes it easy to both create and delete
the accounts.

■■ To clean up temporary accounts created for special projects. If the creation of accounts is
scripted, their deletion can also be scripted, ensuring no temporary accounts are left lingering
in the directory.

To delete users, take the following steps:

1. Perform the binding to the appropriate OU.

2. Use [ADSI] to make a connection.

412 Windows PowerShell 3 Step by Step

3. Specify the appropriate provider and ADsPath.

4. Call the Delete method.

5. Specify User for the object class.

6. Specify the user to delete by the CN attribute value.

To delete a user, call the Delete method after binding to the appropriate level in the Active
Directory namespace. Then specify both the object class, which in this case is User, and the CN attri-
bute value of the user to be deleted. This can actually be accomplished in only two lines of code:

$objDomain = [ADSI]($provider + $ou + $domain)
$objDomain.Delete ($oClass, $oCn + $oUname)

If you modify the CreateUser.ps1 script, you can easily transform it into a DeleteUser.ps1 script,
which follows. The main change is in the Worker section of the script. The binding string, shown here,
is the same as earlier:

$objADSI = [ADSI]"LDAP://ou=myTestOU,dc=nwtraders,dc=msft"

However, in this case, you use the connection that was made in the binding string and call the
Delete method. You specify the class of the object in the $strClass variable in the Reference section
of the script. You also list the $strName. The syntax is Delete(Class, target). The deletion takes effect
immediately. No SetInfo() command is required. This command is shown here:

$objUser = $objADSI.delete($strCLass, $StrName)

The DeleteUser.ps1 script entailed only two real changes from the CreateUser.ps1 script. This
makes user management very easy. If you need to create a large number of temporary users, you
can save the script and then use it to get rid of them when they have completed their projects. The
complete DeleteUser.ps1 script is shown here:

DeleteUser.ps1

$strCLass = "User"
$StrName = "CN=MyNewUser"
$objADSI = [ADSI]"LDAP://ou=myTestOU,dc=nwtraders,dc=msft"
$objUser = $objADSI.delete($strCLass, $StrName)

Creating multiple organizational units: step-by-step exercises

In these exercises, you will explore the use of a text file to hold the names of multiple OUs you wish to
create in Active Directory. After you create the organizational units in the first exercise, you will add
users to the OU in the second exercise.

note To complete these exercises, you will need access to a Windows server running AD
DS. Modify the domain names listed in the exercises to match the name of your domain.

 CHAPTER 15 Working with Active Directory 413

Creating OUs from a text file

1. Open the Windows PowerShell ISE or some other script editor.

2. Create a text file called stepbystep.txt. The contents of the text file appear here:

ou=NorthAmerica
ou=SouthAmerica
ou=Europe
ou=Asia
ou=Africa

3. Make sure you have the exact path to this file. On the first line of your script, create a vari-
able called $aryText. Use this variable to hold the object that is returned by the Get-Content
cmdlet. Specify the path to the stepbystep.txt file as the value of the -path argument. The line
of code that does this is shown here:

$aryText = Get-Content -Path "c:\labs\ch15\stepbystep.txt"

4. When the Get-Content cmdlet is used, it creates an array from a text file. To walk through each
element of the array, you will use the ForEach cmdlet. Use a variable called $aryElement to
hold the line from the $aryText array. This line of code is shown here:

forEach ($aryElement in $aryText)

5. Begin your script block with an opening curly bracket. This is shown here:

{

6. Use the variable $strClass to hold the string organizationalUnit, because this is the kind of
object you will be creating in Active Directory. The line of code to do this is shown here:

$strCLass = "organizationalUnit"

7. The name of each OU you are going to create comes from each line of the stepbystep.txt file.
In your text file, to simplify the coding task, you included ou= as part of each OU name. The
$strOUName variable that will be used in the Create command has a straight value assign-
ment of one variable to another. This line of code is shown here:

$StrOUName = $aryElement

8. The next line of code in your code block is the one that connects into Active Directory by
using the [ADSI] accelerator. You are going to use the LDAP provider and connect to the
NwTraders.msft domain. You assign the object that is created to the $objADSI variable. This
line of code is shown here:

$objADSI = [ADSI]"LDAP://dc=nwtraders,dc=msft"

9. Now you are ready to actually create the OUs in Active Directory. To do this, you will use the
Create method. You specify two properties for the Create method: the name of the class to

414 Windows PowerShell 3 Step by Step

create and the name of the object to create. Here, the name of the class is stored in the vari-
able $strClass. The name of the object to create is stored in the $strOUName variable. The
object that is returned is stored in the $objOU variable. This line of code is shown here:

$objOU = $objADSI.create($strCLass, $StrOUName)

10. To write changes back to Active Directory, you use the SetInfo() method. This is shown here:

$objOU.setInfo()

11. Now you must close the code block. To do this, close it with a curly bracket, as shown here:

}

12. Save your script as <yourname>StepByStep.ps1. Run your script. You should see five OUs
created off the root of your domain. If this is not the case, compare your script with the
StepByStep.ps1 script that appears here:

$aryText = Get-Content -Path "c:\labs\ch15\stepbystep.txt"

forEach ($aryElement in $aryText)
{
 $strCLass = "organizationalUnit"
 $StrOUName = $aryElement
 $objADSI = [ADSI]"LDAP://dc=nwtraders,dc=msft"
 $objOU = $objADSI.create($strCLass, $StrOUName)
 $objOU.setInfo()`
}

This concludes the exercise.

In the following exercise, you will create nine temporary user accounts using concatenation. You’ll
specify values for the users from a text file and populate attributes on both the Address tab and the
Telephones tab.

Creating multivalued users

1. Open the Windows PowerShell ISE or your favorite Windows PowerShell script editor.

2. Create a text file called OneStepFurther.txt. The contents of this file appear here:

123 Main Street
Box 123
Atlanta
Georgia
123456
US
united states
840
1-555-345-8765
All information is confidential and is for official use only

 CHAPTER 15 Working with Active Directory 415

3. Use the Get-Content cmdlet to open the OneStepFurther.txt file. Use the -path argument to
point to the exact path to the file. Hold the array that is created in a variable called $aryText.
This line of code is shown here:

$aryText = Get-Content -Path "c:\labs\ch15\OneStepFurther.txt"

4. Create a variable called $strUser. This will be used to determine the class of object to create in
Active Directory. Assign the string User to this variable. This line of code is shown here:

$strCLass = "User"

5. Create a variable called $intUsers. This variable will be used to determine how many users to
create. For this exercise, you will create nine users, so assign the integer 9 to the value of the
variable. This code is shown here:

$intUsers = 9

6. Create a variable called $strName. This variable will be used to create the prefix for each user
that is created. Because these will be temporary users, use the prefix cn=tempuser. This code is
shown here:

$strName = "cn=tempUser"

7. Create a variable called $objADSI. This variable will be used to hold the object that is
returned by using the [ADSI] accelerator that is used to make the connection into Active
Directory. Specify the LDAP provider and connect to the MyTestOU OU that resides in the
NwTraders.msft domain. This line of code is shown here:

$objADSI = [ADSI]"LDAP://ou=myTestOU,dc=nwtraders,dc=msft"

8. Use a for loop to count from 1 to 9. Use the $i variable as the counter variable. When the value
of $i is less than or equal to the integer stored in the $intUsers variable, exit the loop. Use the
$i++ operator to increment the value of $i. This code is shown here:

for ($i=1; $i -le $intUsers; $i++)

9. Open and close your code block by using curly brackets. This is shown here:

{

}

10. Between the curly brackets, use the object contained in the $objADSI variable to create the
class of object stored in the variable $strClass. The name of each object will be created by
concatenating the $strName prefix with the number current in $i. Store the object returned
by the Create method in the variable $objUser. This line of code is shown here:

$objUser = $objADSI.create($strCLass, $StrName+$i)

416 Windows PowerShell 3 Step by Step

11. On the next line in the code block, write the new User object to Active Directory using the
SetInfo() method. This line of code is shown here:

$objUser.setInfo()

12. Open the OneStepFurther.txt file and examine the contents. Note that each line corre-
sponds to a property in Active Directory. The trick is to ensure that each line in the text file
matches each position in the array. Beginning at element, use the array contained in the
variable $aryText to write the streetaddress, postofficebox, l, st, postalcode, c, co, countrycode,
facsimiletelephonenumber, and info attributes for each User object that is created. This sec-
tion of code, shown here, is placed after the User object is created, and SetInfo() writes it to
Active Directory.

$objUser.put("streetAddress", $aryText[0])
$objUser.put("postOfficeBox", $aryText[1])
$objUser.put("l", $aryText[2])
$objUser.put("st", $aryText[3])
$objUser.put("postalCode" , $aryText[4])
$objUser.put("c", $aryText[5])
$objUser.put("co", $aryText[6])
$objUser.put("countryCode", $aryText[7])
$objUser.Put("facsimileTelephoneNumber", $aryText[8])
$objUser.Put("info", $aryText[9])

13. Commit the changes to Active Directory by calling the SetInfo() method. This line of code is
shown here:

$objUser.setInfo()

14. Save your script as <yourname>OneStepFurtherPt1.ps1. Run your script and examine
Active Directory Users and Computers. You should find the nine users with attributes on
both the Address tab and the Telephones tab. If this is not the case, then compare your script
with the OneStepFurtherPt1.ps1 script shown here.

$aryText = Get-Content -Path "c:\labs\ch15\OneStepFurther.txt"
$strCLass = "User"
$intUsers = 9
$strName = "cn=tempUser"

$objADSI = [ADSI]"LDAP://ou=myTestOU,dc=nwtraders,dc=msft"
for ($i=1; $i -le $intUsers; $i++)
{
$objUser = $objADSI.create($strCLass, $StrName+$i)
$objUser.setInfo()
$objUser.put("streetAddress", $aryText[0])
$objUser.put("postOfficeBox", $aryText[1])
$objUser.put("l", $aryText[2])
$objUser.put("st", $aryText[3])
$objUser.put("postalCode" , $aryText[4])
$objUser.put("c", $aryText[5])

 CHAPTER 15 Working with Active Directory 417

$objUser.put("co", $aryText[6])
$objUser.put("countryCode", $aryText[7])
$objUser.Put("facsimileTelephoneNumber", $aryText[8])
$objUser.Put("info", $aryText[9])
$objUser.setInfo()

15. After the users are created, proceed to the second part of the exercise, described in the fol-
lowing steps.

16. Save OneStepFurtherPt1.ps1 as <yourname>OneStepFurtherPt2.ps1.

17. Delete the $aryText = Get-Content -Path "c:\labs\ch15\OneStepFurther.txt" from the script.

18. Delete everything from inside the code block except for the line of code that creates the User
object. This line of code is $objUser = $objADSI.create($strCLass, $StrName+$i), and the code
to delete is shown here:

$objUser.setInfo()
$objUser.put("streetAddress", $aryText[0])
$objUser.put("postOfficeBox", $aryText[1])
$objUser.put("l", $aryText[2])
$objUser.put("st", $aryText[3])
$objUser.put("postalCode" , $aryText[4])
$objUser.put("c", $aryText[5])
$objUser.put("co", $aryText[6])
$objUser.put("countryCode", $aryText[7])
$objUser.Put("facsimileTelephoneNumber", $aryText[8])
$objUser.Put("info", $aryText[9])
$objUser.setInfo()

19. Inside the code block, change the Create method in the $objADSI Create command to Delete,
as shown here:

$objUser = $objADSI.Delete($strCLass, $StrName+$i)

20. Save and run your script. You should see the nine users, created earlier, disappear. If this does
not happen, compare your script with the OneStepFurtherPt2.ps1 script shown here.

$strCLass = "User"
$intUsers = 9
$strName = "cn=tempUser"
$objADSI = [ADSI]"LDAP://ou=myTestOU,dc=nwtraders,dc=msft"
for ($i=1; $i -le $intUsers; $i++)

{
 $objUser = $objADSI.Delete($strCLass, $StrName+$i)

}

This concludes the exercise.

418 Windows PowerShell 3 Step by Step

Chapter 15 quick reference

To Do this

Delete users easily Modify the script you used to create the user and change
the Create method to Delete.

Commit changes to Active Directory when deleting a user Do nothing—changes take place automatically when
users are deleted.

Find country codes used in Active Directory Users and
Computers

Use ISO 3166.

Modify a user’s first name via ADSI Add a value to the GivenName attribute. Use the SetInfo()
method to write the change to Active Directory. Use the
Put method to at least specify the sAMAccountName at-
tribute if using Windows 2000 Active Directory.

Overwrite a field that is already populated in Active
Directory

Use the Put method.

Assign a value to a terminal server profile attribute after
making a connection into Active Directory

Assign the value to the property. There is no need to use
the Put method.

Read a text file and turn it into an array Use the Get-Content cmdlet and specify the path to the
file by using the -path argument.

 419

C H A P T E R 1 6

Working with the aD DS Module

after completing this chapter, you will be able to:

■■ Use the AD DS cmdlets to manage users.

■■ Use the AD DS cmdlets to manage organizational units.

■■ Use the AD DS cmdlets to manage computer objects.

■■ Use the AD DS cmdlets to manage groups.

Understanding the Active Directory module

Microsoft made Active Directory Domain Services (AD DS) Microsoft Windows PowerShell cmdlets
available with Windows Server 2008 R2. You can also download and install the Active Directory
Management Gateway Service (ADMGS). ADMGS provides a web service interface to Active Directory
domains, and to Active Directory Lightweight Directory Services. ADMGS runs on the domain control-
ler. ADMGS can run on Windows Server 2003 with Service Pack (SP) 2, or Windows Server 2008. On
Windows Server 2008 R2 and above, ADMGS installs as a role and does not require an additional
download. Once you have one domain controller running Windows Server 2008 R2 (or later) in your
domain, you can use the new cmdlets to manage your AD DS installation. Installing ADMGS on
Windows Server 2003 or Windows Server 2008 does not make it possible to load the Active Directory
module on those machines, but it does permit you to use the Active Directory module from another
machine to manage those servers.

Installing the active Directory module
The Active Directory module is available beginning with Windows 7 on the client side and with
Windows 2008 R2 on servers. To make the cmdlets available on the desktop operating system,
you need to download and install the Remote Server Administration Tools (RSAT). The Active
Directory cmdlets ship in a Windows PowerShell module, and you may therefore be interested
in the Get-MyModule function from the Microsoft TechNet Script Center Script Repository. The
Get-MyModule function is useful because it will verify the presence of an optional module prior to its
use in a Windows PowerShell script. When using optional modules, scripts commonly fail because a
particular module may not be available on all systems. The Get-MyModule function helps to detect
this condition prior to actual script failure.

420 Windows PowerShell 3 Step by Step

To install the Active Directory module on either a Windows Server 2008 R2 machine or on
Windows Server 2012, you can use the Add-WindowsFeature cmdlet. This is because the Active
Directory module is directly available to the operating system as an optional Windows feature.
Therefore, installation on a server operating system does not require downloading RSAT. To install
RSAT for Active Directory, use the procedure that follows.

Installing the active Directory module

1. Use the Get-WindowsFeature cmdlet to verify that the rsat-ad-tools feature is available to
install. The command appears here:

Get-WindowsFeature rsat-ad-tools

2. Use the up arrow key to retrieve the Get-WindowsFeature command and pipeline the results
to the Add-WindowsFeature cmdlet. The command appears here:

Get-WindowsFeature rsat-ad-tools | Add-WindowsFeature

3. Use the up arrow key twice to retrieve the first Get-WindowsFeature command. The command
appears here:

Get-WindowsFeature rsat-ad-tools

The use of the procedure and the associated output appear in Figure 16-1.

FIGURE 16-1 Installing RSAT provides access to the Active Directory module.

 CHAPTER 16 Working with the AD DS Module 421

Getting started with the active Directory module
Once you have installed RSAT, you will want to verify that the Active Directory module is present and
that it loads properly. To do this, follow the next procedure.

Verifying the active Directory module

1. Use the Get-Module cmdlet with the -ListAvailable switch to verify that the Active Directory
module is present. The command to do this appears here:

Get-Module -ListAvailable ActiveDirectory

2. Use the Import-Module cmdlet to import the Active Directory module. The command to do
this appears following. (In Windows PowerShell 3.0, it is not required to explicitly import the
Active Directory module. However, if you know you are going to use the module, it makes
sense to go ahead and explicitly import it, because it is faster).

Import-Module ActiveDirectory

3. Use the Get-Module cmdlet to verify that the Active Directory module loaded properly. The
command to do this appears here:

Get-Module ActiveDirectory

4. Once the Active Directory module loads, you can obtain a listing of the Active Directory
cmdlets by using the Get-Command cmdlet and specifying the -Module parameter. This com-
mand appears here:

Get-Command -Module ActiveDirectory

Using the Active Directory module

It is not necessary to always load the Active Directory module (or for that matter any module)
because Windows PowerShell 3.0 automatically loads the module containing a referenced cmdlet.
The location searched by Windows PowerShell for modules comes from environment variable
PSModulePath. To view the value of this environment variable, prefix the variable name with the
environment drive. The following command retrieves the default module locations and displays the
associated paths:

PS C:\> $env:PSModulePath
C:\Users\ed.IAMMRED\Documents\WindowsPowerShell\Modules;C:\Windows\system32\WindowsPowerShell\
v1.0\Modules\

If you do not want to install the Active Directory module on your client operating systems, all you
need to do is to add the rsat-ad-tools feature to at least one server. Once it’s installed on the server,
use Windows PowerShell remoting to connect to the server hosting the rsat-ad-tools feature from

422 Windows PowerShell 3 Step by Step

your client workstation. Once in the remote session, if the remote server is Windows 8, all you need to
do is call one of the Active Directory cmdlets. The Active Directory module automatically loads, and
the information returns. The following commands illustrate this technique:

$credential = get-credential
Enter-PSSession -ComputerName w8Server6 -Credential $credential
Get-ADDomain

Figure 16-2 illustrates the techniques for using Windows PowerShell remoting to connect to a
server that contains the Active Directory module and for automatically loading that module while
using a cmdlet from it.

FIGURE 16-2 Using Windows PowerShell remoting to obtain Active Directory information without first loading
the module.

Finding the FSMO role holders
To find information about domain controllers and Flexible Single Master Operation (FSMO) roles,
you do not have to write a Windows PowerShell script; you can do it directly from the Windows
PowerShell console or ISE using the Active Directory cmdlets. The first thing you’ll need to do, more
than likely, is load the Active Directory module into the current Windows PowerShell session. While it
is possible to add the Import-Module command to your Windows PowerShell profile, in general it is
not a good idea to load a bunch of modules that you may or you may not use on a regular basis. In
fact, you can load all the modules at once by piping the results of the Get-Module -listavailable com-
mand to the Import-Module cmdlet. This is shown here:

PS C:\> Get-Module -ListAvailable | Import-Module
PS C:\> Get-Module

 CHAPTER 16 Working with the AD DS Module 423

ModuleType Name ExportedCommands
---------- ---- ----------------
Script BasicFunctions {Get-ComputerInfo, Get-OptimalSize}
Script ConversionModuleV6 {ConvertTo-Feet, ConvertTo-Miles, ConvertTo-...
Script PowerShellPack {New-ByteAnimationUsingKeyFrames, New-TiffBi...
Script PSCodeGen {New-Enum, New-ScriptCmdlet, New-PInvoke}
Script PSImageTools {Add-CropFilter, Add-RotateFlipFilter, Add-O...
Script PSRss {Read-Article, New-Feed, Remove-Article, Rem...
Script PSSystemTools {Test-32Bit, Get-USB, Get-OSVersion, Get-Mul...
Script PSUserTools {Start-ProcessAsAdministrator, Get-CurrentUs...
Script TaskScheduler {Remove-Task, Get-ScheduledTask, Stop-Task, ...
Script WPK {Get-DependencyProperty, New-ModelVisual3D, ...
Manifest ActiveDirectory {Set-ADOrganizationalUnit, Get-ADDomainContr...
Manifest AppLocker {Get-AppLockerPolicy, Get-AppLockerFileInfor...
Manifest BitsTransfer {Start-BitsTransfer, Remove-BitsTransfer, Re...
Manifest FailoverClusters {Set-ClusterParameter, Get-ClusterParameter,...
Manifest GroupPolicy {Get-GPStarterGPO, Get-GPOReport, Set-GPInhe...
Manifest NetworkLoadBalancingCl... {Stop-NlbClusterNode, Remove-NlbClusterVip, ...
Script PSDiagnostics {Enable-PSTrace, Enable-WSManTrace, Start-Tr...
Manifest TroubleshootingPack {Get-TroubleshootingPack, Invoke-Troubleshoo...

PS C:\>

Once you have loaded the Active Directory module, you will want to use the Get-Command cmdlet
to see the cmdlets that are exported by the module. This is shown here:

PS C:\> Get-Module -ListAvailable

ModuleType Name ExportedCommands
---------- ---- ----------------
Script BasicFunctions {}
Script ConversionModuleV6 {}
Script DotNet {}
Manifest FileSystem {}
Manifest IsePack {}
Manifest PowerShellPack {}
Manifest PSCodeGen {}
Manifest PSImageTools {}
Manifest PSRSS {}
Manifest PSSystemTools {}
Manifest PSUserTools {}
Manifest TaskScheduler {}
Manifest WPK {}
Manifest ActiveDirectory {}
Manifest AppLocker {}
Manifest BitsTransfer {}
Manifest FailoverClusters {}
Manifest GroupPolicy {}
Manifest NetworkLoadBalancingCl... {}
Manifest PSDiagnostics {}
Manifest TroubleshootingPack {}

424 Windows PowerShell 3 Step by Step

PS C:\> Import-Module active*
PS C:\> Get-Command -Module active*

CommandType Name Definition
----------- ---- ----------
Cmdlet Add-ADComputerServiceAccount Add-ADComputerServiceAccount [...
Cmdlet Add-ADDomainControllerPasswordR... Add-ADDomainControllerPassword...
Cmdlet Add-ADFineGrainedPasswordPolicy... Add-ADFineGrainedPasswordPolic...
Cmdlet Add-ADGroupMember Add-ADGroupMember [-Identity] ...
Cmdlet Add-ADPrincipalGroupMembership Add-ADPrincipalGroupMembership...
Cmdlet Clear-ADAccountExpiration Clear-ADAccountExpiration [-Id...
Cmdlet Disable-ADAccount Disable-ADAccount [-Identity] ...
Cmdlet Disable-ADOptionalFeature Disable-ADOptionalFeature [-Id...
Cmdlet Enable-ADAccount Enable-ADAccount [-Identity] <...
Cmdlet Enable-ADOptionalFeature Enable-ADOptionalFeature [-Ide...
Cmdlet Get-ADAccountAuthorizationGroup Get-ADAccountAuthorizationGrou...
Cmdlet Get-ADAccountResultantPasswordR... Get-ADAccountResultantPassword...
Cmdlet Get-ADComputer Get-ADComputer -Filter <String...
<output truncated>

To find a single domain controller, if you are not sure of one in your site, you can use the -Discover
switch on the Get-ADDomainController cmdlet. One thing to keep in mind is that the -Discover
parameter could return information from the cache. If you wish to ensure that a fresh discover com-
mand is sent, use the -forceDiscover switch in addition to the -Discover switch. These techniques
appear here:

PS C:\> Get-ADDomainController -Discover

Domain : NWTraders.Com
Forest : NWTraders.Com
HostName : {HyperV.NWTraders.Com}
IPv4Address : 192.168.1.100
IPv6Address :
Name : HYPERV
Site : NewBerlinSite

PS C:\> Get-ADDomainController -Discover -ForceDiscover

Domain : NWTraders.Com
Forest : NWTraders.Com
HostName : {HyperV.NWTraders.Com}
IPv4Address : 192.168.1.100
IPv6Address :
Name : HYPERV
Site : NewBerlinSite

PS C:\>

 CHAPTER 16 Working with the AD DS Module 425

When you use the Get-ADDomainController cmdlet, a minimal amount of information is returned.
If you wish to see additional information from the domain controller you discovered, you would
need to connect to it by using the -Identity parameter. The value of the Identity property can be an
IP address, a globally unique identifier (GUID), a host name, or even a NetBIOS type of name. This
technique appears here:

PS C:\> Get-ADDomainController -Identity hyperv

ComputerObjectDN : CN=HYPERV,OU=Domain Controllers,DC=NWTraders,DC=Com
DefaultPartition : DC=NWTraders,DC=Com
Domain : NWTraders.Com
Enabled : True
Forest : NWTraders.Com
HostName : HyperV.NWTraders.Com
InvocationId : 6835f51f-2c77-463f-8775-b3404f2748b2
IPv4Address : 192.168.1.100
IPv6Address :
IsGlobalCatalog : True
IsReadOnly : False
LdapPort : 389
Name : HYPERV
NTDSSettingsObjectDN : CN=NTDS Settings,CN=HYPERV,CN=Servers,CN=NewBerlinSite,
 CN=Sites,CN=Configuration,DC=NWTraders,DC=Com
OperatingSystem : Windows Server 2008 R2 Standard
OperatingSystemHotfix :
OperatingSystemServicePack :
OperatingSystemVersion : 6.1 (7600)
OperationMasterRoles : {SchemaMaster, DomainNamingMaster}
Partitions : {DC=ForestDnsZones,DC=NWTraders,DC=Com, DC=DomainDns
 Zones,DC=NWTraders,DC=Com, CN=Schema,CN=Configuration,
 DC=NWTraders,DC=Com, CN=Configuration,DC=NWTraders,DC=
 Com...}
ServerObjectDN : CN=HYPERV,CN=Servers,CN=NewBerlinSite,CN=Sites,CN=
 Configuration,DC=NWTraders,DC=Com
ServerObjectGuid : ab5e2830-a4d6-47f8-b2b4-25757153653c
Site : NewBerlinSite
SslPort : 636

PS C:\>

As shown in the preceding output, the server named Hyperv is a global catalog server (the
IsGlobalCatalog property is True). It also holds the SchemaMaster and DomainNamingMaster FSMO
roles. It is running Windows Server 2008 R2 Standard Edition. The Get-ADDomainController cmdlet
accepts a -filter parameter that can be used to perform a search-and-retrieve operation. It uses
a special search syntax that is discussed in the online help files. Unfortunately, it does not accept
Lightweight Directory Access Protocol (LDAP) syntax.

Luckily, you do not have to learn the special filter syntax, because the Get-ADObject cmdlet will
accept an LDAP dialect filter. You can simply pipeline the results of the Get-ADObject cmdlet to the
Get-ADDomainController cmdlet. This technique appears here:

426 Windows PowerShell 3 Step by Step

PS C:\> Get-ADObject -LDAPFilter "(objectclass=computer)" -searchbase "ou=domain
controllers,dc=nwtraders,dc=com" | Get-ADDomainController

ComputerObjectDN : CN=HYPERV,OU=Domain Controllers,DC=NWTraders,DC=Com
DefaultPartition : DC=NWTraders,DC=Com
Domain : NWTraders.Com
Enabled : True
Forest : NWTraders.Com
HostName : HyperV.NWTraders.Com
InvocationId : 6835f51f-2c77-463f-8775-b3404f2748b2
IPv4Address : 192.168.1.100
IPv6Address :
IsGlobalCatalog : True
IsReadOnly : False
LdapPort : 389
Name : HYPERV
NTDSSettingsObjectDN : CN=NTDS Settings,CN=HYPERV,CN=Servers,CN=NewBerlinSite,
 CN=Sites,CN=Configuration,DC=NWTraders,DC=Com
OperatingSystem : Windows Server 2008 R2 Standard
OperatingSystemHotfix :
OperatingSystemServicePack :
OperatingSystemVersion : 6.1 (7600)
OperationMasterRoles : {SchemaMaster, DomainNamingMaster}
Partitions : {DC=ForestDnsZones,DC=NWTraders,DC=Com, DC=DomainDns
 Zones,DC=NWTraders,DC=Com, CN=Schema,CN=Configuration,
 DC=NWTraders,DC=Com, CN=Configuration,DC=NWTraders,DC=
 Com...}
ServerObjectDN : CN=HYPERV,CN=Servers,CN=NewBerlinSite,CN=Sites,CN=
 Configuration,DC=NWTraders,DC=Com
ServerObjectGuid : ab5e2830-a4d6-47f8-b2b4-25757153653c
Site : NewBerlinSite
SslPort : 636

ComputerObjectDN : CN=DC1,OU=Domain Controllers,DC=NWTraders,DC=Com
DefaultPartition : DC=NWTraders,DC=Com
Domain : NWTraders.Com
Enabled : True
Forest : NWTraders.Com
HostName : DC1.NWTraders.Com
InvocationId : fb324ced-bd3f-4977-ae69-d6763e7e029a
IPv4Address : 192.168.1.101
IPv6Address :
IsGlobalCatalog : True
IsReadOnly : False
LdapPort : 389
Name : DC1
NTDSSettingsObjectDN : CN=NTDS Settings,CN=DC1,CN=Servers,CN=NewBerlinSite,CN=
 Sites,CN=Configuration,DC=NWTraders,DC=Com
OperatingSystem : Windows Serverr 2008 Standard without Hyper-V
OperatingSystemHotfix :
OperatingSystemServicePack : Service Pack 2
OperatingSystemVersion : 6.0 (6002)
OperationMasterRoles : {PDCEmulator, RIDMaster, InfrastructureMaster}

 CHAPTER 16 Working with the AD DS Module 427

Partitions : {DC=ForestDnsZones,DC=NWTraders,DC=Com, DC=DomainDns
 Zones,DC=NWTraders,DC=Com, CN=Schema,CN=Configuration,
 DC=NWTraders,DC=Com, CN=Configuration,DC=NWTraders,
 DC=Com...}
ServerObjectDN : CN=DC1,CN=Servers,CN=NewBerlinSite,CN=Sites,CN=
 Configuration,DC=NWTraders,DC=Com
ServerObjectGuid : 80885b47-5a51-4679-9922-d6f41228f211
Site : NewBerlinSite
SslPort : 636

PS C:\>

If this returns too much information, note that the Active Directory cmdlets work just like any other
Windows PowerShell cmdlet, and therefore permit using the pipeline to choose the information you
wish to display. To obtain only the FSMO information, you really only need to use two commands. (If
you want to include importing the Active Directory module in your count, you’ll need three com-
mands, and if you need to make a remote connection to a domain controller to run the commands,
you’ll need four). One useful thing about using Windows PowerShell remoting is that you specify the
credentials you need to run the command. If your normal account is a standard user account, you
only use an elevated account when you need to do things with elevated rights. If you have already
started the Windows PowerShell console with elevated credentials, you can skip typing in credentials
when you enter the remote Windows PowerShell session (assuming the elevated account also has
rights on the remote server). The command shown here creates a remote session on a remote domain
controller:

Enter-PSSession w8Server6

Once the Active Directory module loads, you type a one-line command to get the forest FSMO
roles, and another one-line command to get the domain FSMO roles. These two commands appear
here:

Get-ADForest iammred.net | Format-Table SchemaMaster,DomainNamingMaster
Get-ADDomain iammred.net | format-table PDCEmulator,RIDMaster,InfrastructureMaster

That is it—two or three one-line commands, depending on how you want to count. Even at worst
case, this is much easier to type than the 33 lines of code that would be required if you did not have
access to the Active Directory module. In addition, the Windows PowerShell code is much easier to
read and understand. The commands and the associated output appear in Figure 16-3.

428 Windows PowerShell 3 Step by Step

FIGURE 16-3 Using Windows PowerShell remoting to obtain FSMO information.

Discovering active Directory
Using the Active Directory Windows PowerShell cmdlets and remoting, you can easily discover
information about the forest and the domain. The first thing you need to do is to enter a PS session
on the remote computer. To do this, you use the Enter-PSSession cmdlet. Next, you import the Active
Directory module and set the working location to the root of drive C. The reason for setting the
working location to the root of drive C is to regain valuable command-line space. These commands
appear here:

PS C:\Users\Administrator.NWTRADERS> Enter-PSSession dc1
[dc1]: PS C:\Users\Administrator\Documents> Import-Module activedirectory
[dc1]: PS C:\Users\Administrator\Documents> Set-Location c:\

Once you have connected to the remote domain controller, you can use the Get-WMIObject
cmdlet to verify your operating system on that computer. This command and the associated output
appear here:

[dc1]: PS C:\> Get-WmiObject win32_operatingsystem
SystemDirectory : C:\Windows\system32
Organization :
BuildNumber : 7601
RegisteredUser : Windows User
SerialNumber : 55041-507-0212466-84005
Version : 6.1.7601

Now you want to get information about the forest. To do this, you use the Get-ADForest cmdlet.
The output from Get-ADForest includes lots of great information such as the domain-naming master,
forest mode, schema master, and domain controllers. The command and associated output appear
here:

 CHAPTER 16 Working with the AD DS Module 429

[dc1]: PS C:\> Get-ADForest
ApplicationPartitions : {DC=DomainDnsZones,DC=nwtraders,DC=com, DC=ForestDnsZones,DC=nwtraders,
 DC=com}
CrossForestReferences : {}
DomainNamingMaster : DC1.nwtraders.com
Domains : {nwtraders.com}
ForestMode : Windows2008Forest
GlobalCatalogs : {DC1.nwtraders.com}
Name : nwtraders.com
PartitionsContainer : CN=Partitions,CN=Configuration,DC=nwtraders,DC=com
RootDomain : nwtraders.com
SchemaMaster : DC1.nwtraders.com
Sites : {Default-First-Site-Name}
SPNSuffixes : {}
UPNSuffixes : {}

Next, you’ll use the Get-ADDomain cmdlet to obtain information about the domain. The command
returns important information, such as the location of the default domain controller OU, the PDC
Emulator, and the RID Master. The command and associated output appear here:

[dc1]: PS C:\> Get-ADDomain
AllowedDNSSuffixes : {}
ChildDomains : {}
ComputersContainer : CN=Computers,DC=nwtraders,DC=com
DeletedObjectsContainer : CN=Deleted Objects,DC=nwtraders,DC=com
DistinguishedName : DC=nwtraders,DC=com
DNSRoot : nwtraders.com
DomainControllersContainer : OU=Domain Controllers,DC=nwtraders,DC=com
DomainMode : Windows2008Domain
DomainSID : S-1-5-21-909705514-2746778377-2082649206
ForeignSecurityPrincipalsContainer : CN=ForeignSecurityPrincipals,DC=nwtraders,DC=com
Forest : nwtraders.com
InfrastructureMaster : DC1.nwtraders.com
LastLogonReplicationInterval :
LinkedGroupPolicyObjects : {CN={31B2F340-016D-11D2-945F-00C04FB984F9},CN=Policies,CN=
 System,DC=nwtraders,DC=com}
LostAndFoundContainer : CN=LostAndFound,DC=nwtraders,DC=com
ManagedBy :
Name : nwtraders
NetBIOSName : NWTRADERS
ObjectClass : domainDNS
ObjectGUID : 0026d1fc-2e4d-4c35-96ce-b900e9d67e7c
ParentDomain :
PDCEmulator : DC1.nwtraders.com
QuotasContainer : CN=NTDS Quotas,DC=nwtraders,DC=com
ReadOnlyReplicaDirectoryServers : {}
ReplicaDirectoryServers : {DC1.nwtraders.com}
RIDMaster : DC1.nwtraders.com
SubordinateReferences : {DC=ForestDnsZones,DC=nwtraders,DC=com, DC=DomainDnsZones,
 DC=nwtraders,DC=com, CN=Configuration,DC=nwtraders,DC=com}
SystemsContainer : CN=System,DC=nwtraders,DC=com
UsersContainer : CN=Users,DC=nwtraders,DC=com

From a security perspective, you should always check the domain password policy. To do this, use
the Get-ADDefaultDomainPasswordPolicy cmdlet. Things you want to pay attention to are the use of

430 Windows PowerShell 3 Step by Step

complex passwords, minimum password length, password age, and password retention. Of course,
you also need to check the account lockout policy too. This policy is especially important to review
closely when inheriting a new network. Here is the command and associated output to do this:

[dc1]: PS C:\> Get-ADDefaultDomainPasswordPolicy
ComplexityEnabled : True
DistinguishedName : DC=nwtraders,DC=com
LockoutDuration : 00:30:00
LockoutObservationWindow : 00:30:00
LockoutThreshold : 0
MaxPasswordAge : 42.00:00:00
MinPasswordAge : 1.00:00:00
MinPasswordLength : 7
objectClass : {domainDNS}
objectGuid : 0026d1fc-2e4d-4c35-96ce-b900e9d67e7c
PasswordHistoryCount : 24
ReversibleEncryptionEnabled : False

Finally, you need to check the domain controllers themselves. To do this, use the
Get-ADDomainController cmdlet. This command returns important information about domain con-
trollers, such as whether the domain controller is read-only, is a global catalog server, or owns one of
the operations master roles; it also returns operating system information. Here is the command and
associated output:

[dc1]: PS C:\> Get-ADDomainController -Identity dc1
ComputerObjectDN : CN=DC1,OU=Domain Controllers,DC=nwtraders,DC=com
DefaultPartition : DC=nwtraders,DC=com
Domain : nwtraders.com
Enabled : True
Forest : nwtraders.com
HostName : DC1.nwtraders.com
InvocationId : b51f625f-3f60-44e7-8577-8918f7396c2a
IPv4Address : 10.0.0.1
IPv6Address :
IsGlobalCatalog : True
IsReadOnly : False
LdapPort : 389
Name : DC1
NTDSSettingsObjectDN : CN=NTDS Settings,CN=DC1,CN=Servers,CN=Default-First-Site-Name,CN=
 Sites,CN=Configuration,DC=nwtraders,DC=com
OperatingSystem : Windows Server 2008 R2 Enterprise
OperatingSystemHotfix :
OperatingSystemServicePack : Service Pack 1
OperatingSystemVersion : 6.1 (7601)
OperationMasterRoles : {SchemaMaster, DomainNamingMaster, PDCEmulator, RIDMaster...}
Partitions : {DC=ForestDnsZones,DC=nwtraders,DC=com, DC=DomainDnsZones,DC=
 nwtraders,DC=com, CN=Schema,CN=Configuration,DC=nwtraders,DC=com,
 CN=Configuration,DC=nwtraders,DC=com...}
ServerObjectDN : CN=DC1,CN=Servers,CN=Default-First-Site-Name,CN=Sites,CN=
 Configuration,DC=nwtraders,DC=com
ServerObjectGuid : 5ae1fd0e-bc2f-42a7-af62-24377114e03d
Site : Default-First-Site-Name
SslPort : 636

 CHAPTER 16 Working with the AD DS Module 431

Producing a report is as easy as redirecting the output to a text file. The following commands
gather the information discussed earlier in this section and store the retrieved information in a file
named AD_Doc.txt. The commands also illustrate that it is possible to redirect the information to a file
stored in a network share.

Get-ADForest >> \\dc1\shared\AD_Doc.txt
Get-ADDomain >> \\dc1\shared\AD_Doc.txt
Get-ADDefaultDomainPasswordPolicy >> \\dc1\shared\AD_Doc.txt
Get-ADDomainController -Identity dc1 >>\\dc1\shared\AD_Doc.txt

The file as viewed in Notepad appears in Figure 16-4.

FIGURE 16-4 Active Directory documentation displayed in Notepad.

renaming active Directory sites
It is easy to rename a site. All you need to do is to right-click the site and select Rename from
the action menu in the Microsoft Management Console (MMC). By default, the first site is called
Default-First-Site-Name, which is not too illuminating. To work with Active Directory sites, it is neces-
sary to understand that they are a bit strange. First, they reside in the configuration-naming context.
Connecting to this context using the Active Directory module is rather simple. All you need to do is to
use the Get-ADRootDSE cmdlet and then select the ConfigurationNamingContext property. First, you
have to make a connection to the domain controller and import the Active Directory module (assum-
ing that you do not have RSAT installed on your client computer). This appears here:

Enter-PSSession -ComputerName dc3 -Credential iammred\administrator
Import-Module activedirectory

Here is the code that will retrieve all of the sites. It uses the Get-ADObject cmdlet to search the
configuration-naming context for objects that are of class site.

Get-ADObject -SearchBase (Get-ADRootDSE).ConfigurationNamingContext -filter "objectclass -eq
'site'"

432 Windows PowerShell 3 Step by Step

Once you have the site you wish to work with, you first change the DisplayName attribute. To do
this, you pipeline the site object to the Set-ADOObject cmdlet. The Set-ADOObject cmdlet allows you
to set a variety of attributes on an object. This command appears following. (This is a single command
that is broken into two pieces at the pipe character).

Get-ADObject -SearchBase (Get-ADRootDSE).ConfigurationNamingContext -filter "objectclass -eq
'site'" | Set-ADObject -DisplayName CharlotteSite

Once you have set the -DisplayName attribute, you can rename the object itself. To do this, you
use a cmdlet called Rename-ADObject. Once again, to simplify things, you pipeline the site object to
the cmdlet and assign a new name for the site. This command appears following. (This is also a one-
line command broken at the pipe).

Get-ADObject -SearchBase (Get-ADRootDSE).ConfigurationNamingContext -filter "objectclass -eq
'site'" | Rename-ADObject -NewName CharlotteSite

Managing users
To create a new organizational unit (OU), you use the New-ADOrganizationalUnit cmdlet, as shown
here:

New-ADOrganizationalUnit -Name TestOU -Path "dc=nwtraders,dc=com"

If you wish to create a child OU, you use the New-ADOrganizationalUnit cmdlet, but in the path,
you list the location that will serve as the parent. This is illustrated here:

New-ADOrganizationalUnit -Name TestOU1 -Path "ou=TestOU,dc=nwtraders,dc=com"

If you wish to create several child OUs in the same location, use the up arrow key to retrieve the
previous command and edit the name of the child. You can use the Home key to move to the begin-
ning of the line, the End key to move to the end of the line, and the left and right arrow keys to find
your place on the line so you can edit it. A second child OU is created here:

New-ADOrganizationalUnit -Name TestOU2 -Path "ou=TestOU,dc=nwtraders,dc=com"

To create a computer account in one of the newly created child OUs, you must type the complete
path to the OU that will house the new computer account. The New-ADComputer cmdlet is used to
create new computer accounts in AD DS. In this example, the TestOU1 OU is a child of the TestOU OU,
and therefore both OUs must appear in the -Path parameter. Keep in mind that the path that is sup-
plied to the -Path parameter must be contained inside quotation marks, as shown here:

New-ADComputer -Name Test -Path "ou=TestOU1,ou=TestOU,dc=nwtraders,dc=com"

To create a user account, you use the New-ADUser cmdlet, as shown here:

New-ADUser -Name TestChild -Path "ou=TestOU1,ou=TestOU,dc=nwtraders,dc=com"

 CHAPTER 16 Working with the AD DS Module 433

Because there could be a bit of typing involved that tends to become redundant, you may wish to
write a script to create the OUs at the same time the computer and user accounts are created. A sample
script that creates OUs, users, and computers is the UseADCmdletsToCreateOuComputerAndUser.ps1
script shown here:

UseaDCmdletstoCreateOuComputerandUser.ps1

Import-Module -Name ActiveDirectory
$Name = "ScriptTest"
$DomainName = "dc=nwtraders,dc=com"
$OUPath = "ou={0},{1}" -f $Name, $DomainName

New-ADOrganizationalUnit -Name $Name -Path $DomainName -ProtectedFromAccidentalDeletion $false

For($you = 0; $you -le 5; $you++)
{
 New-ADOrganizationalUnit -Name $Name$you -Path $OUPath -ProtectedFromAccidentalDeletion $false
}

For($you = 0 ; $you -le 5; $you++)
{
 New-ADComputer -Name "TestComputer$you" -Path $OUPath
 New-ADUser -Name "TestUser$you" -Path $OUPath
}

The UseADCmdletsToCreateOuComputerAndUser.ps1 script begins by importing the Active
Directory module. It then creates the first OU. When testing a script, it is important to disable the
deletion protection by using the -ProtectedFromAccidentalDeletion parameter. This will allow you to
easily delete the OU and avoid having to change the protected status on each OU in the Advanced
view in Active Directory Users and Computers.

Once the ScriptTest OU is created, the other OUs and user and computer accounts can be created
inside the new location. It may seem obvious that you cannot create a child OU inside the parent OU
if the parent has not yet been created—but it is easy to make a logic error like this.

To create a new global security group, use the New-ADGroup Windows PowerShell AD DS cmdlet.
The New-ADGroup cmdlet requires three parameters: -Name, for the name of the group; -Path, for a
path inside the directory to the location where the group will be stored; and -groupScope, which can
be global, universal, or domainlocal. Before running the command shown here, remember that you
must import the Active Directory module into your current Windows PowerShell session.

New-ADGroup -Name TestGroup -Path "ou=TestOU,dc=nwtraders,dc=com" -groupScope global

To create a new universal group, you only need to change the -groupScope parameter value, as
shown here:

New-ADGroup -Name TestGroup1 -Path "ou=TestOU,dc=nwtraders,dc=com" -groupScope universal

434 Windows PowerShell 3 Step by Step

To add a user to a group using the New-ADGroup cmdlet, you must supply values for the -Identity
parameter and the -Members parameter. The value you use for the -Identity parameter is the name
of the group. You do not need to use the LDAP syntax of cn=groupname; you only need to supply the
name. Use ADSI Edit to examine the requisite LDAP attributes needed for a group in ADSI Edit.

It is a bit unusual that the -Members parameter is named -Members and not -Member, because
most Windows PowerShell cmdlet parameter names are singular, not plural. The parameter names are
singular even when they accept an array of values (such as the -computername parameter). The com-
mand to add a new group named TestGroup1 to the UserGroupTest group is shown here:

Add-ADGroupMember -Identity TestGroup1 -Members UserGroupTest

To remove a user from a group, use the Remove-ADGroupMember cmdlet with the name of the
user and group. The -Identity and the -Members parameters are required, but the command will not
execute without confirmation, as shown here:

PS C:\> Remove-ADGroupMember -Identity TestGroup1 -Members UserGroupTest

Confirm
Are you sure you want to perform this action?
Performing operation "Set" on Target "CN=TestGroup1,OU=TestOU,DC=NWTraders,DC=Com".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"): y
PS C:\>

If you are sure you wish to remove the user from the group and you wish to suppress the query,
you use the -Confirm parameter and assign the value $false to it. Note that you will need to supply a
colon between the parameter and the $false value.

note The use of the colon after the -Confirm parameter is not documented, but the
technique works on several different cmdlets. Unfortunately, you cannot use the -Force
switched parameter to suppress the query.

The command is shown here:

Remove-ADGroupMember -Identity TestGroup1 -Members UserGroupTest -Confirm:$false

You need the ability to suppress the confirmation prompt to be able to use the
Remove-ADGroupMember cmdlet in a script. The first thing the RemoveUserFromGroup.ps1 script
does is load the Active Directory module. Once the module is loaded, the Remove-ADGroupMember
cmdlet is used to remove the user from the group. To suppress the confirmation prompt, the
-Confirm:$false command is used. The RemoveUserFromGroup.ps1 script is shown here:

removeUserFromGroup.ps1

import-module activedirectory
Remove-ADGroupMember -Identity TestGroup1 -Members UserGroupTest -Confirm:$false

 CHAPTER 16 Working with the AD DS Module 435

Creating a user
In this section, you’ll create a new user in Active Directory with the name Ed. The command to create
a new user is simple: it is New-ADUser and the user name. The command to create a disabled user
account in the Users container in the default domain appears here:

New-ADUser -Name Ed

When the command that creates a new user completes, nothing is returned to the Windows
PowerShell console. To check to ensure that the user is created, use the Get-ADUser cmdlet to retrieve
the User object. This command appears here:

Get-ADUser Ed

Once you are certain your new user is created, you can create an OU to store the user account. The
command to create a new OU off the root of the domain appears here:

New-ADOrganizationalUnit Scripting

As with the previously used New-ADUser cmdlet, nothing returns to the Windows PowerShell
console. If you use the Get-ADOrganizationalUnit cmdlet, you must use a different methodology. A
simple Get-ADOrganizationalUnit command returns an error; instead, you can use the -LDAPFilter
parameter to find the OU, as follows:

Get-ADOrganizationalUnit -LDAPFilter "(name=scripting)"

Now that you have a new user and a new OU, you need to move the user from the Users container
to the newly created Scripting OU. To do that, you use the Move-ADObject cmdlet. You first get the
distinguishedname attribute for the Scripting OU and store it in a variable called $oupath. Next, you
use the Move-ADObject cmdlet to move the Ed user to the new OU. The trick here is that whereas
the Get-ADUser cmdlet is able to find a user with the name of Ed, the Move-ADObject cmdlet must
have the distinguished name of the Ed USER object in order to move it. You could use the Get-ADUser
cmdlet to retrieve the distinguished name in a similar manner as you did with the Scripting OU.

The next thing you need to do is to enable the user account. To do this, you need to assign a
password to the user account prior to enabling the account. The password must be a secure string. To
do this, you can use the ConvertTo-SecureString cmdlet. By default, warnings about converting text to
a secure string are displayed, but you can suppress these prompts by using the -force parameter. Here
is the command you use to create a secure string for a password:

$pwd = ConvertTo-SecureString -String "P@ssword1" -AsPlainText -Force

Now that you have created a secure string to use for a password for your user account, you call the
Set-ADAccountPassword cmdlet to set the password. Because this is a new password, you need to use
the -NewPassword parameter. In addition, because you do not have a previous password, you use the
-Reset parameter. This command appears here:

Set-ADAccountPassword -Identity ed -NewPassword $pwd -Reset

436 Windows PowerShell 3 Step by Step

Once the account has an assigned password, it is time to enable the user account. This command
appears here:

Enable-ADAccount -Identity ed

As with the previous cmdlets, none of these cmdlets returns any information. To ensure you have
actually enabled the Ed user account, you use the Get-ADUser cmdlet. In the output, you are look-
ing for the value of the enabled property. The enabled property is a Boolean, so therefore expect the
value to be true.

Finding and unlocking active Directory user accounts
When using the Active Directory cmdlets, locating locked-out users is a snap. The Search-ADAccount
cmdlet even has a -LockedOut switch. Use the Search-ADAccount cmdlet with the -LockedOut param-
eter to find all user accounts in the domain that are locked out. This command appears here:

Search-ADAccount -LockedOut

note Many network administrators who spend the majority of their time working with
Active Directory import the Active Directory module via their Windows PowerShell profile.
In this way, they never need to worry about the initial performance hit that occurs due to
autoloading the Active Directory module.

The Search-ADAccount command and the associated output appear here:

[w8server6]: PS C:\> Search-ADAccount -LockedOut

AccountExpirationDate :
DistinguishedName : CN=kimakers,OU=test,DC=iammred,DC=net
Enabled : True
LastLogonDate : 1/24/2012 8:40:29 AM
LockedOut : True
Name : kimakers
ObjectClass : user
ObjectGUID : d907fa99-cd08-435f-97de-1e99d0eb485d
PasswordExpired : False
PasswordNeverExpires : False
SamAccountName : kimakers
SID : S-1-5-21-1457956834-3844189528-3541350385-1608
UserPrincipalName : kimakers@iammred.net

[w8server6]: PS C:\>

You can unlock the locked-out user account as well—assuming you have permission. Figure 16-5
shows an attempt to unlock the user account with an account that is for a normal user—an error
arises.

 CHAPTER 16 Working with the AD DS Module 437

note People are often worried about Windows PowerShell from a security perspective.
Windows PowerShell is only an application, and therefore users are not able to do anything
that they do not have rights or permission to accomplish. This is a case in point.

If your user account does not have admin rights, you need to start Windows PowerShell with
an account that has the ability to unlock a user account. To do this, you right-click the Windows
PowerShell icon while holding down the Shift key; this allows you to select Run As Different User from
the Tasks menu.

Once you start Windows PowerShell back up with an account that has rights to unlock users, the
Active Directory module needs to load once again. You then check to ensure that you can still locate
the locked-out user accounts. Once you can do that, you pipeline the results of the Search-ADAccount
cmdlet to Unlock-ADAccount. A quick check ensures you have unlocked all the locked-out accounts.
The series of commands appears here:

Search-ADAccount -LockedOut
Search-ADAccount -LockedOut | Unlock-ADAccount
Search-ADAccount -LockedOut

The commands and associated output appear in Figure 16-5.

FIGURE 16-5 Using the Active Directory module to find and to unlock user accounts.

note Keep in mind that the command Search-ADAccount -LockedOut | Unlock-ADAccount
will unlock every account that you have permission to unlock. In most cases, you will want
to investigate prior to unlocking all locked-out accounts. If you do not want to unlock
all locked-out accounts, use the -confirm switch to be prompted prior to unlocking an
account.

438 Windows PowerShell 3 Step by Step

If you do not want to unlock all users, you use the -confirm parameter when calling the
Unlock-ADAccount cmdlet. As an example, you first check to see what users are locked out by using
the Search-ADAccount cmdlet—but you do not want to see everything, only their names. Next, you
pipeline the locked-out users to the Unlock-ADAccount cmdlet with the -confirm parameter. You are
then prompted for each of the three locked-out users. You choose to unlock the first and third users,
but not the second user. You then use the Search-ADAccount cmdlet one last time to ensure that the
second user is still locked out.

Finding disabled users
Luckily, by using Windows PowerShell and the Active Directory cmdlets, you can retrieve the dis-
abled users from your domain with a single line of code. The command appears following. (Keep in
mind that running this command automatically imports the Active Directory module into the current
Windows PowerShell host.)

Get-ADUser -Filter 'enabled -eq $false' -Server dc3

Not only is the command a single line of code, but it is also a single line of readable code. You get
users from AD DS; you use a filter that looks for the enabled property set to false. You also specify that
you want to query a server named dc3 (the name of one of the domain controllers on my network).
The command and the associated output appear in Figure 16-6.

FIGURE 16-6 Finding disabled user accounts.

If you want to work with a specific user, you can use the -identity parameter. The -identity param-
eter accepts several things: distinguishedname, sid, guid, and SamAccountName. Probably the easiest
one to use is the SamAccountName. This command and associated output appears here:

 CHAPTER 16 Working with the AD DS Module 439

PS C:\Users\ed.IAMMRED> Get-ADUser -Server dc3 -Identity teresa
DistinguishedName : CN=Teresa Wilson,OU=Charlotte,DC=iammred,DC=net
Enabled : True
GivenName : Teresa
Name : Teresa Wilson
ObjectClass : user
ObjectGUID : 75f12010-b952-4d16-9b22-3ada7d26eed8
SamAccountName : Teresa
SID : S-1-5-21-1457956834-3844189528-3541350385-1104
Surname : Wilson
UserPrincipalName : Teresa@iammred.net

To use the distinguishedname value for the -identity parameter, you need to supply it inside a pair
of quotation marks—either single or double. This command and associated output appear here:

PS C:\Users\ed.IAMMRED> Get-ADUser -Server dc3 -Identity 'CN=Teresa Wilson,OU
=Charlotte,DC=iammred,DC=net'
DistinguishedName : CN=Teresa Wilson,OU=Charlotte,DC=iammred,DC=net
Enabled : True
GivenName : Teresa
Name : Teresa Wilson
ObjectClass : user
ObjectGUID : 75f12010-b952-4d16-9b22-3ada7d26eed8
SamAccountName : Teresa
SID : S-1-5-21-1457956834-3844189528-3541350385-1104
Surname : Wilson
UserPrincipalName : Teresa@iammred.net

It is not necessary to use quotation marks when using the SID for the value of the -identity param-
eter. This command and associated output appear here:

PS C:\Users\ed.IAMMRED> Get-ADUser -Server dc3 -Identity S-1-5-21-1457956834-
3844189528-3541350385-1104

DistinguishedName : CN=Teresa Wilson,OU=Charlotte,DC=iammred,DC=net
Enabled : True
GivenName : Teresa
Name : Teresa Wilson
ObjectClass : user
ObjectGUID : 75f12010-b952-4d16-9b22-3ada7d26eed8
SamAccountName : Teresa
SID : S-1-5-21-1457956834-3844189528-3541350385-1104
Surname : Wilson
UserPrincipalName : Teresa@iammred.net

Once again, you can also use the ObjectGUID for the -identity parameter value. It does not require
quotation marks either. This command and associated output appear here:

440 Windows PowerShell 3 Step by Step

PS C:\Users\ed.IAMMRED> Get-ADUser -Server dc3 -Identity 75f12010-b952-4d16-9
b22-3ada7d26eed8
DistinguishedName : CN=Teresa Wilson,OU=Charlotte,DC=iammred,DC=net
Enabled : True
GivenName : Teresa
Name : Teresa Wilson
ObjectClass : user
ObjectGUID : 75f12010-b952-4d16-9b22-3ada7d26eed8
SamAccountName : Teresa
SID : S-1-5-21-1457956834-3844189528-3541350385-1104
Surname : Wilson
UserPrincipalName : Teresa@iammred.net

Finding unused user accounts
To obtain a listing of all the users in Active Directory, supply a wildcard to the -filter parameter of the
Get-ADUser cmdlet. This technique appears here:

Get-ADUser -Filter *

If you wish to change the base of the search operations, use the -SearchBase parameter. The
-SearchBase parameter accepts an LDAP style of naming. The following command changes the search
base to the TestOU OU:

Get-ADUser -Filter * -SearchBase "ou=TestOU,dc=nwtraders,dc=com"

When you use the Get-ADUser cmdlet, only a certain subset of user properties are displayed
(10 properties, to be exact). These properties will be displayed when you pipeline the results to
Format-List and use a wildcard and the -force parameter, as shown here:

PS C:\> Get-ADUser -Identity bob | format-list -Property * -Force

DistinguishedName : CN=bob,OU=TestOU,DC=NWTraders,DC=Com
Enabled : True
GivenName : bob
Name : bob
ObjectClass : user
ObjectGUID : 5cae3acf-f194-4e07-a466-789f9ad5c84a
SamAccountName : bob
SID : S-1-5-21-3746122405-834892460-3960030898-3601
Surname :
UserPrincipalName : bob@NWTraders.Com
PropertyNames : {DistinguishedName, Enabled, GivenName, Name...}
PropertyCount : 10

PS C:\>

 CHAPTER 16 Working with the AD DS Module 441

Anyone who knows very much about AD DS knows there are certainly more than 10 properties
associated with a User object. If you try to display a property that is not returned by the Get-ADUser
cmdlet, such as the whenCreated property, an error is not returned, but the value of the whenCreated
property is not returned either. This is shown here:

PS C:\> Get-ADUser -Identity bob | Format-List -Property name, whenCreated

name : bob
whencreated :

The whenCreated property for the User object has a value—it just is not displayed. However, sup-
pose you were looking for users that had never logged on to the system? Suppose you used a query
such as the one shown here, and you were going to base a delete operation upon the results—the
results could be disastrous.

PS C:\> Get-ADUser -Filter * | Format-Table -Property name, LastLogonDate

name LastLogonDate
---- -------------
Administrator
Guest
krbtgt
testuser2
ed
SystemMailbox{1f05a927-a261-4eb4-8360-8...
SystemMailbox{e0dc1c29-89c3-4034-b678-e...
FederatedEmail.4c1f4d8b-8179-4148-93bf-...
Test
TestChild
<results truncated>

To retrieve a property that is not a member of the default 10 properties, you must select it by
using the -property parameter. The reason that Get-ADUser does not automatically return all prop-
erties and their associated values is because of performance issues on large networks—there is no
reason to return a large data set when a small data set will perfectly suffice. To display the name and
the whenCreated date for the user named bob, the following command can be used:

PS C:\> Get-ADUser -Identity bob -Properties whencreated | Format-List -Property name
, whencreated

name : bob
whencreated : 6/11/2010 8:19:52 AM

PS C:\>

442 Windows PowerShell 3 Step by Step

To retrieve all of the properties associated with a User object, use the wildcard * for the -properties
parameter value. You would use a command similar to the one shown here:

Get-ADUser -Identity kimakers -Properties *

Both the command and the results associated with the command to return all user properties
appear in Figure 16-7.

FIGURE 16-7 Using the Get-ADUser cmdlet to display all user properties.

To produce a listing of all the users and their last logon date, you can use a command similar to
the one shown here. This is a single command that might wrap the line depending on your screen
resolution.

Get-ADUser -Filter * -Properties "LastLogonDate" |
sort-object -property lastlogondate -descending |
Format-Table -property name, lastlogondate -AutoSize

The output produces a nice table. Both the command and the output associated with the com-
mand to obtain the time a user last logged on appear in Figure 16-8.

FIGURE 16-8 Using the Get-ADUser cmdlet to identify the last logon times for users.

 CHAPTER 16 Working with the AD DS Module 443

Updating Active Directory objects: step-by-step exercises

In these exercises, you will search for users in a specific OU that do not have a description attribute
populated. You will create a script that updates this value. In addition, you will change the password
for users in Active Directory.

note To complete these exercises, you will need access to a Windows server running AD
DS. Modify the domain names listed in the exercises to match the name of your domain.

Using the active Directory module to update active Directory objects

1. Open the Windows PowerShell ISE or some other script editor.

2. Use the Import-Module cmdlet to import the Active Directory module.

Import-Module ActiveDirectory

3. Set the $users and $you variables to $null.

$users = $you = $null

4. Use the Get-ADUser cmdlet to retrieve users from the TestOU OU in the nwtraders.com
domain. The filter property is required, and therefore you give it a wildcard * to tell it you
want everything returned. In addition, you specify that you want the description property
returned in the search results.

$users = Get-ADUser -SearchBase "ou=testou,dc=nwtraders,dc=com" -filter * `
 -property description

5. Use the ForEach statement to walk through the collection. Inside the collection, use the static
isNullOrEmpty method from the system.string .NET Framework class to check the description
property on the User object. If the property is empty or null, display a string that states the
script will modify the User object. The code to do this appears here:

ForEach($user in $users)
 {
 if([string]::isNullOrEmpty($user.description))
 {
 "modifying $($user.name)"

6. Use the Set-ADUser cmdlet to modify the user. Pass the -identity parameter a distinguished
name. Use the -description parameter to hold the value to add to the description attribute on
the object. This command is shown here:

Set-ADUser -Identity $user.distinguishedName -Description "added via script"

444 Windows PowerShell 3 Step by Step

7. Increment the $you counter variable and display a summary string. This portion of the script is
shown here:

$you++
 }
 }
 "modified $you users"

8. Compare your script with the one that appears here:

SetaDPropertyaDCmdlets.ps1
Import-Module ActiveDirectory
 $users = $you = $null
 $users = Get-ADUser -SearchBase "ou=testou,dc=nwtraders,dc=com" -filter * `
 -property description
 ForEach($user in $users)
 {
 if([string]::isNullOrEmpty($user.description))
 {
 "modifying $($user.name)"
 Set-ADUser -Identity $user.distinguishedName -Description "added via script"
 $you++
 }
 }
 "modified $you users"

In the following exercise, you will change a user’s password.

Changing user passwords

1. Open the Windows PowerShell console with administrator rights.

2. Use the Get-Credential cmdlet to retrieve and store credentials that have permission on a
remote domain controller. Store the credentials in a variable named $credential.

$credential = Get-Credential

3. Use the Enter-PSSession cmdlet to enter a remote Windows PowerShell session on a domain
controller that contains the Active Directory module:

Enter-PSSession -ComputerName DC1 -Credential $credential

4. Use the Get-ADUser cmdlet to identify a user whose password you want to reset:

Get-ADUser ed

5. Use the Set-ADAccountPassword cmdlet to reset the password:

Set-ADAccountPassword -Identity ed -Reset

 CHAPTER 16 Working with the AD DS Module 445

6. A warning appears stating that the remote computer is requesting to read a line securely.
Type in the new password for the user:

Password

7. A second warning appears with a prompt to repeat the password. The warning itself is the
same as the previous warning about reading a secure line. Type in the same password you
previously typed.

8. Type Get-History to review the commands you typed during the remote session.

9. Type Exit to exit the remote session.

10. Type Get-History to review the commands you typed prior to entering the remote session.

This concludes the exercise.

note If you need to work with local user accounts, download the Local User Management
module from the TechNet Script Center Script Repository. This module provides the abil-
ity to create, modify, and delete both local users and groups. It also permits you to change
local user account passwords.

Chapter 16 quick reference

To Do this

Find domain FSMO role holders Use the Get-ADDomain cmdlet and select PDCEmulator, RIDMaster,
and InfrastructureMaster.

Find forest FSMO role holders Use the Get-ADForest cmdlet and select SchemaMaster and
DomainNamingMaster.

Rename a site in AD DS Use the Get-ADObject cmdlet to retrieve the site and the Rename-
ADObject cmdlet to set a new name.

Create a new user in AD DS Use the New-ADUser cmdlet.

Find locked-out user accounts in AD DS Use the Search-ADAccount cmdlet with the -lockedout switch.

Unlock a user account in AD DS Use the Unlock-ADAccount cmdlet.

Set a user’s password in AD DS Use the Set-ADAccountPassword cmdlet.

 447

C H A P T E R 1 7

Deploying active Directory with
Windows Server 2012

after completing this chapter, you will be able to:

■■ Use the Active Directory module to deploy a new forest and a new domain controller.

■■ Use the Active Directory module to add a new domain controller to an existing domain.

■■ Use the Active Directory module to deploy a read-only domain controller.

Using the Active Directory module to deploy a new forest

Deploying Microsoft Active Directory Domain Services (AD DS) is not a simple matter. There are pre-
requisites that must be met and multiple items that need to be configured. One of the first things
that might need to be accomplished is setting the script execution policy. Whereas the easiest way
to do this is via group policy, if you are configuring the first domain controller in the first domain in a
new forest, you do not have that luxury. To set the script execution policy, use the Set-ExecutionPolicy
cmdlet and set it to something like remotesigned. The command appears following. (The command
must execute with admin rights, but more than likely you will be logged on as an administrator any-
way if you are just beginning your configuration.)

Set-ExecutionPolicy remotesigned -force

Some of the infrastructure prerequisites are listed here:

■■ Ensure the server has the correct name.

■■ Set a static Internet Protocol (IP) address configuration.

■■ Ensure the DNS Server Windows feature is deployed and configured.

448 Windows PowerShell 3 Step by Step

In addition to infrastructure prerequisites, there are role-based prerequisites that need to be
deployed. These role-based prerequisites appear here:

■■ Active Directory module for Windows PowerShell

■■ Active Directory Administrative Center tools

■■ AD DS snap-ins and command-line tools

Luckily, all of these tools are installable via the ServerManager module and the
Add-WindowsFeature cmdlet. In fact, from a Windows-feature standpoint, the rsat-ad-tools feature
group gives you everything you need here. The AddADPrereqs.ps1 script sets a static IP address by
using the New-NetIPAddress cmdlet. To determine the interface index, the Get-NetAdapter cmdlet is
used. This portion of the script appears here:

#set static IP address
$ipaddress = "192.168.0.225"
$ipprefix = "24"
$ipgw = "192.168.0.1"
$ipdns = "192.168.0.225"
$ipif = (Get-NetAdapter).ifIndex
New-NetIPAddress -IPAddress $ipaddress -PrefixLength $ipprefix `
 -InterfaceIndex $ipif -DefaultGateway $ipgw

Once the new IP address is assigned, the Rename-Computer cmdlet assigns a new name to the
computer. The Rename-Computer cmdlet has a -restart parameter, but the AddADPrereqs.ps1 script
holds off rebooting the script until the end, and therefore the restart parameter is not used. This por-
tion of the script appears here:

#rename the computer
$newname = "dc8508"
Rename-Computer -NewName $newname -force

Now that the computer has received a new IP address and has been renamed, it is time to add
the features. The first thing the script does is create a log file in a directory named poshlog. This log
will hold details resulting from adding the features. In addition, once the configuration completes, a
Get-WindowsFeature command runs to gather the installed features. The result is written to a log file
in the poshlog directory. The Add-WindowsFeature cmdlet appears to accept an array for the fea-
tures to be installed, but when attempting to add multiple features with a single call, the secondary
features get trampled. Therefore, it is best to add tools one at a time. This portion of the script
installs the Active Directory Domain Services (AD DS) tools that include the Active Directory Windows
PowerShell module. The command appears here:

#install features
$featureLogPath = "c:\poshlog\featurelog.txt"
New-Item $featureLogPath -ItemType file -Force
$addsTools = "RSAT-AD-Tools"

Add-WindowsFeature $addsTools
Get-WindowsFeature | Where installed >>$featureLogPath

 CHAPTER 17 Deploying Active Directory with Windows Server 2012 449

The last thing to accomplish here is restarting the computer. This is performed via a simple call to
the Restart-Computer cmdlet. This command appears here:

#restart the computer
Restart-Computer

The complete AddAdPrereqs.ps1 script appears here:

addadPrereqs.ps1

#set static IP address
$ipaddress = "192.168.0.225"
$ipprefix = "24"
$ipgw = "192.168.0.1"
$ipdns = "192.168.0.225"
$ipif = (Get-NetAdapter).ifIndex
New-NetIPAddress -IPAddress $ipaddress -PrefixLength $ipprefix `
 -InterfaceIndex $ipif -DefaultGateway $ipgw

#rename the computer
$newname = "dc8508"
Rename-Computer -NewName $newname -force

#install features
$featureLogPath = "c:\poshlog\featurelog.txt"
New-Item $featureLogPath -ItemType file -Force
$addsTools = "RSAT-AD-Tools"

Add-WindowsFeature $addsTools
Get-WindowsFeature | Where installed >>$featureLogPath

#restart the computer
Restart-Computer

Once the computer reboots, log on and check things. Immediately, the Server Manager utility
launches and provides feedback that the name change and the IP address change completed success-
fully. Server Manager appears in Figure 17-1.

450 Windows PowerShell 3 Step by Step

FIGURE 17-1 After the AddAdPrereqs.ps1 script is run, Server Manager appears and confirms that the name
change and the IP address assignment completed successfully.

Next, you’ll verify that the roles and features have been added properly. To do this, use the
FeatureLog.txt log file that was created prior to the reboot. Figure 17-2 shows what will be displayed
if the features and roles have been added properly.

FIGURE 17-2 The FeatureLog.txt file confirms that the roles and features have been added successfully to the
computer.

 CHAPTER 17 Deploying Active Directory with Windows Server 2012 451

Once you have your computer renamed, with a static IP address and RSAT installed, it is time to
add the AD DS role, the DNS Server role, and the group policy management feature. The first thing to
do is add the log path for the report at the end of the script. Once this is done, the script starts a job
named addfeature. The use of a job allows the script to wait until the job completes prior to execut-
ing the next step of the script. Because the script adds the features in the background, no progress
tests appear in the foreground. Each of the Add-WindowsFeature commands includes all of the
subfeatures and the management tools. This is a great way to ensure you obtain the bits your specific
feature needs. You can always fine-tune it at a later time. Once the job executes, the Wait-Job cmdlet
pauses the script until the addfeature job completes. Then it returns the completed job object. At this
time, the final command is a Get-WindowsFeature cmdlet call that writes all installed features to the
log file. The complete Add-ADFeatures.ps1 script appears here:

add-aDFeatures.ps1

#Install AD DS, DNS and GPMC
$featureLogPath = "c:\poshlog\featurelog.txt"
start-job -Name addFeature -ScriptBlock {
 Add-WindowsFeature -Name "ad-domain-services" -IncludeAllSubFeature -IncludeManagementTools
 Add-WindowsFeature -Name "dns" -IncludeAllSubFeature -IncludeManagementTools
 Add-WindowsFeature -Name "gpmc" -IncludeAllSubFeature -IncludeManagementTools }
Wait-Job -Name addFeature
Get-WindowsFeature | Where installed >>$featureLogPath

Once the script finishes running, the featurelog text file can be examined. The log appears in
Figure 17-3.

FIGURE 17-3 The feature log details all installed features and roles on the system.

452 Windows PowerShell 3 Step by Step

Now it is time to create the new forest, and add the server as the first domain controller in
the newly created forest. The tool required is contained in the ADDSDeployment module. The
InstallNewForest.ps1 script is essentially one cmdlet: Install-ADDSForest. The domain name and
the NetBIOS domain name appear as variables. When the script first runs, it prompts for an Active
Directory password. This password becomes the administrator password for the new domain.
Following the installation, the function automatically reboots the computer to complete configura-
tion. The complete InstallNewForest.ps1 script appears here:

InstallnewForest.ps1

Create New Forest, add Domain Controller
$domainname = "nwtraders.msft"
$netbiosName = "NWTRADERS"

 Import-Module ADDSDeployment
 Install-ADDSForest -CreateDnsDelegation:$false `
 -DatabasePath "C:\Windows\NTDS" `
 -DomainMode "Win2012" `
 -DomainName $domainname `
 -DomainNetbiosName $netbiosName `
 -ForestMode "Win2012" `
 -InstallDns:$true `
 -LogPath "C:\Windows\NTDS" `
 -NoRebootOnCompletion:$false `
 -SysvolPath "C:\Windows\SYSVOL" `
 -Force:$true

While the script is running, a progress bar appears. This is shown in Figure 17-4.

FIGURE 17-4 A progress bar displays while the script runs. This lets you know the progress of the operations.

 CHAPTER 17 Deploying Active Directory with Windows Server 2012 453

Once the script completes running, a quick check of the DNS Manager tool should reveal that DNS
is set up properly. The nwtraders.msft forward-lookup zone should be configured properly, and an A
record, NS record, and SOA record should be configured. This appears in Figure 17-5.

FIGURE 17-5 Following the running of the InstallNewForest.ps1 script, DNS Manager reveals a properly set up
forward-lookup zone.

Adding a new domain controller to an existing domain

Once you install the first domain controller into your forest root, it is time to add a second domain
controller to the domain. The process is similar to the steps required for configuring and installing
the first domain controller. There are the usual system configuration steps that must take place, such
as setting a static IP address, renaming the computer, and adding the AD DS role and tools. Because
this is a second domain controller, it is not necessary to add the DNS server role if you do not want
to do so. But the server requires the ability to resolve names, so you must assign a DNS server to the
DNS client. To add a DNS server to the IP configuration, use the Set-DNSClientServerAddress cmdlet.
Specify the same interface index that the New-NetIPAddress cmdlet uses. Finally, specify the DNS
server IP address to the -serveraddresses parameter. This portion of the script appears here:

#set static IP address
$ipaddress = "192.168.0.226"
$ipprefix = "24"
$ipgw = "192.168.0.1"
$ipdns = "192.168.0.225"
$ipif = (Get-NetAdapter).ifIndex
New-NetIPAddress -IPAddress $ipaddress -PrefixLength $ipprefix -InterfaceIndex $ipif
-DefaultGateway $ipgw
Set-DnsClientServerAddress -InterfaceIndex $ipif -ServerAddresses $ipdns

Following the IP address configuration, it is time to rename the server. This portion of the script is
exactly the same as the AddAdPrereqs.ps1 script and will not be discussed here. Note that because
only the AD DS bits are required, the script goes ahead and adds the role-based portion of the

454 Windows PowerShell 3 Step by Step

installation. This reduces the need for an additional script. The portion of the script that installs the
AD DS role appears here:

#install roles and features
$featureLogPath = "c:\poshlog\featurelog.txt"
New-Item $featureLogPath -ItemType file -Force

Add-WindowsFeature -Name "ad-domain-services" -IncludeAllSubFeature -IncludeManagementTools
Get-WindowsFeature | Where installed >>$featureLogPath

Finally, it is time to reboot the server. To do that, use the Restart-Computer cmdlet. The complete
Add-DNDSPrereqsDC2.ps1 script appears here:

add-DnDSPrereqsDC2.ps1

#set static IP address
$ipaddress = "192.168.0.226"
$ipprefix = "24"
$ipgw = "192.168.0.1"
$ipdns = "192.168.0.225"
$ipif = (Get-NetAdapter).ifIndex
New-NetIPAddress -IPAddress $ipaddress -PrefixLength $ipprefix -InterfaceIndex $ipif
-DefaultGateway $ipgw
Set-DnsClientServerAddress -InterfaceIndex $ipif -ServerAddresses $ipdns

#rename the computer
$newname = "dc28508"
Rename-Computer -NewName $newname -force

#install roles and features
$featureLogPath = "c:\poshlog\featurelog.txt"
New-Item $featureLogPath -ItemType file -Force

Add-WindowsFeature -Name "ad-domain-services" -IncludeAllSubFeature -IncludeManagementTools
Get-WindowsFeature | Where installed >>$featureLogPath

#restart the computer
Restart-Computer

Once the computer reboots, it is time to add the server to the domain as a domain controller.
The first step is to import the ADDSDeployment module. Next, the Install-ADDSDomainController
cmdlet is used to add the server as a domain controller to an existing domain. Because you did not
want to install DNS, the -installdns parameter receives $false. In addition, the -replicationsourcedc
parameter is set to the first domain controller that was built. The complete CreateAdditionalDC.ps1
script appears here:

CreateadditionalDC.ps1

Import-Module ADDSDeployment
Install-ADDSDomainController `
-NoGlobalCatalog:$false `
-CreateDnsDelegation:$False `
-Credential (Get-Credential) `
-CriticalReplicationOnly:$false `
-DatabasePath "C:\Windows\NTDS" `

 CHAPTER 17 Deploying Active Directory with Windows Server 2012 455

-DomainName "nwtraders.msft" `
-InstallDns:$False `
-LogPath "C:\Windows\NTDS" `
-NoRebootOnCompletion:$false `
-ReplicationSourceDC "dc8508.nwtraders.msft" `
-SiteName "Default-First-Site-Name" `
-SysvolPath "C:\Windows\SYSVOL" `
-Force:$true

Once the server comes out of the reboot, it is time to log on to the server using domain creden-
tials. The server needs a little time to complete configuration. Back on the first domain controller,
Active Directory Users and Computers shows both domain controllers in the Domain Controllers
organizational unit (OU). This appears in Figure 17-6.

FIGURE 17-6 Active Directory Users and Computers shows both domain controllers in the Domain Controllers OU.

Adding a read-only domain controller

Adding a read-only domain controller to an existing domain is only slightly different from adding a
full domain controller to an existing domain. The process is a two-step procedure. First, the prerequi-
sites must be installed, and then, following the reboot, the server is configured as a read-only domain
controller. The prerequisite installation script can be simplified a bit from the prerequisite script devel-
oped in the previous section. The first portion of the script creates the static IP address and sets the
DNS client to point to the DNS server running on the first domain controller that was installed. This
portion of the script is the same as the Add-DNDSPrereqsDC2.ps1 script in the previous section. Next,
the server is renamed via the Rename-Computer cmdlet. This simple command is the same one that
was used in the previous scripts.

The big change involves using the Add-WindowsFeature cmdlet to add the AD DS role as well as
all associated features and management tools. This is a great shortcut that simplifies your task. The
change appears here:

#install AD DS Role and tools
Add-WindowsFeature -Name "ad-domain-services" -IncludeAllSubFeature -IncludeManagementTools

456 Windows PowerShell 3 Step by Step

The last step is to use the Restart-Computer cmdlet to reboot the server. The complete
CreateDC3Prereqs.ps1 script appears here:

CreateDC3Prereqs.ps1

#set static IP address
$ipaddress = "192.168.0.227"
$ipprefix = "24"
$ipgw = "192.168.0.1"
$ipdns = "192.168.0.225"
$ipif = (Get-NetAdapter).ifIndex
New-NetIPAddress -IPAddress $ipaddress -PrefixLength $ipprefix -InterfaceIndex $ipif
-DefaultGateway $ipgw
Set-DnsClientServerAddress -InterfaceIndex $ipif -ServerAddresses $ipdns

#rename the computer
$newname = "dc38508"
Rename-Computer -NewName $newname -force

#install AD DS Role and tools
Add-WindowsFeature -Name "ad-domain-services" -IncludeAllSubFeature -IncludeManagementTools

#restart the computer
Restart-Computer

Once the server has been given IP configuration and you’ve loaded the prerequisites, it is
time to add a read-only domain controller to the domain. The script for this first imports the
ADDSDeployment module, and then it calls the Install-ADDomainController cmdlet. Because the
domain controller is read-only, the AllowPasswordReplicationAccountName parameter must be used
to specify whose passwords will be replicated. This value is an array. The credentials for contacting
the domain must be supplied. To do this, you use the Get-Credential cmdlet and enter the domain
admin credentials. Next, the Directory Restore Password prompt appears. In addition to specify-
ing who can replicate the passwords, you must also specify who cannot replicate passwords. This
array is entered on multiple lines to make it easier to read. This scenario did not call for installing
and configuring DNS on this particular machine, and therefore that role is not added. The complete
CreateReadOnlyDomainController.ps1 script appears here:

CreatereadOnlyDomainController.ps1

Import-Module ADDSDeployment
Install-ADDSDomainController `
-AllowPasswordReplicationAccountName @("NWTRADERS\Allowed RODC Password Replication Group") `
-NoGlobalCatalog:$false `
-Credential (Get-Credential -Credential nwtraders\administrator) `
-CriticalReplicationOnly:$false `
-DatabasePath "C:\Windows\NTDS" `
-DenyPasswordReplicationAccountName @("BUILTIN\Administrators",
 "BUILTIN\Server Operators", "BUILTIN\Backup Operators",
 "BUILTIN\Account Operators",
 "NWTRADERS\Denied RODC Password Replication Group") `
-DomainName "nwtraders.msft" `
-InstallDns:$false `

 CHAPTER 17 Deploying Active Directory with Windows Server 2012 457

-LogPath "C:\Windows\NTDS" `
-NoRebootOnCompletion:$false `
-ReadOnlyReplica:$true `
-SiteName "Default-First-Site-Name" `
-SysvolPath "C:\Windows\SYSVOL" `
-Force:$true

When the script runs, Active Directory Users and Computers on the first domain controller
refreshes to include the new read-only domain controller. This appears in Figure 17-7.

FIGURE 17-7 Active Directory Users and Computers shows the newly added read-only domain controller.

Domain controller prerequisites: step-by-step exercises

In the first exercise, you will install the base requirements for a domain controller on a fresh instal-
lation of Windows Server 2012. This exercise will assign a static IP address, rename the server, and
install the AD DS admin tools. In the subsequent exercise, you will add a new domain controller to a
new forest.

Installing domain controller prerequisites

1. Log on to your server with the administrator account.

2. Open the Windows PowerShell ISE.

3. Set the script execution policy to remotesigned. The command appears here:

Set-ExecutionPolicy remotesigned -force

4. Use the Get-NetAdapter cmdlet to determine the interface index number of the active net-
work adapter. The command appears here:

$ipif = (Get-NetAdapter).ifIndex

458 Windows PowerShell 3 Step by Step

5. Use the New-NetIPAddress cmdlet to assign a static IP address to the active network adapter.
Specify the ipaddress, prefixlength, interfaceindex, and defaultgateway values that are appro-
priate for your network. Sample values appear here:

$ipaddress = "192.168.0.225"
$ipprefix = "24"
$ipgw = "192.168.0.1"
$ipdns = "192.168.0.225"
$ipif = (Get-NetAdapter).ifIndex
New-NetIPAddress -ipaddress $ipaddress -prefixlength $ipprefix `
 -interfaceindex $ipif -defaultgateway $ipgw

6. Use the Rename-Computer cmdlet to rename the computer. Specify a new name that follows
your naming convention. The command appears here with a sample name:

$newname = "dc8508"
Rename-Computer -NewName $newname -force

7. Add the AD DS, DNS, and GPMC features and roles, including all subfeatures and tools, by
using the Add-WindowsFeature cmdlet. The command appears here:

Add-WindowsFeature -Name "ad-domain-services" -IncludeAllSubFeature
-IncludeManagementTools
Add-WindowsFeature -Name "dns" -IncludeAllSubFeature -IncludeManagementTools
Add-WindowsFeature -Name "gpmc" -IncludeAllSubFeature -IncludeManagementTools

8. Restart the computer by using the Restart-Computer cmdlet. This command appears here:

Restart-Computer -force

This concludes the exercise.

In the following exercise, you will add the server configured in the preceding exercise to a new
forest.

adding a domain controller to a new forest

1. Log on to the freshly rebooted server as the administrator.

2. Open the Windows PowerShell ISE.

3. Create a variable for your fully qualified domain name. An example appears here:

$domainname = "nwtraders.msft"

4. Create a variable to hold your NetBIOS name. Normally, the NetBIOS name is the same as your
domain name without the extension. An example appears here:

$netbiosName = "NWTRADERS"

 CHAPTER 17 Deploying Active Directory with Windows Server 2012 459

5. Import the ADDSDeployment module. The command appears here:

Import-Module ADDSDeployment

6. Add the Install-ADDSForest cmdlet to your script. Use tab expansion to simplify typing. Add
the -CreateDnsDelegation parameter and set it to false. Add the line-continuation character
at the end of the line. This appears here:

Install-ADDSForest -CreateDnsDelegation:$false `

7. Specify the -DatabasePath, -DomainMode, -DomainName, and -DomainNetbiosName param-
eters. Use the domain name and NetBIOS name stored in the variables created earlier. Make
sure you have line continuation at the end of each line. This portion of the command appears
here:

-DatabasePath "C:\Windows\NTDS" `
-DomainMode "Win2012" `
-DomainName $domainname `
-DomainNetbiosName $netbiosName

8. Specify the -ForestMode, -LogPath, and -SysVolpath parameters. In addition, you will need
to supply options for the -installDNS and -rebootoncompletion parameters. Use the -Force
parameter. This portion of the script appears here:

 -ForestMode "Win2012" `
 -InstallDns:$true `
 -LogPath "C:\Windows\NTDS" `
 -NoRebootOnCompletion:$false `
 -SysvolPath "C:\Windows\SYSVOL" `
 -Force:$true

9. Run the script. You will be prompted for a directory-restore password, and you’ll have to type
it twice. Your server will also reboot once the configuration is completed. To log on to the
server, use your directory-restore password.

This concludes the exercise.

460 Windows PowerShell 3 Step by Step

Chapter 17 quick reference

To Do this

Assign a static IP address Use the New-NetIPAddress cmdlet.

Install a new Windows feature or role Use the Add-WindowsFeature cmdlet from the ServerManager
module.

Restart a computer Use the Restart-Computer cmdlet.

Find the index number of the active network adapter Use Get-NetAdapter cmdlet and select the IfIndex property.

See what features or roles are installed on a server Use the Get-WindowsFeature cmdlet, pipe the results to the
Where-Object cmdlet, and filter on the installed property.

Add a Windows role as well as the associated manage-
ment tools

Use the Add-WindowsFeature cmdlet and specify the
-includemanagementtools parameter.

Create a new forest Use the Install-ADDSForest cmdlet from the ADDSDeployment
module.

 461

C H A P T E R 1 8

Debugging Scripts

after completing this chapter, you will be able to:

■■ Use the Write-Debug cmdlet to provide detailed information from a script.

■■ Use the Set-StrictMode cmdlet to prevent errors during development.

■■ Understand how to work with the Windows PowerShell debugger.

Understanding debugging in Windows PowerShell

No one enjoys debugging scripts. In fact, the best debugging is no debugging. It is also true that well-
written, well-formatted, well-documented, and clearly constructed Microsoft Windows PowerShell code
requires less effort to debug than poorly formatted, undocumented spaghetti code. It is fair to say
that debugging begins when you first open the Windows PowerShell ISE. Therefore, you might want
to review Chapter 5, “Using PowerShell Scripts,” Chapter 6, “Working with Functions,” and Chapter 7,
“Creating Advanced Functions and Modules,” before you dive too deep into this chapter.

If you can read and understand your Windows PowerShell code, chances are you will need to do
very little debugging. But what if you do need to do some debugging? Well, just as excellent golf-
ers spend many hours practicing chipping out of the sand trap in hopes that they will never need to
use the skill, so too must competent Windows PowerShell scripters practice debugging skills in hopes
that they will never need to apply the knowledge. Understanding the color coding of the Windows
PowerShell ISE, detecting when closing quotation marks are missing, and knowing which pair of
braces corresponds to which command can greatly reduce the debugging that may be needed later.

Understanding three different types of errors
Debugging is a skill used to track down and eliminate errors from a Windows PowerShell script. There
are three different types of errors that coders make: syntax errors, run-time errors, and logic errors.

Working with syntax errors
Syntax errors are the easiest to spot, and you usually correct them at design time—that is, while
you have the Windows PowerShell ISE open and you are writing your script. Syntax errors generally
get corrected at design time because the language parser runs in the background of the Windows
PowerShell ISE, and when it detects a syntax error, it marks it with a squiggly line (thus indicating

462 Windows PowerShell 3 Step by Step

that the command requires additional parameters, decoration, or other attention). Seasoned scripters
don’t usually even view this process as error correction, but as simply completing commands so that
scripts run properly. (Learning to use IntelliSense inside the Windows PowerShell ISE is a good way to
reduce these errors.) The most seasoned scripters learn to pay attention to the syntax parser and fix
errors indicated by the red squiggly lines prior to actually running the code. When syntax errors aren’t
corrected, the error messages generated often provide good guidance toward correcting the offend-
ing command. Figure 18-1 illustrates a syntax error.

FIGURE 18-1 The Windows PowerShell ISE highlights potential errors with a red squiggly line. The error message
states the offending command, and often provides clarification for required changes.

Working with run-time errors
The syntax parser often does not detect run-time errors. Rather, run-time errors are problems that
manifest themselves only when a script runs. Examples of these types of errors include an unavail-
able resource (such as a drive or a file), permission problems (such as a non-elevated user not having
the rights to perform an operation), misspelled words, and code dependencies that are not met (such
as access to a required module). The good thing is that many of these run-time errors are detectible
from within the Windows PowerShell ISE due to the robust tab expansion mechanism in Windows
PowerShell 3.0. For example, it is possible to eliminate the “Resource not available” run-time error if
you use tab expansion. This is possible because tab expansion works even across Universal Naming
Convention (UNC) shares. Figure 18-2 shows an example of employing this feature when attempting
to use the Get-Content cmdlet to read the contents of the AD_Doc.txt file from the data share on a
server named hyperv1.

 CHAPTER 18 Debugging Scripts 463

FIGURE 18-2 Improved tab expansion makes it possible to avoid certain run-time errors.

Unfortunately, tab expansion does not help when it comes to dealing with permission issues.
Paying attention to the returned error message, however, helps to identify that you are dealing with a
permission issue. In these cases, you usually receive an “Access is denied” error message. Such an error
message appears here when bogususer attempts to access the DC1 server to perform a Windows
Management Instrumentation (WMI) query.

PS C:\> Get-WmiObject win32_bios -cn dc1 -Credential iammred\bogususer
Get-WmiObject : Access is denied. (Exception from HRESULT: 0x80070005
(E_ACCESSDENIED))
At line:1 char:1
+ Get-WmiObject win32_bios -cn dc1 -Credential iammred\bogususer
+ ~~
 + CategoryInfo : NotSpecified: (:) [Get-WmiObject],
 Unauthorized AccessException
 + FullyQualifiedErrorId : System.UnauthorizedAccessException,
 Microsoft.PowerShell.Commands.GetWmiObjectCommand

One way to detect run-time errors is to use the Write-Debug cmdlet to display the contents of vari-
ables that are most likely to contain erroneous data. By moving from a one-line command to a simple
script containing variables and a variety of Write-Debug commands, you are automatically set up to
perform the most common troubleshooting techniques on your script. For example, in the script that
appears here, there are two main sources of run-time errors: the availability of the target computer
and the credentials used to perform the connection.

remoteWMISessionnoDebug.ps1

$credential = Get-Credential
$cn = Read-Host -Prompt "enter a computer name"
Get-WmiObject win32_bios -cn $cn -Credential $credential

464 Windows PowerShell 3 Step by Step

By using the immediate window in the Windows PowerShell ISE, you can interrogate the value of
the $cn and $credential variables. You can also use the Test-Connection cmdlet to check the status
of the $cn computer. By performing these typical debugging steps in advance, you can get the script
to display the pertinent information and therefore shortcut any debugging required to make the
script properly work. The DebugRemoteWMISession.ps1 script that appears here illustrates using the
Write-Debug cmdlet to provide debugging information.

DebugremoteWMISession.ps1

$oldDebugPreference = $DebugPreference
$DebugPreference = "continue"
$credential = Get-Credential
$cn = Read-Host -Prompt "enter a computer name"
Write-Debug "user name: $($credential.UserName)"
Write-Debug "password: $($credential.GetNetworkCredential().Password)"
Write-Debug "$cn is up:
 $(Test-Connection -Computername $cn -Count 1 -BufferSize 16 -quiet)"
Get-WmiObject win32_bios -cn $cn -Credential $credential
$DebugPreference = $oldDebugPreference

Figure 18-3 illustrates running the DebugRemoteWMISession.ps1 script inside the Windows
PowerShell ISE to determine why the script fails. According to the output, the remote server, DC1, is
available, but the user Bogus User with the password of BogusPassowrd is receiving “Access is denied.”
It might be that the user does not have an account or access rights, or that the password is not really
BogusPassowrd. The detailed debugging information should help to clarify the situation.

FIGURE 18-3 Detailed debugging makes solving run-time errors more manageable.

A better way to use the Write-Debug cmdlet is to combine it with the [CmdletBinding()] attribute
at the beginning of the script (or function). Getting the [CmdletBinding()] attribute to work requires
a couple of things. First, the script or function must use at least one parameter. This means that the
param keyword will be present in the script. Second, the [CmdletBinding()] attribute must appear

 CHAPTER 18 Debugging Scripts 465

prior to the param keyword. Once implemented, this change permits use of the common -debug
parameter. When calling the script or function, use of the -debug switched parameter causes the
debug stream from the Write-Debug cmdlet in the code to appear in the output. This simple change
also means that your code no longer needs to change the value of the $DebugPreference variable.
It also means that you do not need to create your own switched -debug parameter and include code
such as the following at the beginning of your script:

Param([switch]$debug)
If($debug) {$DebugPreference = “continue”}

The revised and simplified DebugRemoteWMISession.ps1 script appears following, as Switch_
DebugRemoteWMISession.ps1. The changes to the script include the addition of the [CmdletBinding()]
attribute, the creation of a parameter named cn, and the setting of the default value to the name of
the local computer. The other changes involve removing the toggling of the $DebugPreference vari-
able. The complete script appears here:

Switch_DebugremoteWMISession.ps1

[CmdletBinding()]
Param($cn = $env:computername)
$credential = Get-Credential
Write-Debug "user name: $($credential.UserName)"
Write-Debug "password: $($credential.GetNetworkCredential().Password)"
Write-Debug "$cn is up:
 $(Test-Connection -Computername $cn -Count 1 -BufferSize 16 -quiet)"
Get-WmiObject win32_bios -cn $cn -Credential $credential

When the Switch_DebugRemoteWMISession.ps1 script runs with the -debug switch from the
Windows PowerShell console, in addition to displaying the debug stream, it also prompts to continue
the script. This permits halting execution upon reaching an unexpected value. Figure 18-4 illustrates
this technique, in which a user named Bogus User, who wishes to connect to a remote server named
DC1, unexpectedly discovers that he is connecting to a workstation named W8Client6.

FIGURE 18-4 Using the -debug switched parameter to step through potential problems in a script.

466 Windows PowerShell 3 Step by Step

Working with logic errors
Logic errors can be very difficult to detect because they may be present even when your script
appears to be working correctly. But when things go wrong, they can be difficult to fix. Most of the
time, just examining the values of variables does not solve the problem, because the code itself works
fine. The problem often lies in what are called the business rules of the script. These are decisions the
code makes that have nothing to do with the correct operation of, for example, a switch statement.
At times, it may appear that the switch statement is not working correctly, because the wrong value
is displayed at the end of the code, but quite often, the business rules themselves are causing the
problem.

For a simple example of a logic error, consider the function called my-function that appears here:

My-Function.ps1

Function my-function
{
 Param(
 [int]$a,
 [int]$b)
 "$a plus $b equals four"
}

The my-function function accepts two command-line parameters: a and b. It then combines the
two values and outputs a string stating the value is four. The tester performs four different tests, and
each time the function performs as expected. These tests and the associated output appear here:

PS C:\> S:\psh_sbs_3\chapter18Scripts\my-function.ps1

PS C:\> my-function -a 2 -b 2
2 plus 2 equals four

PS C:\> my-function -a 1 -b 3
1 plus 3 equals four

PS C:\> my-function -a 0 -b 4
0 plus 4 equals four

PS C:\> my-function -a 3 -b 1
3 plus 1 equals four

Once the function goes into production, however, users begin to complain. Most of the time,
the function displays incorrect output. However, the users also report that no errors are generated
when the function runs. What is the best way to solve the logic problem? Simply adding a couple of
Write-Debug commands to display the values of the variables a and b will more than likely not lead
to the correct solution. A better way is to step through the code one line at a time and examine the
associated output. The easy way to do this is to use the Set-PSDebug cmdlet—the topic of the next
section in this chapter.

 CHAPTER 18 Debugging Scripts 467

Using the Set-PSDebug cmdlet

The Set-PSDebug cmdlet was available in Windows PowerShell 1.0, it did not change in Windows
PowerShell 2.0, and it remains the same in Windows PowerShell 3.0. This does not mean it is a
neglected feature, but rather that it does what it needs to do. For performing basic debugging
quickly and easily, you cannot beat the combination of features that are available. There are three
things you can do with the Set-PSDebug cmdlet: you can trace script execution in an automated fash-
ion, step through the script interactively, and enable strict mode to force good Windows PowerShell
coding practices. Each of these features will be examined in this section. The Set-PSDebug cmdlet is
not designed to do heavy debugging; it is a lightweight tool that is useful when you want to produce
a quick trace or rapidly step through a script.

tracing the script
One of the simplest ways to debug a script is to turn on script-level tracing. When you turn on script-
level tracing, each command that is executed is displayed to the Windows PowerShell console. By
watching the commands as they are displayed to the Windows PowerShell console, you can deter-
mine if a line of code in your script executes, or if it is being skipped. To enable script tracing, you use
the Set-PSDebug cmdlet and specify one of three levels for the -trace parameter. The three levels of
tracing are shown in Table 18-1.

TABLE 18-1 Set-PSDebug trace levels

Trace level Meaning

0 Turns script tracing off.

1 Traces each line of the script as it is executed. Lines in the script that are not executed are not traced.
Does not display variable assignments, function calls, or external scripts.

2 Traces each line of the script as it is executed. Displays variable assignments, function calls, and exter-
nal scripts. Lines in the script that are not executed are not traced.

To understand the process of tracing a script and the differences between the different trace lev-
els, examine the CreateRegistryKey.ps1 script. It contains a single function called Add-RegistryValue.
In the Add-RegistryValue function, the Test-Path cmdlet is used to determine if the registry key exists.
If the registry key exists, a property value is set. If the registry key does not exist, the registry key is
created and a property value is set. The Add-RegistryValue function is called when the script executes.
The complete CreateRegistryKey.ps1 script is shown here:

CreateregistryKey.ps1

Function Add-RegistryValue($key,$value)
{
 $scriptRoot = "HKCU:\software\ForScripting"
 if(-not (Test-Path -path $scriptRoot))
 {
 New-Item -Path HKCU:\Software\ForScripting | Out-null
 New-ItemProperty -Path $scriptRoot -Name $key -Value $value `
 -PropertyType String | Out-Null
 }

468 Windows PowerShell 3 Step by Step

 Else
 {
 Set-ItemProperty -Path $scriptRoot -Name $key -Value $value | `
 Out-Null
 }

} #end function Add-RegistryValue

*** Entry Point to Script ***
Add-RegistryValue -key forscripting -value test

Working with trace level 1
When the trace level is set to 1, each line in the script that executes is displayed to the Windows
PowerShell console. To set the trace level to 1, you use the Set-PSDebug cmdlet and assign a value of
1 to the -trace parameter.

Once the trace level has been set, it applies to everything that is typed in the Windows PowerShell
console. If you run an interactive command, run a cmdlet, or execute a script, it will be traced. When
the CreateRegistryKey.ps1 script is run and there is no registry key present, the first command-debug
line displays the path to the script that is being executed. Because Windows PowerShell parses from
the top down, the next line that is executed is the line that creates the Add-RegistryValue function.
This command is on line 7 of the script because the actual script that executed contains 6 lines that
are commented out. When you add the status bar to Notepad (via View | Status Bar), the status bar at
the lower-right corner of Notepad will display the line number. By default, Notepad does not display
line and column numbers. This is shown in Figure 18-5.

FIGURE 18-5 By default, Notepad does not display line numbers.

After the function is created, the next line of the script that executes is line 25. Line 25 of the
CreateRegistryKey.ps1 script follows the comment that points to the entry point to the script (this last
line is shown in Figure 18-5), and calls the Add-RegistryValue function by passing two values for the
-key and -value parameters. This appears here:

 CHAPTER 18 Debugging Scripts 469

PS C:\> y:\CreateRegistryKey.ps1
DEBUG: 1+ <<<< y:\CreateRegistryKey.ps1
DEBUG: 7+ Function Add-RegistryValue <<<< ($key,$value)
DEBUG: 25+ <<<< Add-RegistryValue -key forscripting -value test

Once control of script execution is inside the Add-RegistryValue function, the HKCU:\software\
ForScripting string is assigned to the $scriptRoot variable. This is shown here:

DEBUG: 9+ $scriptRoot = <<<< "HKCU:\software\ForScripting"

The if statement is now evaluated. If the Test-Path cmdlet is unable to find the $scriptRoot location
in the registry, then the if statement is entered and the commands inside the associated script block
will be executed. In this example, $scriptRoot is located and the commands inside the script block are
not executed. This is shown here:

DEBUG: 10+ if <<<< (-not (Test-Path -path $scriptRoot))

The Set-ItemProperty cmdlet is called on line 18 of the CreateRegistryKey.ps1 script. This is shown
here:

DEBUG: 18+ <<<< Set-ItemProperty -Path $scriptRoot -Name $key -Value
$value | `

Once the Set-ItemProperty cmdlet has executed, the script ends. The Windows PowerShell console
parser now enters, with the same three lines of feedback shown when the tracing was first enabled.
This is shown here:

DEBUG: 2+ $foundSuggestion = <<<< $false
DEBUG: 4+ if <<<< ($lastError -and
DEBUG: 15+ $foundSuggestion <<<<
PS C:\>

When you set the debug trace level to 1, a basic outline of the execution plan of the script is pro-
duced. This technique is good for quickly determining the outcome of branching statements (such as
the if statement) to see if a script block is being entered. This appears in Figure 18-6.

FIGURE 18-6 Script-level 1 tracing displays each executing line of the script.

470 Windows PowerShell 3 Step by Step

Working with trace level 2
When the trace level is set to 2, each line in the script that executes is displayed to the Windows
PowerShell console. In addition, each variable assignment, function call, and outside script call is
displayed. These additional tracing details are all prefixed with an exclamation mark to make them
easier to spot. When the Set-PSDebug -trace parameter is set to 2, an extra line is displayed, indicating
a variable assignment. This is shown here:

PS C:\> Set-PSDebug -Trace 2
DEBUG: 1+ <<<< Set-PSDebug -Trace 2
DEBUG: 2+ $foundSuggestion = <<<< $false
DEBUG: ! SET $foundSuggestion = 'False'.
DEBUG: 4+ if <<<< ($lastError -and
DEBUG: 15+ $foundSuggestion <<<<

When the CreateRegistryKey.ps1 script is run, the function trace points first to the script, stating it
is calling a function called CreateRegistryKey.ps1. Calls to functions are prefixed with ! CALL, making
them easy to spot. Windows PowerShell treats scripts as functions. The next function that is called is
the Add-RegistryValue function. The trace also states where the function is defined by indicating the
path to the file. This is shown here:

PS C:\> y:\CreateRegistryKey.ps1
DEBUG: 1+ <<<< y:\CreateRegistryKey.ps1
DEBUG: ! CALL function 'CreateRegistryKey.ps1' (defined in file
'y:\CreateRegistryKey.ps1')
DEBUG: 7+ Function Add-RegistryValue <<<< ($key,$value)
DEBUG: 25+ <<<< Add-RegistryValue -key forscripting -value test
DEBUG: ! CALL function 'Add-RegistryValue' (defined in file
'y:\CreateRegistryKey.ps1')

The ! SET keyword is used to preface variable assignments. The first variable that is assigned is the
$scriptRoot variable. This is shown here:

DEBUG: 9+ $scriptRoot = <<<< "HKCU:\software\ForScripting"
DEBUG: ! SET $scriptRoot = 'HKCU:\software\ForScripting'.
DEBUG: 10+ if <<<< (-not (Test-Path -path $scriptRoot))
DEBUG: 18+ <<<< Set-ItemProperty -Path $scriptRoot -Name $key -Value $value | `
DEBUG: 2+ $foundSuggestion = <<<< $false
DEBUG: ! SET $foundSuggestion = 'False'.
DEBUG: 4+ if <<<< ($lastError -and
DEBUG: 15+ $foundSuggestion <<<<
PS C:\>

When the CreateRegistryKey.ps1 script is run with trace level 2, the detailed tracing shown in
Figure 18-7 is displayed.

 CHAPTER 18 Debugging Scripts 471

FIGURE 18-7 Script-level 2 tracing adds variable assignments, function calls, and external script calls.

Stepping through the script
Watching the script trace the execution of the lines of code in the script can often provide use-
ful insight that can lead to a solution to a misbehaving script. If a script is more complicated and is
composed of several functions, a simple trace might not be a workable solution. For the occasions
when your script is more complex and comprises multiple functions, you will want the ability to step
through the script. When you step through a script, you are prompted before each line of the script
runs. An example of a script that you might want to step through is the BadScript.ps1 script shown
here:

BadScript.ps1

Function AddOne([int]$num)
{
 $num+1
} #end function AddOne

Function AddTwo([int]$num)
{
 $num+2
} #end function AddTwo

Function SubOne([int]$num)
{
 $num-1
} #end function SubOne

Function TimesOne([int]$num)
{
 $num*2
} #end function TimesOne

Function TimesTwo([int]$num)
{
 $num*2
} #end function TimesTwo

472 Windows PowerShell 3 Step by Step

Function DivideNum([int]$num)
{
 12/$num
} #end function DivideNum

*** Entry Point to Script ***

$num = 0
SubOne($num) | DivideNum($num)
AddOne($num) | AddTwo($num)

The BadScript.ps1 script contains a number of functions that are used to add numbers, subtract
numbers, multiply numbers, and divide numbers. There are some problems with the way the script
runs, because it contains several errors. It would be possible for you to set the trace level to 2 and
examine the trace of the script. But with the large number of functions and the types of errors con-
tained in the script, it might be difficult to spot the problems with the script. By default, the trace level
is set to level 1 when stepping is enabled, and in nearly all cases this is the best trace level for this
type of solution.

You might prefer to be able to step through the script as each line executes. There are two benefits
to using the -step parameter from the Set-PSDebug cmdlet. The first benefit is that you are able to
watch what happens when each line of the script executes. This allows you to very carefully walk
through the script. With the trace feature of Set-PSDebug, it is possible to miss important clues that
would help solve problems because everything is displayed on the Windows PowerShell console. With
the prompt feature, you are asked to choose a response before each line in the script executes. The
default choice is Y for yes (continue the operation), but you have other choices. When you respond
with Y, the debug line is displayed to the Windows PowerShell console. This is the same debug state-
ment shown in the trace output, and it is governed by your debug-trace-level settings. The step
prompting is shown here:

PS C:\> Set-PSDebug -Step
DEBUG: 1+ >>>> Set-PSDebug -Step
DEBUG: ! CALL function '<ScriptBlock>'
PS C:\> S:\psh_sbs_3\chapter18Scripts\BadScript.ps1

Continue with this operation?
 1+ >>>> S:\psh_sbs_3\chapter18Scripts\BadScript.ps1
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 1+ >>>> S:\psh_sbs_3\chapter18Scripts\BadScript.ps1
y
Continue with this operation?
 48+ >>>> $num = 0
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 48+ >>>> $num = 0

Continue with this operation?
 49+ >>>> SubOne($num) | DivideNum($num)
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 49+ >>>> SubOne($num) | DivideNum($num)

 CHAPTER 18 Debugging Scripts 473

Continue with this operation?
 27+ >>>> {
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 27+ >>>> {

Continue with this operation?
 28+ >>>> $num-1
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 28+ >>>> $num-1

Continue with this operation?
 29+ >>>> } #end function SubOne
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 29+ >>>> } #end function SubOne

Continue with this operation?
 42+ >>>> {
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 42+ >>>> {

Continue with this operation?
 43+ >>>> 12/$num
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 43+ >>>> 12/$num

Continue with this operation?
 19+ if (& >>>> { Set-StrictMode -Version
 1; $_.PSMessageDetails }) {
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 19+ if (& >>>> { Set-StrictMode
-Version 1; $_.PSMessageDetails }) {

Continue with this operation?
 19+ if (& { >>>> Set-StrictMode -Version
 1; $_.PSMessageDetails }) {
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 19+ if (& { >>>> Set-StrictMode
-Version 1; $_.PSMessageDetails }) {

Continue with this operation?
 19+ if (& { Set-StrictMode -Version 1;
>>>> $_.PSMessageDetails }) {
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 19+ if (& { Set-StrictMode
-Version 1; >>>> $_.PSMessageDetails }) {

474 Windows PowerShell 3 Step by Step

Continue with this operation?
 1+ & >>>> { Set-StrictMode -Version 1;
$this.Exception.InnerException.PSMessageDetails }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 1+ & >>>> { Set-StrictMode -Version 1;
$this.Exception.InnerException.PSMessageDetails }

Continue with this operation?
 1+ & { >>>> Set-StrictMode -Version 1;
$this.Exception.InnerException.PSMessageDetails }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 1+ & { >>>> Set-StrictMode -Version 1;
$this.Exception.InnerException.PSMessageDetails }

Continue with this operation?
 1+ & { Set-StrictMode -Version 1; >>>>
$this.Exception.InnerException.PSMessageDetails }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 1+ & { Set-StrictMode -Version 1; >>>>
$this.Exception.InnerException.PSMessageDetails }

Continue with this operation?
 1+ & { Set-StrictMode -Version 1; $this.Exception.InnerException.PSMessageDetails
 >>>> }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 1+ & { Set-StrictMode -Version 1;
$this.Exception.InnerException.PSMessageDetails >>>> }

Continue with this operation?
 19+ if (& { Set-StrictMode -Version 1;
$_.PSMessageDetails >>>> }) {
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 19+ if (& { Set-StrictMode
-Version 1; $_.PSMessageDetails >>>> }) {

Continue with this operation?
 26+ $errorCategoryMsg = & >>>> {
Set-StrictMode -Version 1; $_.ErrorCategory_Message }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 26+ $errorCategoryMsg = & >>>> {
Set-StrictMode -Version 1; $_.ErrorCategory_Message }

Continue with this operation?
 26+ $errorCategoryMsg = & { >>>>
Set-StrictMode -Version 1; $_.ErrorCategory_Message }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 26+ $errorCategoryMsg = & { >>>>
Set-StrictMode -Version 1; $_.ErrorCategory_Message }

 CHAPTER 18 Debugging Scripts 475

Continue with this operation?
 26+ $errorCategoryMsg = & { Set-StrictMode
 -Version 1; >>>> $_.ErrorCategory_Message }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 26+ $errorCategoryMsg = & {
Set-StrictMode -Version 1; >>>> $_.ErrorCategory_Message }

Continue with this operation?
 26+ $errorCategoryMsg = & { Set-StrictMode
 -Version 1; $_.ErrorCategory_Message >>>> }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 26+ $errorCategoryMsg = & {
Set-StrictMode -Version 1; $_.ErrorCategory_Message >>>> }

Continue with this operation?
 42+ $originInfo = & >>>> { Set-StrictMode
 -Version 1; $_.OriginInfo }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 42+ $originInfo = & >>>> {
Set-StrictMode -Version 1; $_.OriginInfo }

Continue with this operation?
 42+ $originInfo = & { >>>> Set-StrictMode
 -Version 1; $_.OriginInfo }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 42+ $originInfo = & { >>>>
Set-StrictMode -Version 1; $_.OriginInfo }

Continue with this operation?
 42+ $originInfo = & { Set-StrictMode
-Version 1; >>>> $_.OriginInfo }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 42+ $originInfo = & {
Set-StrictMode -Version 1; >>>> $_.OriginInfo }

Continue with this operation?
 42+ $originInfo = & { Set-StrictMode
-Version 1; $_.OriginInfo >>>> }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 42+ $originInfo = & {
Set-StrictMode -Version 1; $_.OriginInfo >>>> }
Attempted to divide by zero.
At S:\psh_sbs_3\chapter18Scripts\BadScript.ps1:43 char:2
+ 12/$num
+ ~~~~~~~
 + CategoryInfo : NotSpecified: (:) [], RuntimeException
 + FullyQualifiedErrorId : RuntimeException

476 Windows PowerShell 3 Step by Step

Continue with this operation?
 44+ >>>> } #end function DivideNum
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 44+ >>>> } #end function DivideNum

Continue with this operation?
 50+ >>>> AddOne($num) | AddTwo($num)
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 50+ >>>> AddOne($num) | AddTwo($num)

Continue with this operation?
 17+ >>>> {
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 17+ >>>> {

Continue with this operation?
 18+ >>>> $num+1
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 18+ >>>> $num+1

Continue with this operation?
 19+ >>>> } #end function AddOne
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 19+ >>>> } #end function AddOne

Continue with this operation?
 22+ >>>> {
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 22+ >>>> {

Continue with this operation?
 23+ >>>> $num+2
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 23+ >>>> $num+2
2

Continue with this operation?
 24+ >>>> } #end function AddTwo
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 24+ >>>> } #end function AddTwo
PS C:\>

The second benefit to using the -step parameter with the Set-PSDebug cmdlet is the ability to sus-
pend script execution, run additional Windows PowerShell commands, and then return to the script
execution. The ability to return the value of a variable from within the Windows PowerShell console
can offer important clues to the problem of what the script is doing. You choose S (for suspend) at the

 CHAPTER 18 Debugging Scripts 477

prompt and you are dropped into a nested Windows PowerShell prompt. From there, you retrieve
the variable value the same way you do when working at a regular Windows PowerShell console—by
typing the name of the variable (tab expansion even works). When you are finished retrieving the
value of the variable, you type exit to return to the stepping trace. This is shown here:

Continue with this operation?
 48+ >>>> $num = 0
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 48+ >>>> $num = 0
Continue with this operation?
 49+ >>>> SubOne($num) | DivideNum($num)
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):s
PS C:\>> $num
0
PS C:\>> exit

If you decide that you would like to see what happens if you run continuously from the point you
just inspected, you can choose A (for “yes to all”), and the script will run to completion without further
prompting. If this is the case, you have found the problem. It is also possible that you may see an
error such as the one shown here, where the script attempts to divide by zero.

Continue with this operation?
 50+ >>>> AddOne($num) | AddTwo($num)
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):A
DEBUG: 50+ >>>> AddOne($num) | AddTwo($num)
2
PS C:\>

Once you have found a specific error, you may want to change the value of a variable from within
the suspended Windows PowerShell console to see if it corrects the remaining logic. To do this, you
run the script again and choose S (for suspend) at the line that caused the error. This is where some
careful reading of the error messages comes into play. When you chose A (yes to all) in the previous
example, the script ran until it came to line 43. The line number indicator follows a colon after the
script name. The plus sign (+) indicates the command, which is 12/ $num. The four left-facing arrows
indicate that it is the value of the $num variable that is causing the problem. This is shown here:

Attempted to divide by zero.
At Y:\BadScript.ps1:43 char:5
+ 12/ <<<< $num

You will need to step through the code until you come to the prompt for line 43. This will be
shown as 43+ 12/ <<<< $num, which means you are at line 43, and the operation will be to divide 12
by the value of the number contained in the $num variable. At this point, you will want to type S (for
suspend) to drop into a nested Windows PowerShell prompt. Inside there, you can query the value
contained in the $num variable and change it to a number such as 2. You exit the nested Windows
PowerShell prompt and are returned to the stepping. At this point, you should continue to step

478 Windows PowerShell 3 Step by Step

through the code to see if any other problems arise. If they do not, you know you have located the
source of the problem. This is shown here:

Continue with this operation?
 28+ $num- <<<< 1
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 28+ $num- <<<< 1

Continue with this operation?
 43+ 12/ <<<< $num
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):s
PS C:\>>> $num
0
PS C:\>>> $num = 2
PS C:\>>> exit

Continue with this operation?
 43+ 12/ <<<< $num
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 43+ 12/ <<<< $num
6

Continue with this operation?
 50+ <<<< AddOne($num) | AddTwo($num)
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

Of course, locating the source of the problem is not the same as solving the problem, but the pre-
vious example points to a problem with the value of $num. Your next step would be to look at how
$num is being assigned its values.

There are a couple of annoyances when working with the Set-PSDebug tracing features. The
first problem is stepping through the extra lines of output created by the debugging features. The
prompts and output will use half of the Windows PowerShell console window. If you use Clear-Host
to attempt to clear the host window, you will spend several minutes attempting to step through all
the commands used by Clear-Host. This is also true if you attempt to change the debug tracing level
midstream. By default, the trace level is set to 1 by the Set-PSDebug -step parameter. The second
problem with the Set-PSDebug -step parameter occurs when you attempt to bypass a command in
the script. You are not allowed to step over a command. Instead, the stepping session ends with an
error displayed to the Windows PowerShell console. This is shown in Figure 18-8.

 CHAPTER 18 Debugging Scripts 479

FIGURE 18-8 Set-PSDebug -step does not allow you to step over functions or commands.

To turn off stepping, you use the -off parameter. You will be prompted to step through this com-
mand as well. This is shown here:

PS C:\> Set-PSDebug -Off
Continue with this operation?
 1+ Set-PSDebug -Off
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 1+ Set-PSDebug -Off
PS C:\>

Enabling strict mode

One easily correctable problem that can cause debugging nightmares in a script involves variables.
Variables are often used incorrectly, are nonexistent, or are initialized improperly. An easy mistake
to make when using variables is a simple typing error. Simple typing errors can also cause problems
when contained in a large complex script. Enabling strict mode causes Windows PowerShell to display
an error if a variable is not declared. This helps you to avoid the problem of nonexistent or improperly
initialized variables.

Using Set-PSDebug -Strict
An example of a simple typing error in a script is shown in the SimpleTypingError.ps1 script.

SimpletypingError.ps1

$a = 2
$b = 5
$d = $a + $b
'The value of $c is: ' + $c

480 Windows PowerShell 3 Step by Step

When the SimpleTypingError.ps1 script is run, the following output is shown:

PS C:\> y:\SimpleTypingError.ps1
The value of $c is:
PS C:\>

As you can see, the value of the $c variable is not displayed. If you use the -Strict parameter from
the Set-PSDebug cmdlet, an error is generated. The error tells you that the value of $c has not been
set. This is shown here:

PS C:\> Set-PSDebug -Strict
PS C:\> y:\SimpleTypingError.ps1
The variable $c cannot be retrieved because it has not been set yet.
At y:\SimpleTypingError.ps1:4 char:27
+ 'The value of $c is: ' + $c <<<<
PS C:\>

When you go back to the SimpleTypingError.ps1 script and examine it, you will see that the sum
of $a and $b was assigned to $d, not $c. The way to correct the problem is to assign the sum of $a
and $b to $c instead of $d (which was probably the original intention). It is possible to include the
Set-PSDebug -Strict command in your scripts to provide a quick check for uninitialized variables while
you are actually writing the script, and you can therefore avoid the error completely.

If you routinely use an expanding string to display the value of your variables, you need to be aware
that an uninitialized variable is not reported as an error. The SimpleTypingErrorNotReported.ps1 script
uses an expanding string to display the value of the $c variable. The first instance of the $c variable is
escaped by the use of the backtick character. This causes the variable name to be displayed, and does
not expand its value. The second occurrence of the $c variable is expanded. The actual line of code that
does this is shown here:

"The value of `$c is: $c"

When the SimpleTypingErrorNotReported.ps1 script is run, the following is displayed:

PS C:\> Set-PSDebug -Strict
PS C:\> y:\SimpleTypingErrorNotReported.ps1
The value of $c is:
PS C:\>

The complete SimpleTypingErrorNotReported.ps1 script is shown here:

SimpletypingErrornotreported.ps1

$a = 2
$b = 5
$d = $a + $b
"The value of `$c is: $c"

To disable strict mode, you use the Set-PSDebug -off command.

 CHAPTER 18 Debugging Scripts 481

Using the Set-StrictMode cmdlet
The Set-StrictMode cmdlet can also be used to enable strict mode. It has the advantage of being
scope aware. Whereas the Set-PSDebug cmdlet applies globally, if the Set-StrictMode cmdlet is used
inside a function, it enables strict mode for only the function. There are two modes of operation that
can be defined when using the Set-StrictMode cmdlet. The first is version 1, which behaves the same
as the Set-PSDebug -Strict command (except that scope awareness is enforced). This is shown here:

PS C:\> Set-StrictMode -Version 1
PS C:\> y:\SimpleTypingError.ps1
The variable '$c' cannot be retrieved because it has not been set.
At y:\SimpleTypingError.ps1:4 char:28
+ 'The value of $c is: ' + $c <<<<
 + CategoryInfo : InvalidOperation: (c:Token) [], RuntimeException
 + FullyQualifiedErrorId : VariableIsUndefined
PS C:\>

The Set-StrictMode cmdlet is not able to detect the uninitialized variable contained in the expand-
ing string that is shown in the SimpleTypingErrorNotDetected.ps1 script.

When version 2 is enacted, the technique of calling a function like a method is stopped. The
AddTwoError.ps1 script passes two values to the add-two function via method notation. Because
method notation is allowed when calling functions, no error is normally generated. But method
notation of passing parameters for functions only works when there is a single value to pass to the
function. To pass multiple parameters, function notation must be used, as shown here:

add-two 1 2

Another way to call the add-two function correctly is to use the parameter names when passing
the values. This is shown here:

add-two -a 1 -b 2

Either of the two syntaxes would produce the correct result. The method notation of calling the
function displays incorrect information but does not generate an error. An incorrect value being
returned from a function with no error being generated can take a significant amount of time to
debug. The method notation of calling the add-two function is used in the AddTwoError.ps1 script,
and is shown here:

add-two(1,2)

When the script is run and the Set-StrictMode -Version 2 command has not been enabled, no error
is generated. The output seems to be confusing because the result of adding the two variables $a and
$b is not displayed. This is shown here:

PS C:\> y:\AddTwoError.ps1
1
2
PS C:\>

482 Windows PowerShell 3 Step by Step

Once the Set-StrictMode -Version 2 command has been entered and the AddTwoError.ps1 script
is run, an error is generated. The error that is generated states that the function was called as if it
were a method. The error points to the exact line where the error occurred and shows the function
call that caused the error. The function call is preceded with a + sign followed by the name of the
function, followed by four arrows that indicate what was passed to the function. The error message
is shown here:

PS C:\> Set-StrictMode -Version 2
PS C:\> y:\AddTwoError.ps1
The function or command was called as if it were a method. Parameters should be
 separated by spaces. For information about parameters, see the about_Parameters Help topic.
At Y:\AddTwoError.ps1:7 char:8
+ add-two <<<< (1,2)
 + CategoryInfo : InvalidOperation: (:) [], RuntimeException
 + FullyQualifiedErrorId : StrictModeFunctionCallWithParens
PS C:\>

The complete AddTwoError.ps1 script is shown here:

AddTwoError.ps1

Function add-two ($a,$b)
{
 $a + $b
}

add-two(1,2)

When you specify Set-StrictMode for version 2.0, it checks the following items:

■■ References to uninitialized variables, both directly and from within expanded strings

■■ References to nonexistent properties of an object

■■ Functions that are called like methods

■■ Variables without a name

If you set strict mode for version 1.0, it only checks for references to uninitialized variables.

If you are not sure whether you want to use strict mode for PowerShell version 2 or 3 (there are
no changes), an easy way to solve the problem is to use the value latest. By using latest for the value
of the -version parameter, you always ensure that your script will use the latest strict mode rules. This
technique appears here:

Set-StrictMode -version latest

One issue that can arise with using latest is that you do not know what the latest changes might
do to your script. Therefore, it is generally safer to use version 1 or version 2 when looking for specific
types of protection.

 CHAPTER 18 Debugging Scripts 483

Debugging the script

The debugging features of Windows PowerShell 3.0 make the use of the Set-PSDebug cmdlet
seem rudimentary or even cumbersome. Once you are more familiar with the debugging fea-
tures of Windows PowerShell 3.0, you may decide to look no longer at the Set-PSDebug cmdlet.
Several cmdlets enable debugging from the Windows PowerShell console and from the Windows
PowerShell ISE.

The debugging cmdlets appear in Table 18-2.

TABLE 18-2 Windows PowerShell debugging cmdlets

Cmdlet name Cmdlet function

Set-PSBreakpoint Sets breakpoints on lines, variables, and commands

Get-PSBreakpoint Gets breakpoints in the current session

Disable-PSBreakpoint Turns off breakpoints in the current session

Enable-PSBreakpoint Reenables breakpoints in the current session

Remove-PSBreakpoint Deletes breakpoints from the current session

Get-PSCallStack Displays the current call stack

Setting breakpoints
The debugging features in Windows PowerShell use breakpoints. A breakpoint is something that is
very familiar to developers who have used products such as Microsoft Visual Studio in the past. But
for many IT professionals without a programming background, the concept of a breakpoint is some-
what foreign. A breakpoint is a spot in the script where you would like the execution of the script to
pause. Because the script pauses, it is like the stepping functionality shown earlier. But because you
control where the breakpoint will occur, instead of halting on each line of the script, the stepping
experience is much faster. In addition, because many different methods for setting breakpoints are
available, you can tailor your breakpoints to reveal precisely the information you are looking for.

Setting a breakpoint on a line number
To set a breakpoint, you use the Set-PSBreakpoint cmdlet. The easiest way to set a break-
point is to set it on line 1 of the script. To set a breakpoint on the first line of the script, you
use the line parameter and the script parameter. When you set a breakpoint, an instance of the
System.Management.Automation.LineBreak .NET Framework class is returned. It lists the ID, Script,
and Line properties that were assigned when the breakpoint was created. This is shown here:

PS C:\> Set-PSBreakpoint -line 1 -script Y:\BadScript.ps1
 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 BadScript.ps1 1

484 Windows PowerShell 3 Step by Step

This will cause the script to break immediately. You can then step through the function in the
same way you did using the Set-PSDebug cmdlet with the -step parameter. When you run the script, it
stops at the breakpoint that was set on the first line of the script, and Windows PowerShell enters the
script debugger, permitting you to use the debugging features of Windows PowerShell. Windows
PowerShell will enter the debugger every time the BadScript.ps1 script is run from the Y drive.
When Windows PowerShell enters the debugger, the Windows PowerShell prompt changes to
[DBG]: PS C:\>>> to visually alert you that you are inside the Windows PowerShell debugger. To step
to the next line in the script, you type s. To quit the debugging session, you type q. (The debugging
commands are not case sensitive.) This is shown here:

PS C:\> Y:\BadScript.ps1
Hit Line breakpoint on 'Y:\BadScript.ps1:1'

BadScript.ps1:1 #
--
[DBG]: PS C:\>>> s
BadScript.ps1:16 Function AddOne([int]$num)
[DBG]: PS C:\>>> s
BadScript.ps1:21 Function AddTwo([int]$num)
[DBG]: PS C:\>>> s
BadScript.ps1:26 Function SubOne([int]$num)
[DBG]: PS C:\>>> s
BadScript.ps1:31 Function TimesOne([int]$num)
[DBG]: PS C:\>>> s
BadScript.ps1:36 Function TimesTwo([int]$num)
[DBG]: PS C:\>>> s
BadScript.ps1:41 Function DivideNum([int]$num)
[DBG]: PS C:\>>> s
BadScript.ps1:48 $num = 0
[DBG]: PS C:\>>> s
BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>> s
BadScript.ps1:28 $num-1
[DBG]: PS C:\>>> s
BadScript.ps1:43 12/$num
[DBG]: PS C:\>>> s
 if ($_.FullyQualifiedErrorId -ne
"NativeCommandErrorMessage" -and $ErrorView -ne "CategoryView") {
[DBG]: PS C:\>>> q
PS C:\>

 CHAPTER 18 Debugging Scripts 485

note Keep in mind that breakpoints are dependent upon the location of the specific script
when you specify a breakpoint on a script. When you create a breakpoint for a script, you
specify the location to the script on which you want to set a breakpoint. Often, I have sev-
eral copies of a script that I keep in different locations (for version control). At times, I get
confused in a long debug session, and may open up the wrong version of the script to
debug it. This will not work. If the script is identical to another in all respects except for the
path to the script, it will not break. If you want to use a single breakpoint that could apply
to a specific script that is stored in multiple locations, you can set the breakpoint for the
condition inside the Windows PowerShell console, and not use the -script parameter.

Setting a breakpoint on a variable
Setting a breakpoint on line 1 of the script is useful for easily entering a debug session, but setting
a breakpoint on a variable can often make a problem with a script easy to detect. This is, of course,
especially true when you have already determined that the problem is with a variable that is either
getting assigned a value or being ignored. There are three modes that can be used when the break-
point is specified for a variable. You specify these modes by using the -mode parameter. The three
modes of operation are listed in Table 18-3.

TABLE 18-3 Variable breakpoint access modes

Access mode Meaning

Write Stops execution immediately before a new value is written to the variable.

Read Stops execution when the variable is read—that is, when its value is accessed, either to be
assigned, displayed, or used. In read mode, execution does not stop when the value of the vari-
able changes.

ReadWrite Stops execution when the variable is read or written.

To see when the BadScript.ps1 script writes to the $num variable, you will use write mode.
When you specify the value for the -variable parameter, do not include the dollar sign in front
of the variable name. To set a breakpoint on a variable, you only need to supply the path to the
script, the name of the variable, and the access mode. When a variable breakpoint is set, the
System.Management.Automation.LineBreak .NET Framework class object that is returned does not
include the access mode value. This is true even if you use the Get-PSBreakpoint cmdlet to directly
access the breakpoint. If you pipe the System.Management.Automation.LineBreak .NET Framework
class object to the Format-List cmdlet, you will be able to see that the access mode property
is available. In this example, you set a breakpoint when the $num variable is written to in the
y:\BadScript.ps1 script:

PS C:\> Set-PSBreakpoint -Variable num -Mode write -Script Y:\BadScript.ps1
 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 3 BadScript.ps1 num

486 Windows PowerShell 3 Step by Step

PS C:\> Get-PSBreakpoint
 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 3 BadScript.ps1 num

PS C:\> Get-PSBreakpoint | Format-List * -Force
AccessMode : Write
Variable : num
Action :
Enabled : True
HitCount : 0
Id : 3
Script : Y:\BadScript.ps1

After setting the breakpoint, when you run the script (if the other breakpoints have been removed
or deactivated, which will be discussed later), the script enters the Windows PowerShell debugger
when the breakpoint is hit (that is, when the value of the $num variable is written to). If you step
through the script by using the s command, you will be able to follow the sequence of operations.
Only one breakpoint is hit when the script is run. This is on line 48 when the value is set to 0 (if you
are following along with this chapter, your line numbers may be different than mine). This is shown is
shown here:

PS C:\> Y:\BadScript.ps1
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (Write access)

BadScript.ps1:48 $num = 0
[DBG]: PS C:\>>> $num
[DBG]: PS C:\>>> Write-Host $num

[DBG]: PS C:\>>> s
BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>> $num
0

To set a breakpoint on a read operation for the variable, you specify the -variable parameter and
name of the variable, the -script parameter with the path to the script, and read as the value for the
-mode parameter. This is shown here:

PS C:\> Set-PSBreakpoint -Variable num -Script Y:\BadScript.ps1 -Mode read

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 4 BadScript.ps1 num

When you run the script, a breakpoint will be displayed each time you hit a read operation on
the variable. Each breakpoint will be displayed in the Windows PowerShell console as Hit Variable
breakpoint, followed by the path to the script and the access mode of the variable. In the BadScript.
ps1 script, the value of the $num variable is read several times. The truncated output is shown here:

PS C:\> Y:\BadScript.ps1
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (Read access)

 CHAPTER 18 Debugging Scripts 487

BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>> s
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (Read access)

BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>> s
BadScript.ps1:28 $num-1
[DBG]: PS C:\>>> s
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (Read access)

BadScript.ps1:28 $num-1
[DBG]: PS C:\>>> s

If you set the readwrite access mode for the -mode parameter for the variable $num for the
BadScript.ps1 script, you receive the feedback shown here:

PS C:\> Set-PSBreakpoint -Variable num -Mode readwrite -Script Y:\BadScript.ps1

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 6 BadScript.ps1 num

When you run the script (assuming you have disabled the other breakpoints), you will hit a
breakpoint each time the $num variable is read to or written to. If you get tired of typing s and
pressing Enter while you are in the debugging session, you can press Enter, and it will repeat your
previous s command as you continue to step through the breakpoints. When the script has stepped
through the code and arrives at the error in the BadScript.ps1 script, type q to exit the debugger.
This is shown here:

PS C:\> Y:\BadScript.ps1
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (ReadWrite access)

BadScript.ps1:48 $num = 0
[DBG]: PS C:\>>> s
BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>>
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (ReadWrite access)

BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>>
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (ReadWrite access)

BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>>
BadScript.ps1:28 $num-1
[DBG]: PS C:\>>>
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (ReadWrite access)

BadScript.ps1:28 $num-1
[DBG]: PS C:\>>>
BadScript.ps1:43 12/$num
[DBG]: PS C:\>>>
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (ReadWrite access)

488 Windows PowerShell 3 Step by Step

BadScript.ps1:43 12/$num
[DBG]: PS C:\>>>
 if ($_.FullyQualifiedErrorId -ne
"NativeCommandErrorMessage" -and $ErrorView -ne "CategoryView") {
[DBG]: PS C:\>>> q
PS C:\>

When you use the readwrite access mode of the -mode parameter for breaking on variables,
the breakpoint does not tell you if the operation is a read operation or a write operation. You
have to look at the code that is being executed to determine if the value of the variable is being
written or read.

By specifying a value for the -action parameter, you can include regular Windows PowerShell
code that will execute when the breakpoint is hit. If, for example, you are trying to follow the
value of a variable within the script and you wish to display the value of the variable each time the
breakpoint is hit, you might want to specify an action that uses the Write-Host cmdlet to display the
value of the variable. By using the Write-Host cmdlet, you can also include a string that indicates
that the value of the variable is being displayed. This is crucial for picking up variables that never
initialize and therefore is easier to spot than a blank line that would be displayed if you attempted
to display the value of an empty variable. The technique of using the Write-Host cmdlet in an
-action parameter is shown here:

PS C:\> Set-PSBreakpoint -Variable num -Action { write-host "num = $num" ;
Break } -Mode readwrite -script Y:\BadScript.ps1

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 5 BadScript.ps1 num write-host "...

When you run the Y:\BadScript.ps1 with the breakpoint set, you receive the following output inside
the Windows PowerShell debugger:

PS C:\> Y:\BadScript.ps1
num =
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (ReadWrite access)

BadScript.ps1:48 $num = 0
[DBG]: PS C:\>>> s
BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>> s
Set-PSBreakpoint -Variable num -Action { write-host "num = $num" ; break }
-Mode readwrite -script Y:\BadScript.ps1
[DBG]: PS C:\>>> s
num = 0
Set-PSBreakpoint -Variable num -Action { write-host "num = $num" ; break }
-Mode readwrite -script Y:\BadScript.ps1
[DBG]: PS C:\>>> c
Hit Variable breakpoint on 'Y:\BadScript.ps1:$num' (ReadWrite access)

BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>>

 CHAPTER 18 Debugging Scripts 489

Setting a breakpoint on a command
To set the breakpoint on a command, you use the -command parameter. You can break on a call to
a Windows PowerShell cmdlet, function, or external script. You can use aliases when setting break-
points. When you create a breakpoint on an alias for a cmdlet, the debugger will only stop on the
use of the alias—not the actual command name. In addition, you do not have to specify a script for
the debugger to break. If you do not type a path to a script, the debugger will be active for every-
thing within the Windows PowerShell console session. Every occurrence of the foreach command
will cause the debugger to break. Because foreach is a language statement as well as an alias for the
Foreach-Object cmdlet, you might wonder whether the Windows PowerShell debugger will break
on both the language statement and the use of the alias for the cmdlet—and the answer is no. You
can set breakpoints on language statements, but the debugger will not break on a language state-
ment. As shown here, the debugger breaks on the use of the Foreach alias, but not on the use of the
Foreach-Object cmdlet.

PS C:\> Set-PSBreakpoint -Command foreach

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 10 foreach

PS C:\> 1..3 | ForEach-Object { $_}
1
2
3
PS C:\> 1..3 | foreach { $_ }
Hit Command breakpoint on 'foreach'

1..3 | foreach { $_ }
[DBG]: PS C:\>>> c
1
Hit Command breakpoint on 'foreach'

1..3 | foreach { $_ }
[DBG]: PS C:\>>> c
2
Hit Command breakpoint on 'foreach'

1..3 | foreach { $_ }
[DBG]: PS C:\>>> c
3

note You can use the shortcut technique of creating the breakpoint for the Windows
PowerShell session and not specifically for the script. By leaving out the -script parameter
when creating a breakpoint, you cause the debugger to break into any running script that
uses the named function. This allows you to use the same breakpoints when debugging
scripts that use the same function.

490 Windows PowerShell 3 Step by Step

When creating a breakpoint for the DivideNum function used by the Y:\BadScript.ps1 script, you
can leave off the path to the script, because only this script uses the DivideNum function. This makes
the command easier to type, but could become confusing if you’re looking through a collection of
breakpoints. If you are debugging multiple scripts in a single Windows PowerShell console session, it
could become confusing if you do not specify the script to which the breakpoint applies—unless of
course you are specifically debugging the function as it is used in multiple scripts. Creating a com-
mand breakpoint for the DivideNum function is shown here:

PS C:\> Set-PSBreakpoint -Command DivideNum

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 7 DivideNum

When you run the script, it hits a breakpoint when the DivideNum function is called. When
BadScript.ps1 hits the DivideNum function, the value of $num is 0. As you step through the
DivideNum function, you assign a value of 2 to the $num variable, a result of 6 is displayed, and then
the 12/$num operation is carried out. Next, the AddOne function is called and the value of $num
once again becomes 0. When the AddTwo function is called, the value of $num also becomes 0. This is
shown here:

PS C:\> Y:\BadScript.ps1
Hit Command breakpoint on 'DivideNum'

BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>> s
BadScript.ps1:43 12/$num
[DBG]: PS C:\>>> $num
0
[DBG]: PS C:\>>> $num =2
[DBG]: PS C:\>>> s
6
BadScript.ps1:50 AddOne($num) | AddTwo($num)
[DBG]: PS C:\>>> s
BadScript.ps1:18 $num+1
[DBG]: PS C:\>>> $num
0
[DBG]: PS C:\>>> s
BadScript.ps1:23 $num+2
[DBG]: PS C:\>>> $num
0
[DBG]: PS C:\>>> s
2
PS C:\>

responding to breakpoints
When the script reaches a breakpoint, control of the Windows PowerShell console is turned over
to you. Inside the debugger, you can type any legal Windows PowerShell command, and even run
cmdlets such as Get-Process or Get-Service. In addition, there are several new debugging commands

 CHAPTER 18 Debugging Scripts 491

that can be typed into the Windows PowerShell console when a breakpoint has been reached. The
available debug commands are shown in Table 18-4.

TABLE 18-4 Windows PowerShell debugging commands

Keyboard shortcut Command name Command meaning

S Step-Into Executes the next statement and then stops.

V Step-Over Executes the next statement, but skips functions and invocations.
The skipped statements are executed, but not stepped through.

O Step-Out Steps out of the current function up one level if nested. If in the
main body, it continues to the end or the next breakpoint. The
skipped statements are executed, but not stepped through.

C Continue Continues to run until the script is complete or until the next break-
point is reached. The skipped statements are executed, but not
stepped through.

L List Displays the part of the script that is executing. By default, it displays
the current line, 5 previous lines, and 10 subsequent lines. To con-
tinue listing the script, press Enter.

L <M> List Displays 16 lines of the script, beginning with the line number speci-
fied by M.

L <M> <N> List Displays the number of lines of the script specified by N, beginning
with the line number specified by M.

Q Stop Stops executing the script and exits the debugger.

K Get-PsCallStack Displays the current call stack.

Enter Repeat Repeats the last command if it was Step-Into, Step-Over, or List.
Otherwise, represents a submit action.

H or ? Help Displays the debugger command help.

When the BadScript.ps1 script is run using the DivideNum function as a breakpoint, the script
breaks on line 49 when the DivideNum function is called. The s debugging command is used to step
into the next statement and stop the script before the command is actually executed. The l debug-
ging command is used to list the 5 previous lines of code from the BadScript.ps1 script and the 10
lines of code that follow the current line in the script. This is shown here:

PS C:\> Y:\BadScript.ps1
Hit Command breakpoint on 'Y:\BadScript.ps1:dividenum'

BadScript.ps1:49 SubOne($num) | DivideNum($num)
[DBG]: PS C:\>>> s
BadScript.ps1:43 12/$num
[DBG]: PS C:\>>> l

 38: $num*2
 39: } #end function TimesTwo
 40:
 41: Function DivideNum([int]$num)
 42: {
 43:* 12/$num
 44: } #end function DivideNum
 45:

492 Windows PowerShell 3 Step by Step

 46: # *** Entry Point to Script ***
 47:
 48: $num = 0
 49: SubOne($num) | DivideNum($num)
 50: AddOne($num) | AddTwo($num)
 51:

After reviewing the code, the o debugging command is used to step out of the DivideNum func-
tion. The remaining code in the DivideNum function is still executed, and therefore the divide-by-
zero error is displayed. There are no more prompts until the next line of executing code is met. The
v debugging statement is used to step over the remaining functions in the script. The remaining
functions are still executed, and the results are displayed at the Windows PowerShell console. This is
shown here:

[DBG]: PS C:\>>> o
Attempted to divide by zero.
At Y:\BadScript.ps1:43 char:5
+ 12/ <<<< $num
 + CategoryInfo : NotSpecified: (:) [], RuntimeException
 + FullyQualifiedErrorId : RuntimeException

BadScript.ps1:50 AddOne($num) | AddTwo($num)
[DBG]: PS C:\>>> v
2
PS C:\>

Listing breakpoints
Once you have set several breakpoints, you might wish to know where they were created. One thing
to keep in mind is the breakpoints are stored in the Windows PowerShell environment, not in the
individual script. Using the debugging features does not involve editing of the script or modifying
your source code. This enables you to debug any script without worry of corrupting the code. But
because you may have set several breakpoints in the Windows PowerShell environment during a
typical debugging session, you may wish to know what breakpoints have been defined. To do this,
you use the Get-PSBreakpoint cmdlet. This is shown here:

PS C:\> Get-PSBreakpoint
 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 11 BadScript.ps1 dividenum
 13 BadScript.ps1 if
 3 BadScript.ps1 num
 5 BadScript.ps1 num
 6 BadScript.ps1 num
 7 DivideNum
 8 foreach
 9 gps
 10 foreach
PS C:\>

 CHAPTER 18 Debugging Scripts 493

If you are interested in which breakpoints are currently enabled, you need to use the Where-Object
cmdlet and pipeline the results from the Get-PSBreakpoint cmdlet. This is shown here:

PS C:\> Get-PSBreakpoint | where { $_.enabled }

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 11 BadScript.ps1 dividenum

PS C:\>

You could also pipeline the results of the Get-PSBreakpoint to the Format-Table cmdlet, as shown
here:

PS C:\> Get-PSBreakpoint |
Format-Table -Property id, script, command, variable, enabled -AutoSize

Id Script Command variable Enabled
-- ------ ------- -------- -------
11 Y:\BadScript.ps1 dividenum True
13 Y:\BadScript.ps1 if False
 3 Y:\BadScript.ps1 num False
 5 Y:\BadScript.ps1 num False
 6 Y:\BadScript.ps1 num False
 7 DivideNum False
 8 foreach False
 9 gps False
10 foreach False

Because the creation of the custom-formatted breakpoint table requires a little bit of typing, and
because the display is extremely helpful, you might consider placing the code in a function that could
be included in your profile, or in a custom debugging module. The function shown here is stored in
the Get-EnabledBreakpointsFunction.ps1 script.

Get-EnabledBreakpointsFunction.ps1

Function Get-EnabledBreakpoints
{
 Get-PSBreakpoint |
 Format-Table -Property id, script, command, variable, enabled -AutoSize
}

*** Entry Point to Script ***

Get-EnabledBreakpoints

494 Windows PowerShell 3 Step by Step

Enabling and disabling breakpoints
While you are debugging a script, you might need to disable a particular breakpoint to see how the
script runs. To do this, you use the Disable-PSBreakpoint cmdlet. This is shown here:

Disable-PSBreakpoint -id 0

On the other hand, you may also need to enable a breakpoint. To do this, you use the
Enable-PSBreakpoint cmdlet, as shown here:

Enable-PSBreakpoint -id 1

As a best practice, while in a debugging session I will selectively enable and disable breakpoints to
see how the script is running in an attempt to troubleshoot the script. To keep track of the status of
breakpoints, I use the Get-PSBreakpoint cmdlet as illustrated in the previous section.

Deleting breakpoints
When you are finished debugging the script, you will want to remove all of the breakpoints that
were created during the Windows PowerShell session. There are two ways to do this. The first is to
close the Windows PowerShell console. While this is a good way to clean up the environment, you
may not want to do this if you have remote Windows PowerShell sessions defined, or variables that
are populated with the results of certain queries. To delete all of the breakpoints, you can use the
Remove-PSBreakpoint cmdlet. Unfortunately, there is no all switch for the Remove-PSBreakpoint
cmdlet. When you’re deleting a breakpoint, the Remove-PSBreakpoint cmdlet requires a breakpoint
ID number. To remove a single breakpoint, you specify the ID number for the -id parameter. This is
shown here:

Remove-PSBreakpoint -id 3

If you want to remove all of the breakpoints, pipeline the results from Get-PSBreakpoint to
Remove-PSBreakpoint, as shown here:

Get-PSBreakpoint | Remove-PSBreakpoint

If you want to only remove the breakpoints from a specific script, you can pipeline the results
through the Where object, as shown here:

(Get-PSBreakpoint | Where ScriptName - eq "C:\Scripts\Test.ps1") |
Removeakpoint

Debugging a function: step-by-step exercises

In this exercise, you will explore the use of the debugger in the Windows PowerShell ISE. (Note that if
you have defined your own custom Windows PowerShell prompt, you may not see the [DBG] prompt
portion of the Windows PowerShell prompt.) Once you have completed debugging a function, in the
subsequent exercise you will debug a script.

 CHAPTER 18 Debugging Scripts 495

Using the PowerShell debugger to debug a function

1. Open the Windows PowerShell ISE.

2. Create a function called My-Function. The contents of the function appear following. Save the
function to a file named my-function.ps1. (If you do not save the file, you are not running a
script, and you will not enter the debugger.)

Function my-function
{
 Param(
 [int]$a,
 [int]$b)
 "$a plus $b equals four"
}

3. Select the line of code that states that $a plus $b equals four. This line of code appears here:

"$a plus $b equals four"

4. Choose Toggle Breakpoint from the Debug menu. The line of code should change colors,
indicating that a breakpoint is now set on that line.

5. Run the My-Function script to load the function into memory.

6. In the bottom pane of the Windows PowerShell ISE (the command pane), type the function
name so that you execute the function. (You can use tab expansion to avoid typing the com-
plete My-Function name.) This appears here:

My-Function

7. In the output pane of the Windows PowerShell ISE, you will see that you have now hit a break-
point. Examine the output and determine which line the breakpoint is defined upon. The line
number in the output pane corresponds with the line number in the script pane (the upper
pane). Sample output appears here:

PS C:\> my-function
Hit Line breakpoint on 'S:\psh_sbs_3\chapter18Scripts\my-function.ps1:6'

8. Examine the prompt in the Windows PowerShell ISE command pane. It should be prefixed by
[DBG]. This tells you that you are in a debug prompt. This prompt appears here:

[DBG]: PS C:\>>

9. At the debug prompt in the Windows PowerShell ISE command pane, examine the value of
the $a variable.

[DBG]: PS C:\>> $a
0

496 Windows PowerShell 3 Step by Step

10. Now examine the value of the $b variable.

[DBG]: PS C:\>> $b
0

11. Now assign a value of 2 to both $a and $b.

[DBG]: PS C:\>> $a = $b = 2

12. Now choose Step Out from the Debug menu to permit the script to continue execution and
to run the line upon which the breakpoint was set. Notice that the function now uses the new
value of $a and $b. The output appears here:

[DBG]: PS C:\>>
2 plus 2 equals four

13. Select Remove All Breakpoints from the Debug menu. Examine the script pane. The high-
lighted line of code should now appear normally.

14. In the command pane of the Windows PowerShell ISE, call My-Function once again. This time
you will notice that the function still exhibits the problem. The output appears here:

PS C:\> my-function
0 plus 0 equals four

15. You should now fix the function. To do this, change the output line so that it does not have
the hard-coded word four in it. This change appears following. Save the revised function as
my-function1.ps1.

"$a plus $b equals $($a+$b)"

This concludes the exercise.

In the next exercise, you will set breakpoints that will be used when debugging a script.

Debugging a script

1. Open the Windows PowerShell console.

2. Use the Set-PSBreakPoint cmdlet to set a breakpoint on the my-function function inside the
script my-function.ps1. Remember that you will need to use the full path to the script when
you do this. The command will look something like the following:

Set-PSBreakpoint -Script sbs:\chapter18Scripts\my-function.ps1 -Command my-function

3. Run the my-function.ps1 scrip inside the Windows PowerShell console by typing its complete
path. The command will look something like the following. (Notice that the command does
not break).

sbs:\chapter18Scripts> .\my-function.ps1

 CHAPTER 18 Debugging Scripts 497

4. Dot-source the function, and then call the function directly from memory and watch to see if
the command breaks. The two commands will look something like the following:

. .\my-function.ps1
my-function

5. Use the Get-PSBreakPoint cmdlet to display the breakpoint. The command and associated
output appear here:

PS C:\> Get-PSBreakpoint

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 my-function.ps1 my-function

6. Remove the breakpoint for the my-function command by using the Remove-PSBreakPoint
cmdlet. It should have an ID of 0. The command appears here:

Remove-PSBreakpoint -Id 0

7. Set a breakpoint for the my-function command without specifying a script. The command
appears here:

Set-PSBreakpoint -Command my-function

8. Call my-function. When you do, the Windows PowerShell console will enter debug mode. The
command and debug mode appear here:

PS C:\> my-function
Entering debug mode. Use h or ? for help.

Hit Command breakpoint on 'my-function'

At S:\psh_sbs_3\chapter18Scripts\my-function.ps1:2 char:1
+ {
+ ~

9. Inside debug mode, display the value of the $a variable and the $b variable. The command
and output appear here:

[DBG]: PS C:\>> $a
0
[DBG]: PS C:\>> $b
0

10. Exit debug mode by typing the command exit. The Windows PowerShell console exits debug
mode and continues running the function, as shown here:

[DBG]: PS C:\>> exit
0 plus 0 equals four

498 Windows PowerShell 3 Step by Step

11. Dot-source the my-function1.ps1 script. The command will be similar to the one that appears
here:

. sbs:\chapter18Scripts\my-function1.ps1

12. Run the my-function function and supply the value 12 for the a parameter and the value 14
for the b parameter. The command follows. Note that once again the Windows PowerShell
console enters debug mode.

PS C:\> my-function -a 12 -b 14
Hit Command breakpoint on 'my-function'

At S:\psh_sbs_3\chapter18Scripts\my-function1.ps1:2 char:1
+ {
+ ~

13. Query for the value of $a and $b. The command and associated values appear here:

[DBG]: PS C:\>> $a
12
[DBG]: PS C:\>> $b
14

14. Change the value of $b to be equal to 0 and exit debug mode. The commands appear here:

[DBG]: PS C:\>> $b = 0
[DBG]: PS C:\>> exit

15. When the console exits debug mode, the new value for the b parameter is used. The output
appears here:

12 plus 0 equals 12

16. Use the Get-PSBreakPoint cmdlet to retrieve all breakpoints, and pipeline them to the
Remove-PSBreakPoint cmdlet. This command appears here:

Get-PSBreakpoint | Remove-PSBreakpoint

17. Use the Get-PSBreakPoint cmdlet to ensure that the breakpoint is removed. This command
appears here:

Get-PSBreakpoint

This concludes the exercise.

 CHAPTER 18 Debugging Scripts 499

Chapter 18 quick reference

To Do this

Step through a script or a function Use the Set-PSDebug cmdlet and specify the -step switch.

Follow code execution into and out of functions
in a script

Use the Set-PSDebug cmdlet and specify a value of 2 for the -trace
parameter.

Set a breakpoint for a particular line number in
a script

Use the Set-PSBreakPoint cmdlet and specify the line number to
the -line parameter. Also specify the script by using the -script
parameter.

Set a breakpoint on a script when a particular
variable is written to

Use the Set-PSBreakPoint cmdlet, specify the variable name (leave
off the $ sign when specifying the variable name) to the -variable
parameter, and specify the script to the -name parameter.

Set a breakpoint when a particular command is
run from any script

Use the Set-PSBreakPoint cmdlet and the -command parameter to
specify the command to watch, and do not set a script name.

List all breakpoints currently defined in the
session

Use the Get-PSBreakpoint cmdlet.

Delete all breakpoints currently defined in the
session

Use the Get-PSBreakpoint cmdlet and pipeline the results to the
Remove-PSBreakpoint cmdlet.

 501

C H A P T E R 1 9

handling Errors

after completing this chapter, you will be able to:

■■ Handle missing parameters in scripts.

■■ Limit the choices available to users of your scripts.

■■ Handle missing rights and permissions in scripts.

■■ Handle missing WMI providers in scripts.

■■ Use Try...Catch...Finally to catch single and multiple errors in scripts.

When it comes to handling run-time errors in your script, you need to have an understanding of the
intended use of the script. For example, just because a script runs once does not mean it will run a
second time. Disks fail, networks fail, computers fail, and things are constantly in flux. The way that
a script will be used is sometimes called the use-case scenario, and it describes how the user will
interact with the script. If the use-case scenario is simple, the user may not need to do anything more
than type the name of the script inside the Microsoft Windows PowerShell console. A script such
as Get-Bios.ps1, shown following, could get by without much need for any error handling. This is
because there are no inputs to the script. The script is called, it runs, and it displays information that
should always be readily available, because the Win32_Bios Windows Management Instrumentation
(WMI) class is present in all versions of Windows since Windows 2000 (however, even a simple script
like Get-Bios.ps1 could fail because it relies on a WMI service that might be broken, or because the
COM interface is corrupt).

Get-Bios.ps1

Get-WmiObject -class Win32_Bios

Handling missing parameters

When you examine the Get-Bios.ps1 script, you can see that it does not receive any input from the
command line. This is a good way to avoid user errors in your script, but it is not always practical.
When your script accepts command-line input, you are opening the door for all kinds of potential
problems. Depending on how you accept command-line input, you may need to test the input data
to ensure that it corresponds to the type of input the script is expecting. The Get-Bios.ps1 script does

502 Windows PowerShell 3 Step by Step

not accept command-line input; therefore, it avoids most potential sources of errors (of course, the
Get-Bios.ps1 script is also extremely limited in scope—so you win some and you lose some).

Creating a default value for a parameter
There are two ways to assign default values for a command-line parameter. You can assign the default
value in the param declaration statement, or you can assign the value in the script itself. Given a
choice between the two, it is a best practice to assign the default value in the param statement. This
is because it makes the script easier to read, which in turn makes the script easier to modify and
troubleshoot. For more information on troubleshooting scripts, see Chapter 18, “Debugging Scripts.”

Detecting a missing value and assigning it in the script
In the Get-BiosInformation.ps1 script, which follows, a command-line parameter, computerName,
allows the script to target both local and remote computers. If the script runs without a value for the
computerName parameter, the Get-WMIObject cmdlet fails because it requires a value for the com-
putername parameter. To solve the problem of the missing parameter, the Get-BiosInformation.ps1
script checks for the presence of the $computerName variable. If this variable is missing, it means
it was not created via the command-line parameter, and the script therefore assigns a value to the
$computerName variable. Here is the line of code that populates the value of the $computerName
variable:

If(-not($computerName)) { $computerName = $env:computerName }

The completed Get-BiosInformation.ps1 script is shown here:

Get-BiosInformation.ps1

Param(
 [string]$computerName
) #end param

Function Get-BiosInformation($computerName)
{
 Get-WmiObject -class Win32_Bios -computerName $computername
} #end function Get-BiosName

*** Entry Point To Script ***
If(-not($computerName)) { $computerName = $env:computerName }
Get-BiosInformation -computerName $computername

assigning a value in the param statement
To assign a default value in the param statement, you use the equality operator following the param-
eter name and assign the value to the parameter. This technique appears here:

Param(
 [string]$computerName = $env:computername
) #end param

 CHAPTER 19 Handling Errors 503

An advantage of assigning the default value for the parameter in the param statement is that it
makes the script is easier to read. Because the parameter declaration and the default parameter are in
the same place, you can see immediately which parameters have default values and which do not. The
second advantage that arises from assigning a default value in the param statement is that the script
is easier to write. Notice that there is no if statement to check the existence of the $computerName
variable. The Get-BiosInformationDefaultParam.ps1 script illustrates using the param statement to
assign a default value for a script. The complete script is shown here:

Get-BiosInformationDefaultParam.ps1

Param(
 [string]$computerName = $env:computername
) #end param

Function Get-BiosInformation($computerName)
{
 Get-WmiObject -class Win32_Bios -computername $computername
} #end function Get-BiosName

*** Entry Point To Script ***

Get-BiosInformation -computerName $computername

Making the parameter mandatory
The best way to handle an error is to ensure the error does not occur in the first place. In Windows
PowerShell 3.0, you can mark a parameter as mandatory (for the scripts as well as for functions). The
advantage of marking a parameter as mandatory is that it requires the user of the script to supply a
value for the parameter. If you do not want the user of the script to be able to run the script without
making a particular selection, you will want to make the parameter mandatory. To make a parameter
mandatory, you use the mandatory parameter attribute. This technique appears here:

Param(
 [Parameter(Mandatory=$true)]
 [string]$drive,
 [string]$computerName = $env:computerName
) #end param

The complete MandatoryParameter.ps1 script appears here:

MandatoryParameter.ps1

#Requires -version 3.0
Param(
 [Parameter(Mandatory=$true)]
 [string]$drive,
 [string]$computerName = $env:computerName
) #end param

504 Windows PowerShell 3 Step by Step

Function Get-DiskInformation($computerName,$drive)
{
 Get-WmiObject -class Win32_volume -computername $computername `
-filter "DriveLetter = '$drive'"
} #end function Get-BiosName

*** Entry Point To Script ***

 Get-DiskInformation -computername $computerName -drive $drive

When a script with a mandatory parameter runs without supplying a value for the parameter, an
error is not generated. Instead, Windows PowerShell prompts for the required parameter value. This
behavior appears here:

PS C:\bp> .\MandatoryParameter.ps1

cmdlet MandatoryParameter.ps1 at command pipeline position 1
Supply values for the following parameters:
drive:

Limiting choices

Depending on the design of the script, several scripting techniques can ease error-checking require-
ments. If you have a limited number of choices you wish to display to your user, you can use the
PromptForChoice method. If you want to limit the selection to computers that are currently running,
you can the Test-Connection cmdlet prior to attempting to connect to a remote computer. If you
would like to limit the choice to a specific subset of computers or properties, you can parse a text file
and use the -contains operator. In this section, you will examine each of these techniques for limiting
the permissible input values from the command line.

Using PromptForChoice to limit selections
For example, if you use the PromptForChoice method of soliciting input from the user, your user has
a limited number of options from which to choose. You eliminate the problem of bad input because
the user only has specific options available to supply to your script. The user prompt from the
PromptForChoice method is shown in Figure 19-1.

FIGURE 19-1 The PromptForChoice method presents a selectable menu to the user.

 CHAPTER 19 Handling Errors 505

The use of the PromptForChoice method appears in the Get-ChoiceFunction.ps1 script, which fol-
lows. In the Get-Choice function, the $caption variable and the $message variable hold the caption
and the message that is used by the PromptForChoice method. The choices are an array of instances
of the ChoiceDescription .NET Framework class. When you create the ChoiceDescription class, you also
supply an array with the choices that will appear. This is shown here:

$choices = [System.Management.Automation.Host.ChoiceDescription[]] `
 @("&loopback", "local&host", "&127.0.0.1")

You next need to select a number that will be used to represent which choice will be the default
choice. When you begin counting, keep in mind that ChoiceDescription is an array, and the first option
is numbered 0. Next, you call the PromptForChoice method and display the options. This is shown
here:

[int]$defaultChoice = 0
$choiceRTN = $host.ui.PromptForChoice($caption,$message, $choices,$defaultChoice)

Because the PromptForChoice method returns an integer, you could use the if statement to evalu-
ate the value of the $choiceRTN variable. The syntax of the switch statement is more compact and
is actually a better choice for this application. The switch statement from the Get-Choice function is
shown here:

switch($choiceRTN)
 {
 0 { "loopback" }
 1 { "localhost" }
 2 { "127.0.0.1" }
 }

When you call the Get-Choice function, it returns the computer that was identified by the
PromptForChoice method. You place the method call in a set of parentheses to force it to be evalu-
ated before the rest of the command. This is shown here:

Get-WmiObject -class win32_bios -computername (Get-Choice)

This solution to the problem of bad input works well when you have help desk personnel who will
be working with a limited number of computers. One caveat to this approach is that you do not want
to have to change the choices on a regular basis, so you would want a stable list of computers to
avoid creating a maintenance nightmare for yourself. The complete Get-ChoiceFunction.ps1 script is
shown here:

Get-ChoiceFunction.ps1

Function Get-Choice
{
 $caption = "Please select the computer to query"
 $message = "Select computer to query"
 $choices = [System.Management.Automation.Host.ChoiceDescription[]] `
 @("&loopback", "local&host", "&127.0.0.1")
 [int]$defaultChoice = 0
 $choiceRTN = $host.ui.PromptForChoice($caption,$message, $choices,$defaultChoice)

506 Windows PowerShell 3 Step by Step

 switch($choiceRTN)
 {
 0 { "loopback" }
 1 { "localhost" }
 2 { "127.0.0.1" }
 }
} #end Get-Choice function

Get-WmiObject -class win32_bios -computername (Get-Choice)

Using Test-Connection to identify computer connectivity
If you have more than a few computers that need to be accessible, or if you do not have a stable list
of computers that you will be working with, then one solution to the problem of trying to connect to
nonexistent computers is to ping a computer prior to attempting to make the WMI connection.

You can use the Win32_PingStatus WMI class to send a ping to a computer. This establishes com-
puter connectivity, and it also verifies that name resolution works properly. The best way to use the
Win32_PingStatus WMI class is to use the Test-Connection cmdlet because it wraps the WMI class
into an easy-to-use package. An example of using the Test-Connection cmdlet with default values
appears here:

PS C:\> Test-Connection -ComputerName dc1

Source Destination IPV4Address IPV6Address
------ ----------- ----------- -----------
W8CLIENT6 dc1 192.168.0.101
W8CLIENT6 dc1 192.168.0.101
W8CLIENT6 dc1 192.168.0.101
W8CLIENT6 dc1 192.168.0.101

If you are only interested in whether the target computer is up or not, use the -quiet parameter.
The -quiet parameter returns a Boolean value (true if the computer is up; false if the computer is
down). This appears here:

PS C:\> Test-Connection -ComputerName dc1 -Quiet
True

When you use the Test-Connection cmdlet, it has a tendency to be slower than the traditional ping
utility. It has a lot more capabilities, and even returns an object, but it is slower. A few seconds can
make a huge difference when attempting run a single script to manage thousands of computers. To
increase performance in these types of fan-out scenarios, use the -count parameter to reduce the
default number of pings from four to one. In addition, reduce the default buffer size from 32 to 16.

Because Test-Connection -quiet returns a Boolean value, there is no need to evaluate a number of
possible return values. In fact, the logic is simple: either the command returns a value or it does not.
If it does return, add the action to take in the if statement. If it does not return, add the action to take
in the else statement. If you do not wish to log failed connections, on the other hand, you would only
have the action in the if statement with which to contend. The Test-ComputerPath.ps1 script illustrates

 CHAPTER 19 Handling Errors 507

using the Test-Connection cmdlet to determine if a computer is up prior to attempting a remote con-
nection. The complete Test-ComputerPath.ps1 script appears here:

test-ComputerPath.ps1

Param([string]$computer = $env:COMPUTERNAME)
if(Test-Connection -computer $computer -BufferSize 16 -Count 1 -Quiet)
 { Get-WmiObject -class Win32_Bios -computer $computer }
Else
 { "Unable to reach $computer computer"}

Using the -contains operator to examine contents of an array
To verify input that is received from the command line, you can use the -contains operator to examine
the contents of an array of possible values. This technique is illustrated here, where an array of three
values is created and stored in the variable $noun. The -contains operator is then used to see if the
array contains hairy-nosed wombat. Because the $noun variable does not have an array element that
is equal to the string hairy-nosed wombat, the -contains operator returns false.

PS C:\> $noun = "cat","dog","rabbit"
PS C:\> $noun -contains "hairy-nosed wombat"
False
PS C:\>

If an array contains a match, the -contains operator returns true. This is shown here:

PS C:\> $noun = "cat","dog","rabbit"
PS C:\> $noun -contains "rabbit"
True
PS C:\>

The -contains operator returns true only when there is an exact match. Partial matches return false.
This is shown here:

PS C:\> $noun = "cat","dog","rabbit"
PS C:\> $noun -contains "bit"
False
PS C:\>

The -contains operator is a case insensitive operator. (But there is also the -icontains operator,
which is case insensitive, as well as–ccontains, which is case sensitive). Therefore, it will return true
when matched, regardless of case. This is shown here:

PS C:\> $noun = "cat","dog","rabbit"
PS C:\> $noun -contains "Rabbit"
True
PS C:\>

If you need to perform a case-sensitive match, you can use the case-sensitive version of the
-contains operator, -ccontains. As shown here, it will return true only if the case of the string matches
the value contained in the array.

508 Windows PowerShell 3 Step by Step

PS C:\> $noun = "cat","dog","rabbit"
PS C:\> $noun -ccontains "Rabbit"
False
PS C:\> $noun -ccontains "rabbit"
True
PS C:\>

In the Get-AllowedComputers.ps1 script, which follows, a single command-line parameter is
created that is used to hold the name of the target computer for the WMI query. The computer
parameter is a string, and it receives the default value from the environment drive. This is a good
technique because it ensures that the script will have the name of the local computer, which could
then be used in producing a report of the results. If you set the value of the computer parameter to
localhost, you never know what computer the results belong to. This is shown here:

Param([string]$computer = $env:computername)

The Get-AllowedComputer function is used to create an array of permitted computer names and to
check the value of the $computer variable to see if it is present. If the value of the $computer variable
is present in the array, the Get-AllowedComputer function returns true. If the value is missing from the
array, the Get-AllowedComputer function returns false. The array of computer names is created by the
use of the Get-Content cmdlet to read a text file that contains a listing of computer names. The text
file, servers.txt, is a plain ASCII text file that has a list of computer names on individual lines, as shown
in Figure 19-2.

FIGURE 19-2 Using a text file with computer names and addresses is an easy way to work with allowed
computers.

A text file of computer names is easier to maintain than a hard-coded array that is embedded into
the script. In addition, the text file can be placed on a central share and can be used by many differ-
ent scripts. The Get-AllowedComputer function is shown here:

Function Get-AllowedComputer([string]$computer)
{
 $servers = Get-Content -path c:\fso\servers.txt
 $servers -contains $computer
} #end Get-AllowedComputer function

 CHAPTER 19 Handling Errors 509

Because the Get-AllowedComputer function returns a Boolean value (true or false), it can be
used directly in an if statement to determine whether the value that is supplied for the $computer
variable is on the list of permitted computers. If the Get-AllowedComputer function returns true,
the Get-WMIObject cmdlet is used to query for BIOS information from the target computer. This is
shown here:

if(Get-AllowedComputer -computer $computer)
 {
 Get-WmiObject -class Win32_Bios -Computer $computer
 }

On the other hand, if the value of the $computer variable is not found in the $servers array, a string
that states that the computer is not an allowed computer is displayed. This is shown here:

Else
 {
 "$computer is not an allowed computer"
 }

The complete Get-AllowedComputer.ps1 script is shown here:

Get-allowedComputer.ps1

Param([string]$computer = $env:computername)

Function Get-AllowedComputer([string]$computer)
{
 $servers = Get-Content -path c:\fso\servers.txt
 $servers -contains $computer
} #end Get-AllowedComputer function

*** Entry point to Script ***

if(Get-AllowedComputer -computer $computer)
 {
 Get-WmiObject -class Win32_Bios -Computer $computer
 }
Else
 {
 "$computer is not an allowed computer"
 }

Using the -contains operator to test for properties
You are not limited to only testing for specified computer names in the Get-AllowedComputer func-
tion. All you need to do is add additional information to the text file in order to check for WMI prop-
erty names or other information. This is shown in Figure 19-3.

510 Windows PowerShell 3 Step by Step

FIGURE 19-3 A text file with server names and properties adds flexibility to the script.

You only need to make a couple of modifications to the Get-AllowedComputer.ps1 script to turn it
into the Get-AllowedComputerAndProperty.ps1 script. The first is to add an additional command-line
parameter to allow the user to choose which property to display. This is shown here:

Param([string]$computer = $env:computername,[string]$property="name")

Next, you change the signature to the Get-AllowedComputer function to permit passing of the
property name. Instead of directly returning the results of the -contains operator, you store the
returned values in variables. The Get-AllowedComputer function first checks to see if the $servers
array contains the computer name. It then checks to see if the $servers array contains the property
name. Each of the resulting values is stored in variables. The two variables are then anded, and the
result is returned to the calling code. When two Boolean values are anded, only the $true -and $true
case is equal to true; all other combinations return false. This is shown here:

PS C:\> $true -and $false
False
PS C:\> $true -and $true
True
PS C:\> $false -and $false
False
PS C:\>

The revised Get-AllowedComputer function is shown here:

Function Get-AllowedComputer([string]$computer, [string]$property)
{
 $servers = Get-Content -path c:\fso\serversAndProperties.txt
 $s = $servers -contains $computer
 $p = $servers -contains $property
 Return $s -and $p
} #end Get-AllowedComputer function

 CHAPTER 19 Handling Errors 511

The if statement is used to determine if both the computer value and the property value are on
the list of allowed servers and properties. If the Get-AllowedComputer function returns true, the
Get-WMIObject cmdlet is used to display the chosen property value from the selected computer. This
is shown here:

if(Get-AllowedComputer -computer $computer -property $property)
 {
 Get-WmiObject -class Win32_Bios -Computer $computer |
 Select-Object -property $property
 }

If the computer value and the property value are not on the list, the Get-AllowedComputerAnd
Property.ps1 script displays a message stating that there is a nonpermitted value. This is shown here:

Else
 {
 "Either $computer is not an allowed computer, `r`nor $property is not an allowed property"
 }

The complete Get-AllowedComputerAndProperty.ps1 script is shown here:

Get-allowedComputerandProperty.ps1

Param([string]$computer = $env:computername,[string]$property="name")

Function Get-AllowedComputer([string]$computer, [string]$property)
{
 $servers = Get-Content -path c:\fso\serversAndProperties.txt
 $s = $servers -contains $computer
 $p = $servers -contains $property
 Return $s -and $p
} #end Get-AllowedComputer function

*** Entry point to Script ***

if(Get-AllowedComputer -computer $computer -property $property)
 {
 Get-WmiObject -class Win32_Bios -Computer $computer |
 Select-Object -property $property
 }
Else
 {
 "Either $computer is not an allowed computer, `r`nor $property is not an allowed property"
 }

512 Windows PowerShell 3 Step by Step

Quick check
Q. What is an easy way to handle a missing -computername parameter?

a. Assign $env:ComputerName as the default value.

Q. What is a good way to ensure a script does not run with missing parameters?

a. Make the parameters required parameters by using the [Parameter(Mandatory=$true)]
parameter attribute.

Q. What is a good way to limit potential choices for a parameter value?

a. Use the PromptForChoice method.

Handling missing rights

Another source of potential errors in a script is missing rights. When a script requires elevated per-
missions to work correctly and those rights or permissions do not exist, an error results. Windows 8
makes handling much easier to run and allows the user to work without requiring constant access
to administrative rights. As a result, more and more users and even network administrators are no
longer running their computers with a user account that is a member of the local administrators
group. The User Account Control (UAC) feature makes it easy to provide elevated rights for interactive
programs, but Windows PowerShell 3.0 and other scripting languages are not UAC aware, and do
not therefore prompt when elevated rights are required to perform a specific activity. It is therefore
incumbent upon the script writer to take rights into account when writing scripts. The Get-Bios.ps1
script (shown earlier in the chapter), however, does not use a WMI class that requires elevated rights.
As the script is currently written, anyone who is a member of the local users group—and that includes
everyone who is logged on interactively—has permission to run the Get-Bios.ps1 script. So, test-
ing for rights and permissions prior to making an attempt to obtain information from the WMI class
Win32_Bios is not required.

attempt and fail
One way to handle missing rights is to attempt the action, and then fail. This will generate an error.
Windows PowerShell has two types of errors: terminating and nonterminating. Terminating errors,
as the name implies, will stop a script dead in its tracks. Nonterminating errors will be output to the
screen, and the script will continue. Terminating errors are generally more serious than nontermi-
nating errors. Normally, you get a terminating error when you try to use .NET or COM from within
PowerShell and you try to use a command that doesn’t exist, or when you do not provide all of the
required parameters to a command, method, or cmdlet. A good script will handle the errors it expects

 CHAPTER 19 Handling Errors 513

and will report unexpected errors to the user. Since any good scripting language has to provide
decent error handling, PowerShell has a few ways to approach the problem. The old way is to use
the trap statement, which can sometimes be problematic. The new way (for PowerShell) is to use
Try...Catch...Finally.

Checking for rights and exiting gracefully
The best way to handle insufficient rights is to check for the rights and then exit gracefully. What are
some of the things that could go wrong with a simple script, such as the Get-Bios.ps1 script examined
earlier in the chapter? The Get-Bios.ps1 script will fail, for example, if the Windows PowerShell script
execution policy is set to restricted. When the script execution policy is set to restricted, Windows
PowerShell scripts will not run. The problem with a restricted execution policy is that because
Windows PowerShell scripts do not run, you cannot write code to detect the restricted script execu-
tion policy. Because the script execution policy is stored in the registry, you could write a VBScript
script that would query and set the policy prior to launching the Windows PowerShell script, but
that would not be the best way to manage the problem. The best way to manage the script execu-
tion policy is to use group policy to set it to the appropriate level for your network. On a stand-alone
computer, you can set the execution policy by opening Windows PowerShell as an administrator and
using the Set-ExecutionPolicy cmdlet. In most cases, the remotesigned setting is appropriate. The com-
mand would therefore be the one shown here:

PS C:\> Set-ExecutionPolicy remotesigned
PS C:\>

The script execution policy is generally dealt with once, and there are no more problems associ-
ated with it. In addition, the error message that is associated with the script execution policy is rela-
tively clear in that it will tell you that script execution is disabled on the system. It also refers you to a
help article that explains the various settings. This is shown here:

File C:\Documents and Settings\ed\Local Settings\Temp\tmp2A7.tmp.ps1 cannot be
loaded because the execution of scripts is disabled on this system. Please see
"get-help about_signing" for more details.
At line:1 char:66
+ C:\Documents` and` Settings\ed\Local` Settings\Temp\tmp2A7.tmp.ps1 <<<<

Handling missing WMI providers

About the only thing that could actually go wrong with the original Get-Bios.ps1 script introduced
at the beginning of this chapter is related to WMI itself. If the WMI provider that supplies the
Win32_Bios WMI class information is corrupted or missing, the script will not work. To check for the
existence of the appropriate WMI provider, you will need to know the name of the provider for the
WMI class. You can use the WMI Tester (WbemTest), which is included as part of the WMI installa-
tion. If a computer has WMI installed on it, it has WbemTest. Because WbemTest resides in the system

514 Windows PowerShell 3 Step by Step

folders, you can launch it directly from within the Windows PowerShell console by typing the name of
the executable. This is shown here:

PS C:\> wbemtest
PS C:\>

Once WbemTest appears, the first thing you will need to do is connect to the appropriate
WMI namespace. To do this, you click the Connect button. In most cases, this namespace will be
Root\Cimv2. On Windows Vista and above, Root\Cimv2 is the default WMI namespace for WbemTest.
On earlier versions of Windows, the default WbemTest namespace is Root\Default. Change or accept
the namespace as appropriate, and click Connect. The display changes to a series of buttons, many
of which appear to have cryptic names and functionality. To obtain information about the provider
for a WMI class, you will need to open the class. Click the Open Class button and type in the name
of the WMI class in the dialog box that appears. You are looking for the provider name for the
Win32_Bios WMI class, so that is the name that is entered here. Click the OK button once you have
entered the class name. The Object Editor for the Win32_Bios WMI class now appears. This is shown
in Figure 19-4. The first box in the Object Editor lists the qualifiers; provider is one of the qualifiers.
WbemTest tells you that the provider for Win32_Bios is CIMWin32.

FIGURE 19-4 The WMI Tester displays WMI class provider information.

Armed with the name of the WMI provider, you can use the Get-WMIObject cmdlet to deter-
mine if the provider is installed on the computer. To do this, you will query for instances of the
__provider WMI class. All WMI classes that begin with a double underscore are system classes.
The __provider WMI class is the class from which all WMI providers are derived. By limiting the query

 CHAPTER 19 Handling Errors 515

to providers with the name of CIMWin32, you can determine if the provider is installed on the system.
This is shown here:

PS C:\> Get-WmiObject -Class __Provider -Filter "name = 'cimwin32'"

__GENUS : 2
__CLASS : __Win32Provider
__SUPERCLASS : __Provider
__DYNASTY : __SystemClass
__RELPATH : __Win32Provider.Name="CIMWin32"
__PROPERTY_COUNT : 24
__DERIVATION : {__Provider, __SystemClass}
__SERVER : W8CLIENT6
__NAMESPACE : ROOT\cimv2
__PATH : \\W8CLIENT6\ROOT\cimv2:__Win32Provider.Name="CIMWin32"
ClientLoadableCLSID :
CLSID : {d63a5850-8f16-11cf-9f47-00aa00bf345c}
Concurrency :
DefaultMachineName :
Enabled :
HostingModel : NetworkServiceHost
ImpersonationLevel : 1
InitializationReentrancy : 0
InitializationTimeoutInterval :
InitializeAsAdminFirst :
Name : CIMWin32
OperationTimeoutInterval :
PerLocaleInitialization : False
PerUserInitialization : False
Pure : True
SecurityDescriptor :
SupportsExplicitShutdown :
SupportsExtendedStatus :
SupportsQuotas :
SupportsSendStatus :
SupportsShutdown :
SupportsThrottling :
UnloadTimeout :
Version :
PSComputerName : W8CLIENT6

For the purposes of determining if the provider exists, you do not need all the information to be
returned to the script. It is easier to treat the query as if it returned a Boolean value by using the If
statement. If the provider exists, then you will perform the query. This is shown here:

If(Get-WmiObject -Class __provider -filter "name = 'cimwin32'")
 {
 Get-WmiObject -class Win32_bios
 }

516 Windows PowerShell 3 Step by Step

If the CIMWin32WMI provider does not exist, then you display a message that states the provider
is missing. This is shown here:

Else
 {
 "Unable to query Win32_Bios because the provider is missing"
 }

The completed CheckProviderThenQuery.ps1 script is shown here:

CheckProviderthenQuery.ps1

If(Get-WmiObject -Class __provider -filter "name = 'cimwin32'")
 {
 Get-WmiObject -class Win32_bios
 }
Else
 {
 "Unable to query Win32_Bios because the provider is missing"
 }

A better approach for finding out if a WMI class is available is to check for the existence of the
provider. In the case of the WIN32_product WMI class, the MSIPROV WMI provider supplies that class.
In this section, you create a function, the Get-WmiProvider function, which can be used to detect the
presence of any WMI provider that is installed on the system.

The Get-WmiProvider function contains two parameters. The first parameter is the name of the
provider, and the second one is a switched parameter named -verbose. When the Get-WmiProvider
function is called with the -verbose switched parameter, detailed status information is displayed to
the console. The -verbose information provides the user of the script information that could be useful
from a troubleshooting perspective.

Function Get-WmiProvider([string]$providerName, [switch]$verbose)

After the function has been declared, the current value of the $VerbosePreference is stored.
This is because it could be set to one of four potential values. The possible enumeration values are
SilentlyContinue, Stop, Continue, and Inquire. By default, the value of the $VerbosePreference auto-
matic variable is set to SilentlyContinue.

When the function finishes running, you will want to set the value of the $VerbosePreference vari-
able back to its original value. To enable reverting to the original value of the $VerbosePreference
variable, store the original value in the $oldVerbosePreference variable.

It is time to determine if the function was called with the -verbose switch. If the function was
called with the -verbose switch, a variable named $verbose will be present on the variable drive. If the
$verbose variable exists, the value of the $VerbosePreference automatic variable is set to Continue.

{
 $oldVerbosePreference = $VerbosePreference
 if($verbose) { $VerbosePreference = "continue" }

 CHAPTER 19 Handling Errors 517

Next, you need to look for the WMI provider. To do this, you use the Get-WMIObject cmdlet to
query for all instances of the __provider WMI system class. As mentioned previously, all WMI classes
that begin with a double underscore are system classes. In most cases, they are not of much interest
to IT professionals; however, familiarity with them can often provide powerful tools to the scripter
who takes the time to examine them. All WMI providers are derived from the __provider WMI class.
This is similar to the way that all WMI namespaces are derived from the __namespace WMI class. The
properties of the __provider class are shown in Table 19-1.

TABLE 19-1 Properties of the __Provider WMI class

Property name Property type

ClientLoadableCLSID System.String

CLSID System.String

Concurrency System.Int32

DefaultMachineName System.String

Enabled System.Boolean

HostingModel System.String

ImpersonationLevel System.Int32

InitializationReentrancy System.Int32

InitializationTimeoutInterval System.String

InitializeAsAdminFirst System.Boolean

Name System.String

OperationTimeoutInterval System.String

PerLocaleInitialization System.Boolean

PerUserInitialization System.Boolean

Pure System.Boolean

SecurityDescriptor System.String

SupportsExplicitShutdown System.Boolean

SupportsExtendedStatus System.Boolean

SupportsQuotas System.Boolean

SupportsSendStatus System.Boolean

SupportsShutdown System.Boolean

SupportsThrottling System.Boolean

UnloadTimeout System.String

Version System.UInt32

__CLASS System.String

__DERIVATION System.String[]

__DYNASTY System.String

__GENUS System.Int32

__NAMESPACE System.String

__PATH System.String

518 Windows PowerShell 3 Step by Step

Property name Property type

__PROPERTY_COUNT System.Int32

__RELPATH System.String

__SERVER System.String

__SUPERCLASS System.String

The -filter parameter of the Get-WMIObject cmdlet is used to return the provider that is specified
in the $providername variable. If you do not know the name of the appropriate WMI provider, you will
need to search for it by using the WMI Tester. You can start this program by typing the name of the
executable inside your Windows PowerShell console. This is shown here:

PS C:\> wbemtest
PS C:\>

Once the WMI Tester appears, open the WIN32_Product WMI class. The Object Editor for the
Win32_Product WMI class appears in Figure 19-5. The first box of the Object Editor lists the qualifiers;
provider is one of the qualifiers. WbemTest tells you that the provider for WIN32_Product is MSIProv.

FIGURE 19-5 The Object Editor for WIN32_Product displays qualifiers and methods.

You assign the name of the WMI provider to the $providername variable, as shown here:

$providerName = "MSIProv"

The resulting object is stored in the $provider variable. This is shown here:

$provider = Get-WmiObject -Class __provider -filter "name = '$providerName'"

If the provider was not found, there will be no value in the $provider variable. You can therefore
see if the $provider variable is null. If the $provider variable is not equal to null, then the class ID

 CHAPTER 19 Handling Errors 519

of the provider is retrieved. The class ID of the WMI provider is stored in the clsID property. This is
shown here:

If($provider -ne $null)
 {
 $clsID = $provider.clsID

If the function was run with the -verbose parameter, then the $VerbosePreference variable is set to
Continue. When the value of $VerbosePreference is equal to Continue, the Write-Verbose cmdlet will
display information to the console. If, on the other hand, the value of the $VerbosePreference variable
is equal to SilentlyContinue, the Write-Verbose cmdlet does not emit anything. This makes it easy to
implement tracing features in a function without needing to create extensive test conditions. When
the function is called with the -verbose parameter, the class ID of the provider is displayed. This is
shown here:

 Write-Verbose "$providerName WMI provider found. ClsID is $($clsID)"
 }

If the WMI provider is not found, the function returns false to the calling code. This is shown here:

 Else
 {
 Return $false
 }

The next thing the function does is check the registry to ensure the WMI provider has been prop-
erly registered with DCOM. Once again, the Write-Verbose cmdlet is used to provide feedback on the
status of the provider check. This is shown here:

 Write-Verbose "Checking for proper registry registration ..."

To search the registry for the WMI provider registration, you use the Windows PowerShell registry
provider. By default, there is no PowerShell drive for the HKEY_CLASSES_ROOT registry hive. However,
you cannot take it for granted that one would not have created such a drive in their Windows
PowerShell profile. To avoid a potential error that might arise when creating a PowerShell drive for
the HKEY_CLASSES_ROOT hive, you use the Test-Path cmdlet to check whether an HKCR drive exists.
If the HKCR drive does exist, it will be used, and the Write-Verbose cmdlet will be used to print out a
status message that states the HKCR drive was found and the search is commencing for the class ID of
the WMI provider. This is shown here:

 If(Test-Path -path HKCR:)
 {
 Write-Verbose "HKCR: drive found. Testing for $clsID"

To detect if the WMI provider is registered with DCOM, you only need to see if the class ID of the
WMI provider is present in the CLSID section of HKEY_CLASSES_ROOT. The best way to check for the
presence of the registry key is to use the Test-Path cmdlet. This is shown here:

520 Windows PowerShell 3 Step by Step

 Test-path -path (Join-Path -path HKCR:\CLSID -childpath $clsID)
 }

On the other hand, if there is no HKCR drive on the computer, you can go ahead and cre-
ate one. You can search for the existence of a drive that is rooted in HKEY_CLASSES_ROOT, and if
you find it, you can then use the PS drive in your query. To find if there are any PS drives rooted in
HKEY_CLASSES_ROOT, you can use the Get-PSDrive cmdlet, as shown here:

Get-PSDrive | Where-Object { $_.root -match "classes" } |
Select-Object name

This, however, may be more trouble than it is worth. There is nothing wrong with having multiple
PS drives mapped to the same resource. Therefore, if there is no HKCR drive, the Write-Verbose cmdlet
is used to print a message that the drive does not exist and will be created. This is shown here:

 Else
 {
 Write-Verbose "HKCR: drive not found. Creating same."

To create a new Windows PowerShell drive, you use the New-PSDrive cmdlet to specify the name
for the PS drive and the root location of the drive. Because this is going to be a registry drive, you
will use the registry provider. When a PS drive is created, it displays feedback back to the Windows
PowerShell console. This feedback is shown here:

PS C:\AutoDoc> New-PSDrive -Name HKCR -PSProvider registry -Root Hkey_Classes_Root

Name Provider Root CurrentLocation
---- -------- ---- ---------------
HKCR Registry Hkey_Classes_Root

The feedback from creating the registry drive can be distracting. To get rid of the feedback, you
can pipeline the results to the Out-Null cmdlet. This is shown here:

 New-PSDrive -Name HKCR -PSProvider registry -Root Hkey_Classes_Root | Out-Null

Once the Windows PowerShell registry drive has been created, it is time to look for the existence
of the WMI provider class ID. Before that is done, the Write-Verbose cmdlet is used to provide feed-
back about this step of the operation. This is shown here:

 Write-Verbose "Testing for $clsID"

The Test-Path cmdlet is used to check for the existence of the WMI provider class ID. To build
the path to the registry key, you use Join-Path cmdlet. The parent path is the HKCR registry drive
CLSID hive, and the child path is the WMI provider class ID that is stored in the $clsID variable. This
is shown here:

 Test-path -path (Join-Path -path HKCR:\CLSID -childpath $clsID)

 CHAPTER 19 Handling Errors 521

Once the Test-Path cmdlet has been used to check for the existence of the WMI provider class
ID, the Write-Verbose cmdlet is used to display a message stating that the test is complete. This is
shown here:

 Write-Verbose "Test complete."

It is a best practice to avoid making permanent modifications to the Windows PowerShell
environment in a script. Therefore, you will want to remove the Windows PowerShell drive if it was
created in the script. The Write-Verbose cmdlet is employed to provide a status update, and the
Remove-PSDrive cmdlet is used to remove the HKCR registry drive. To avoid cluttering the Windows
PowerShell console, you pipeline the result of removing the HKCR registry drive to the Out-Null
cmdlet. This is shown here:

 Write-Verbose "Removing HKCR: drive."
 Remove-PSDrive -Name HKCR | Out-Null
 }

Finally, you need to set $VerbosePreference back to the value that was stored in
$oldVerbosePreference. This line of code is executed even if no change to $VerbosePreference is made.
This is shown here:

 $VerbosePreference = $oldVerbosePreference
} #end Get-WmiProvider function

The entry point to the script assigns a value to the $providername variable. This is shown here:

$providername = "msiprov"

The Get-WmiProvider function is called, and it passes both the WMI provider name that is stored
in the $providername variable and the -verbose switched parameter. The if statement is used because
Get-WmiProvider returns a Boolean value: true or false. This is shown here:

if(Get-WmiProvider -providerName $providerName -verbose)

If the Get-WmiProvider function returns true, the WMI class supported by the WMI provider is
queried via the Get-WMIObject cmdlet. This is shown here:

 {

 Get-WmiObject -class win32_product

 }

If the WMI provider is not found, a message stating this is displayed to the console. This is shown
here:

else
 {

522 Windows PowerShell 3 Step by Step

 "$providerName provider not found"
 }

The complete Get-WmiProviderFunction.ps1 script is shown here:

Get-WmiProviderFunction.ps1

Function Get-WmiProvider([string]$providerName, [switch]$verbose)
{
 $oldVerbosePreference = $VerbosePreference
 if($verbose) { $VerbosePreference = "continue" }
 $provider = Get-WmiObject -Class __provider -filter "name = '$providerName'"
 If($provider -ne $null)
 {
 $clsID = $provider.clsID
 Write-Verbose "$providerName WMI provider found. ClsID is $($clsID)"
 }
 Else
 {
 Return $false
 }
 Write-Verbose "Checking for proper registry registration ..."
 If(Test-Path -path HKCR:)
 {
 Write-Verbose "HKCR: drive found. Testing for $clsID"
 Test-path -path (Join-Path -path HKCR:\CLSID -childpath $clsID)
 }
 Else
 {
 Write-Verbose "HKCR: drive not found. Creating same."
 New-PSDrive -Name HKCR -PSProvider registry -Root Hkey_Classes_Root | Out-Null
 Write-Verbose "Testing for $clsID"
 Test-path -path (Join-Path -path HKCR:\CLSID -childpath $clsID)
 Write-Verbose "Test complete."
 Write-Verbose "Removing HKCR: drive."
 Remove-PSDrive -Name HKCR | Out-Null
 }
 $VerbosePreference = $oldVerbosePreference
} #end Get-WmiProvider function

*** Entry Point to Script ***
$providerName = "msiprov"
 if(Get-WmiProvider -providerName $providerName -verbose)
 {
 Get-WmiObject -class win32_product
 }
else
 {
 "$providerName provider not found"
 }

 CHAPTER 19 Handling Errors 523

Incorrect data types

There are two approaches to ensuring that your users only enter allowed values for the script
parameters. The first is to offer only a limited number of values. The second approach allows the
user to enter any value for the parameter. It is then determined if the value is valid before it is
passed along to the remainder of the script. In the Get-ValidWmiClassFunction.ps1 script, which
follows, a function named Get-ValidWmiClass is used to determine if the value that is supplied to
the script is a legitimate WMI class name. In particular, the Get-ValidWmiClass function is used to
determine if the string that is passed via the -class parameter can be cast to a valid instance of the
System.Management.ManagementClass .NET Framework class. The purpose of using the [wmiclass]
type accelerator is to convert a string to an instance of the System.Management.ManagementClass
class. As shown here, when you assign a string value to a variable, the variable becomes an instance of
the System.String class. The GetType method is used to get the type of a variable. An array variable is
an array, yet it can contain integers and other data types. This is a very important concept.

PS C:\> $class = "win32_bio"
PS C:\> $class.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True String System.Object

To convert the string to a WMI class, you can use the [wmiclass] type accelerator. The string value
must contain the name of a legitimate WMI class. If the WMI class you are trying to create on the
computer does not exist, an error is displayed. This is shown here:

PS C:\> $class = "win32_bio"
PS C:\> [wmiclass]$class
Cannot convert value "win32_bio" to type "System.Management.ManagementClass".
Error: "Not found "
At line:1 char:16
+ [wmiclass]$class <<<<

The Get-ValidWmiClassFunction.ps1 script begins by creating two command-line parameters. The
first is the computer parameter, which is used to allow the script to run on a local or remote com-
puter. The second parameter is the -class parameter, and is used to provide the name of the WMI
class that will be queried by the script. A third parameter is used to allow the script to inspect other
WMI namespaces. All three parameters are strings. Because the third parameter has a default value
assigned, it can be left out when working with the default WMI namespace. This is shown here:

Param (
 [string]$computer = $env:computername,
 [string]$class,
 [string]$namespace = "root\cimv2"
) #end param

The Get-ValidWmiClass function is used to determine if the value supplied for the -class param-
eter is a valid WMI class on the particular computer. This is important because certain versions of the

524 Windows PowerShell 3 Step by Step

operating system contain unique WMI classes. For example, Windows XP contains a WMI class named
netdiagnostics that does not exist on any other version of Windows. Windows XP does not contain the
WMI class Win32_Volume, but Windows Server 2003 and above do. So, checking for the existence of
a WMI class on a remote computer is a good practice to ensure that the script will run in an expedi-
tious manner.

The first thing the Get-ValidWMiClass function does is retrieve the current value for the
$ErrorActionPreference variable. There are four possible values for this variable. The possible enumera-
tion values are SilentlyContinue, Stop, Continue, and Inquire. The error-handling behavior of Windows
PowerShell is governed by these enumeration values. If the value of $ErrorActionPreference is set
to SilentlyContinue, any error that occurs will be skipped, and the script will attempt to execute the
next line of code in the script. The behavior is similar to using the VBScript setting On Error Resume
Next. Normally, you do not want to use this setting because it can make troubleshooting scripts
very difficult. It can also make the behavior of a script unpredictable and even lead to devastat-
ing consequences. Consider the case in which you write a script that first creates a new directory
on a remote server. Next, it copies all of the files from a directory on your local computer to the
remote server. Last, it deletes the directory and all the files from the local computer. Now you enable
$ErrorActionPreference = "SilentlyContinue" and run the script. The first command fails because the
remote server is not available. The second command fails because it could not copy the files—but the
third command completes successfully, and you have just deleted all the files you wished to back up,
instead of actually backing up the files. Hopefully, in such a case, you have a recent backup of your
critical data. If you set $ErrorActionPreference to SilentlyContinue, you must handle errors that arise
during the course of running the script.

In the Get_ValidWmiClass function, the old $ErrorActionPreference setting is retrieved and
stored in the $oldErrorActionPreference variable. Next, the $ErrorActionPreference variable is set to
SilentlyContinue. This is done because it is entirely possible that in the process of checking for a valid
WMI class name, errors will be generated. Next, the error stack is cleared of errors. Here are the three
lines of code that do this:

$oldErrorActionPreference = $errorActionPreference
$errorActionPreference = "silentlyContinue"
$Error.Clear()

The value stored in the $class variable is used with the [wmiclass] type accelerator to attempt to
create a System.Management.ManagementClass object from the string. Because you will need to run
this script on a remote computer as well as a local computer, the value in the $computer variable is
used to provide a complete path to the potential management object. When the variables to make
the path to the WMI class are concatenated, a trailing colon causes problems with the $namespace
variable. To work around this, you use a subexpression to force evaluation of the variable before
attempting to concatenate the remainder of the string. The subexpression consists of a leading dollar
sign and a pair of parentheses. This is shown here:

[wmiclass]"\\$computer\$($namespace):$class" | out-null

 CHAPTER 19 Handling Errors 525

To determine if the conversion from string to ManagementClass was successful, you check the
error record. Because the error record was cleared earlier, any error indicates that the command
failed. If an error exists, the Get-ValidWmiClass function returns $false to the calling code. If no error
exists, the Get-ValidWmiClass function returns true. This is shown here:

If($error.count) { Return $false } Else { Return $true }

The last thing to do in the Get-ValidWmiClass function is to clean up. First, the error record is
cleared, and then the value of the $ErrorActionPreference variable is set back to the original value. This
is shown here:

$Error.Clear()
$ErrorActionPreference = $oldErrorActionPreference

The next function in the Get-ValidWmiClassFunction.ps1 script is the Get-WmiInformation function.
This function accepts the values from the $computer, $class, and $namespace variables, and passes
them to the Get-WMIObject cmdlet. The resulting ManagementObject is pipelined to the Format-List
cmdlet, and all properties that begin with the letters a through z are displayed. This is shown here:

Function Get-WmiInformation ([string]$computer, [string]$class, [string]$namespace)
{
 Get-WmiObject -class $class -computername $computer -namespace $namespace|
 Format-List -property [a-z]*
} # end Get-WmiInformation function

The entry point to the script calls the Get-ValidWmiClass function, and if it returns true, it next calls
the Get-WmiInformation function. If, on the other hand, the Get-ValidWmiClass function returns false,
a message is displayed that details the class name, namespace, and computer name. This information
could be used for troubleshooting problems with obtaining the WMI information. This is shown here:

If(Get-ValidWmiClass -computer $computer -class $class -namespace $namespace)
 {
 Get-WmiInformation -computer $computer -class $class -namespace $namespace
 }
Else
 {
 "$class is not a valid wmi class in the $namespace namespace on $computer"
 }

The complete Get-ValidWmiClassFunction.ps1 script is shown here:

Get-ValidWmiClassFunction.ps1

Param (
 [string]$computer = $env:computername,
 [Parameter(Mandatory=$true)]
 [string]$class,
 [string]$namespace = "root\cimv2"
) #end param

526 Windows PowerShell 3 Step by Step

Function Get-ValidWmiClass([string]$computer, [string]$class, [string]$namespace)
{
 $oldErrorActionPreference = $errorActionPreference
 $errorActionPreference = "silentlyContinue"
 $Error.Clear()
 [wmiclass]"\\$computer\$($namespace):$class" | out-null
 If($error.count) { Return $false } Else { Return $true }
 $Error.Clear()
 $ErrorActionPreference = $oldErrorActionPreference
} # end Get-ValidWmiClass function

Function Get-WmiInformation ([string]$computer, [string]$class, [string]$namespace)
{
 Get-WmiObject -class $class -computername $computer -namespace $namespace|
 Format-List -property [a-z]*
} # end Get-WmiInformation function

*** Entry point to script ***

If(Get-ValidWmiClass -computer $computer -class $class -namespace $namespace)
 {
 Get-WmiInformation -computer $computer -class $class -namespace $namespace
 }
Else
 {
 "$class is not a valid wmi class in the $namespace namespace on $computer"
 }

Out-of-bounds errors

When receiving input from a user, an allowed value for a script parameter is limited to a specified
range of values. If the allowable range is small, it may be best to present the user with a prompt that
allows selection from a few choices. This was shown earlier in this chapter, in the “Limiting choices”
section.

When the allowable range of values is great, however, limiting the choices through a menu-type
system is not practical. This is where boundary checking come into play.

Using a boundary-checking function
One technique is to use a function that will determine if the supplied value is permissible. One
way to create a boundary-checking function is to have the script create a hash table of permis-
sible values. The Check-AllowedValue function is used to gather a hash table of volumes that reside
on the target computer. This hash table is then used to verify that the volume requested from the
drive command-line parameter is actually present on the computer. The Check-AllowedValue func-
tion returns a Boolean true or false to the calling code in the main body of the script. The complete
Check-AllowedValue function is shown here:

 CHAPTER 19 Handling Errors 527

Function Check-AllowedValue($drive, $computerName)
{
 $drives = $null
 Get-WmiObject -class Win32_Volume -computername $computerName |
 Where-Object { $_.DriveLetter } |
 ForEach-Object { $drives += @{ $_.DriveLetter = $_.DriveLetter } }
 $drives.contains($drive)
} #end function Check-AllowedValue

Because the Check-AllowedValue function returns a Boolean value, an if statement is used to
determine if the value supplied to the drive parameter is permissible. If the drive letter is found in the
$drives hash table that is created in the Check-AllowedValue function, the Get-DiskInformation func-
tion is called. If the drive parameter value is not found in the hash table, a warning message is displayed
to the Windows PowerShell console, and the script exits. The complete GetDrivesCheckAllowedValue.ps1
script is shown here:

GetDrivesCheckallowedValue.ps1

Param(
 [Parameter(Mandatory=$true)]
 [string]$drive,
 [string]$computerName = $env:computerName
) #end param

Function Check-AllowedValue($drive, $computerName)
{
 $drives = $null
 Get-WmiObject -class Win32_Volume -computername $computerName |
 Where-Object { $_.DriveLetter } |
 ForEach-Object { $drives += @{ $_.DriveLetter = $_.DriveLetter } }
 $drives.contains($drive)
} #end function Check-AllowedValue

Function Get-DiskInformation($computerName,$drive)
{
 Get-WmiObject -class Win32_volume -computername $computername -filter "DriveLetter = '$drive'"
} #end function Get-BiosName

*** Entry Point To Script ***

if(Check-AllowedValue -drive $drive -computername $computerName)
 {
 Get-DiskInformation -computername $computerName -drive $drive
 }
else
 {
 Write-Host -foregroundcolor blue "$drive is not an allowed value:"
 }

528 Windows PowerShell 3 Step by Step

Placing limits on the parameter
In Windows PowerShell 3.0, you can place limits directly on the parameter in the param section
of the script. This technique works well when you are working with a limited set of allowable val-
ues. The ValidateRange parameter attribute will create a numeric range of allowable values, but it
is also able to create a range of letters as well. Using this technique, you can greatly simplify the
GetDrivesCheckAllowedValue.ps1 script by creating an allowable range of drive letters. The param
statement is shown here:

Param(
 [Parameter(Mandatory=$true)]
 [ValidateRange("c","f")]
 [string]$drive,
 [string]$computerName = $env:computerName
) #end param

Because you are able to control the permissible drive letters from the command line, you increase
the simplicity and readability of the script by not having the requirement to create a separate func-
tion to validate the allowed values. In the GetDrivesValidRange.ps1 script, which follows, one addi-
tional change is required, and that is to concatenate a colon to the end of the drive letter. In the
GetDrivesCheckAllowedValue.ps1 script, you were able to include the drive letter and the colon from
the command line. But with the ValidateRange attribute, this technique will not work. The trick to
concatenating the colon to the drive letter is that it needs to be escaped, as shown here:

-filter "DriveLetter = '$drive`:'"

The complete GetDrivesValidRange.ps1 script is shown here:

GetDrivesValidrange.ps1

Param(
 [Parameter(Mandatory=$true)]
 [ValidateRange("c","d")]
 [string]$drive,
 [string]$computerName = $env:computerName
) #end param

Function Get-DiskInformation($computerName,$drive)
{
 Get-WmiObject -class Win32_volume -computername $computername `
 -filter "DriveLetter = '$drive`:'"
} #end function Get-BiosName

*** Entry Point To Script ***

Get-DiskInformation -computername $computerName -drive $drive

 CHAPTER 19 Handling Errors 529

Using Try...Catch...Finally

When using a Try...Catch...Finally block, the command you wish to execute is placed in the Try block.
If an error occurs when the command executes, the error will be written to the $error variable, and
script execution moves to the Catch block. The TestTryCatchFinally.ps1 script, which follows, uses the
Try command to attempt to create an object. A string states that the script is attempting to create a
new object. The object to create is stored in the $obj1 variable. The New-Object cmdlet creates the
object. Once the object has been created and stored in the $a variable, the members of the object are
displayed via the Get-Member cmdlet. This code illustrates the technique:

Try
 {
 "Attempting to create new object $obj1"
 $a = new-object $obj1
 "Members of the $obj1"
 "New object $obj1 created"
 $a | Get-Member
 }

You use the Catch block to capture errors that occurred during the Try block. You can spec-
ify the type of error to catch, as well as the action you wish to perform when the error occurs.
The TestTryCatchFinally.ps1 script monitors for System.Exception errors. The System.Exception
.NET Framework class is the base class from which all other exceptions derive. This means a
System.Exception error is as generic as you can get—in essence, it will capture all predefined, common
system run-time exceptions. Upon catching the error, you can then specify what code you would like
to execute. In this example, a single string states that the script caught a system exception. The Catch
block is shown here:

Catch [system.exception]
 {
 "caught a system exception"
 }

The Finally block of a Try...Catch...Finally sequence always runs—regardless of whether an error is
generated. This means that any code cleanup you wish to do, such as explicitly releasing COM objects,
should be placed in a Finally block. In the TestTryCatchFinally.ps1 script, the Finally block displays a
string that states the script has ended. This appears here:

Finally
 {
 "end of script"
 }

530 Windows PowerShell 3 Step by Step

The complete TestTryCatchFinally.ps1 script is shown here:

testtryCatchFinally.ps1

$obj1 = "Bad.Object"
"Begin test"
Try
 {
 "`tAttempting to create new object $obj1"
 $a = new-object $obj1
 "Members of the $obj1"
 "New object $obj1 created"
 $a | Get-Member
 }
Catch [system.exception]
 {
 "`tcaught a system exception"
 }
Finally
 {
 "end of script"
 }

When the TestTryCatchFinally.ps1 script runs and the value of $obj1 is equal to Bad.Object, an error
occurs, because there is no object named BadObject that can be created via the New-Object cmdlet.
Figure 19-6 displays the output from the script.

FIGURE 19-6 Attempt to create an invalid object caught in the Catch portion of Try...Catch...Finally.

 CHAPTER 19 Handling Errors 531

As shown in Figure 19-6, the Begin test string is displayed because it is outside the
Try...Catch...Finally loop. Inside the Try block, the string Attempting to create new object Bad.
object is displayed because it comes before the New-Object command. This illustrates that the Try
block is always attempted. The members of the BadObject object are not displayed, nor is the string
new object Bad.Object created. This indicates that once the error is generated, the script moves to the
next block.

The Catch block catches and displays the System.Exception error. The string caught a system
exception is also displayed in the ISE. Next, the script moves to the Finally block, and the end of script
string appears.

If the script runs with the value of $obj1 equal to system.object (which is a valid object), then the
Try block completes successfully. As shown in Figure 19-7, the members of System.Object display, and
the string that states the object was successfully created also appears in the output. Because no errors
are generated in the script, the script execution does not enter the Catch block. But the end of script
string from the Finally block is displayed because the Finally block always executes regardless of the
error condition.

FIGURE 19-7 The Catch portion of Try...Catch...Finally permits creation of a valid object. The Finally portion
always runs.

532 Windows PowerShell 3 Step by Step

Catching multiple errors
You can have multiple Catch blocks in a Try...Catch...Finally block. The thing to keep in mind is that
when an exception occurs, Windows PowerShell leaves the Try block and searches for the Catch block.
The first Catch block that matches the exception that was generated will be used. Therefore, you want
to use the most specific exception first, and then move to the more generic exceptions. This is shown
in TestTryMultipleCatchFinally.ps1.

testtryMultipleCatchFinally.ps1

$obj1 = "BadObject"
"Begin test ..."
$ErrorActionPreference = "stop"
Try
 {
 "`tAttempting to create new object $obj1 ..."
 $a = new-object $obj1
 "Members of the $obj1"
 "New object $obj1 created"
 $a | Get-Member
 }
Catch [System.Management.Automation.PSArgumentException]
 {
 "`tObject not found exception. `n`tCannot find the assembly for $obj1"
 }
Catch [system.exception]
 {
 "Did not catch argument exception."
 "Caught a generic system exception instead"
 }
Finally
 {
 "end of script"
 }

Figure 19-8 displays the output when running the TestTryMultipleCatchFinally.ps1 script. In this
script, the first Catch block catches the specific error that is raised when attempting to create an
invalid object. To find the specific error, examine the ErrorRecord object contained in $error[0] after
running the command to create the invalid object. The exact category of exception appears in the
Exception property. The specific error raised is an instance of the System.Management.Automation
.PSArgumentException object. This is shown here:

PS C:\> $Error[0] | fl * -Force

PSMessageDetails :
Exception : System.Management.Automation.PSArgumentException:
 Cannot find type [BadObject]: make sure the assembly
 containing this type is loaded.
 at System.Management.Automation.MshCommandRuntime.
 ThrowTerminatingError(ErrorRecord errorRecord)

 CHAPTER 19 Handling Errors 533

TargetObject :
CategoryInfo : InvalidType: (:) [New-Object], PSArgumentException
FullyQualifiedErrorId : TypeNotFound,Microsoft.PowerShell.Commands.
 NewObjectCommand
ErrorDetails :
InvocationInfo : System.Management.Automation.InvocationInfo
ScriptStackTrace : at <ScriptBlock>, <No file>: line 7
PipelineIterationInfo : {}

FIGURE 19-8 The Catch portion of Try...Catch...Finally catches specific errors in the order derived.

If a script has multiple errors, and the error-action preference is set to Stop, the first error will
cause the script to fail. If you remove the comments from the $ErrorActionPreference line and the
Get-Content line, the first error to be generated will be caught by the System.Exception Catch block,
and the script execution will therefore skip the argument exception. This is shown in Figure 19-9.

534 Windows PowerShell 3 Step by Step

FIGURE 19-9 The first error raised is the one that will be caught.

Using PromptForChoice to limit selections:
Step-by-step exercises

This exercise will explore the use of PromptForChoice to limit selections in a script. Following this exer-
cise, you will explore using Try…Catch…Finally to detect and to catch errors.

Exploring the PromptForChoice construction

1. Open the Windows PowerShell ISE.

2. Create a new script called PromptForChoiceExercise.ps1.

3. Create a variable to be used for the caption. Name the variable caption and assign a string
value of This is the caption to the variable. The code to do this appears here:

$caption = "This is the caption"

 CHAPTER 19 Handling Errors 535

4. Create another variable to be used for the message. Name the variable message and assign a
string value of This is the message to the variable. The code to do this appears here:

$message = "This is the message"

5. Create a variable named choices that will hold the ChoiceDescription object. Create an array
of three choices—choice1, choice2, and choice3—for the ChoiceDescription object. Make the
default letter for choice1 c, the default letter for choice2 h, and the default letter for choice3 o.
The code to do this appears here:

$choices = [System.Management.Automation.Host.ChoiceDescription[]] `
 @("&choice1", "c&hoice2", "ch&oice3")

6. Create an integer variable named defaultChoice and assign the value 2 to it. The code to do
this appears here:

[int]$DefaultChoice = 2

7. Call the PromptForChoice method and assign the return value to the ChoiceRTN variable.
Provide PromptForChoice with the caption, message, choices, and defaultChoice variables as
arguments to the method. The code to do this appears here:

$choiceRTN = $host.ui.PromptForChoice($caption,$message, $choices,$defaultChoice)

8. Create a switch statement to evaluate the return value contained in the choiceRTN variable.
The cases are 0, 1, and 2. For case 0, display a string that states choice1. For case 1, display a
string that states choice2, and for case 2, display a string that states choice3. The switch state-
ment to do this appears here:

switch($choiceRTN)
 {
 0 { "choice1" }
 1 { "choice2" }
 2 { "choice3" }
 }

9. Save and run the script. Test each of the three options to ensure they work properly. This will
require you to run the script three times and select each option in sequence.

This concludes the exercise.

In the following exercise, you will use Try...Catch...Finally in a script to catch specific errors.

536 Windows PowerShell 3 Step by Step

Using Try...Catch...Finally

1. Open the Windows PowerShell ISE.

2. Create a new script called TryCatchFinallyExercise.

3. Create a parameter named object. Make the variable a mandatory variable, but do not assign
a default value to it. The code to do this appears here:

Param(
 [Parameter(Mandatory=$true)]
 $object)

4. Display a string that states the script is beginning the test. This code appears here:

"Beginning test ..."

5. Open the Try portion of the Try...Catch...Finally block. This appears here:

Try
{

6. Display a tabbed string that states the script is attempting to create the object stored in the
object variable. This code appears here:

"`tAttempting to create object $object"

7. Now call the New-Object cmdlet and attempt to create the object stored in the object vari-
able. This code appears here:

New-Object $object }

8. Add the Catch statement and have it catch a [system.exception] object. This part of the code
appears here:

Catch [system.exception]

9. Add a script block for the Catch statement that tabs over one tab and displays a string that
says the script was unable to create the object. This code appears here:

{ "`tUnable to create $object" }

10. Add a Finally statement that states the script reached the end. This code appears here:

Finally
 { "Reached the end of the Script" }

 CHAPTER 19 Handling Errors 537

11. Save the script.

12. Run the script, and at the prompt for an object, type the letters sample. You should see the
following output:

Beginning sample ...
 Attempting to create object sample
 Unable to create sample
Reached the end of the Script

13. Now run the script again. This time, at the object prompt, type the letters psobject. You should
see the following output:

Beginning test ...
 Attempting to create object psobject

Reached the end of the Script

This concludes the exercise.

Chapter 19 quick reference

To Do this

Handle a potential error arising from a missing
value of a computername parameter

Use the param statement and assign a default value of
$env:computername to the computername parameter.

Make a parameter mandatory Use the [Parameter(Mandatory=$true)] parameter attribute.

Cause the Test-Connection cmdlet to return a
Boolean value

Use the -quiet switched parameter.

Ensure a remote computer is up prior to making
a remote connection

Use the Test-Connection cmdlet.

Ensure that only valid data types are entered Write a function to test the data prior to executing the remaining
portion of the script.

Ensure that code will always run, regardless of
whether an error is raised

Place the code in the Finally block of a Try...Catch...Finally structure.

Gracefully exit a script when a portion of code
may cause an error

Use Try...Catch...Finally to attempt to execute the code, catch any
specific errors, and clean up the environment.

 539

C H A P T E R 2 0

Managing Exchange Server

after completing this chapter, you will be able to:

■■ Understand the providers included with Exchange Server 2010.

■■ Use Get-ExCommand to obtain a listing of Exchange Server 2010 cmdlets.

■■ Configure Exchange Server 2010 recipient settings.

■■ Configure Exchange Server 2010 storage settings.

■■ Query, configure, and audit policy.

The decision by the Microsoft Exchange Server team to base their management tools on Microsoft
Windows PowerShell is a win for customers who desire to apply the flexibility and configurability of
scripting to the management of complex mission-critical networked applications. What this means for
Windows PowerShell scripters is that everything that can be done using the graphical user interface
(GUI) can also be done from Windows PowerShell. In some cases, the only way to perform a certain
task is through Windows PowerShell. This is the first time that the design of a major application began
with the scripting interface in mind; in the past, scripting support has always been added after the
product was completed.

Exploring the Exchange 2010 cmdlets

When trying to figure out what you can do with a Windows PowerShell–enabled application, first
examine the cmdlets that come with the application. You can take several approaches to this task.
The easiest is to use the function Get-ExCommand. When you use the Get-ExCommand function, you
will notice a listing of more than 600 functions for managing Exchange Server 2010. These func-
tions allow you to update, uninstall, test, start, stop, suspend, set, add, and remove objects on your
Exchange server. The only thing you cannot do using the Exchange Server 2010 cmdlets is create a
user or group. You can create a new user in Active Directory at the same time you create the mailbox
by using the New-Mailbox cmdlet, but you cannot create a user account without creating the mail-
box. For scripts that can create Active Directory users and groups, refer to Chapter 15, “Working with
Active Directory.”

540 Windows PowerShell 3 Step by Step

note The Exchange Management Shell Quick Reference for Exchange 2010, which lists the
common cmdlets, is available at the following URL: http://www.microsoft.com/downloads.

The good thing about the Get-ExCommand command is that you can pipeline it to other cmdlets
to assist you in searching for exactly the correct cmdlet for a particular job. One thing that is differ-
ent from Exchange 2007 is that Exchange Server 2010 creates proxy functions for all the commands;
therefore, the object that returns from the command is a FunctionInfo object, not a CmdletInfo object.
The difference is that a FunctionInfo object does not contain the command definition in a way that
exposes the command parameters. Instead, a FunctionInfo object definition property contains the
actual text of the function itself. To maintain a better representation of the function capabilities, pipe
the name property to the Get-Help cmdlet. For example, if you were looking for commands related to
statistics, you could use the command that follows to retrieve this information.

Get-ExCommand | Where-Object { $_.name -match 'statistics'} |
Foreach-Object { get-help $_.name | select-object -expandProperty syntax}

When this command runs, you receive a list of commands that provide information related to
statistics. Sample output from the previous command appears following. Notice that when you use
Select-Object to format the command output, the syntax of the command is not truncated, as it is in
the default output format.

Get-ActiveSyncDeviceStatistics -Identity <ActiveSyncDeviceIdParameter> [-DomainController
<Fqdn>] [-GetMailboxLog
<SwitchParameter>] [-NotificationEmailAddresses <MultiValuedProperty>] [-ShowRecoveryPassword
<SwitchParameter>]
[<CommonParameters>]
Get-ActiveSyncDeviceStatistics -Mailbox <MailboxIdParameter> [-DomainController <Fqdn>]
[-GetMailboxLog
<SwitchParameter>] [-NotificationEmailAddresses <MultiValuedProperty>] [-ShowRecoveryPassword
<SwitchParameter>]
[<CommonParameters>]

Working with remote Exchange servers

You might expect that when using Windows PowerShell 3.0, all you need to do is use Enter-PSSession
to connect to the remote Exchange 2010 server, import the Exchange module, and be able to work—
after all, this is pretty much the way things work with the Active Directory cmdlets. However, that is
not the way the Exchange commands work.

The first thing to know is that there is a difference between implicit remoting and explicit remot-
ing. In explicit remoting, you create a remote session and enter a remote session, and you are then
presented with a Windows PowerShell console prompt. The Windows PowerShell prompt you see is
remote—that is, it resides on the remote computer. Typing dir at the prompt displays the file system
structure of the remote computer.

 CHAPTER 20 Managing Exchange Server 541

In implicit remoting, the cmdlets from the remote session come to the local computer and are
locally defined as functions. Therefore, the Windows PowerShell prompt that appears is local; it
remains on your computer. Typing dir at the prompt displays the file system structure of the local
computer.

When you make a remote connection to an Exchange 2010 server and add the three Exchange
Management snap-ins, Windows PowerShell displays no errors. However, if you attempt to run a
common Exchange command, such as Get-ExchangeServer, an error appears. The commands and
associated errors appear in Figure 20-1.

FIGURE 20-1 Errors occur when attempting to make a standard remote connection to Exchange.

The secret to using Windows PowerShell remoting to manage an Exchange 2010 server remotely
is to use implicit remoting instead of explicitly connecting to a remote Windows PowerShell ses-
sion on the Exchange 2010 server. Here are the steps required to create an implicit remote Windows
PowerShell session.

1. Use the Get-Credential cmdlet to obtain credentials for the Exchange server (unless the current
user already has rights). Store the returned credential object in a variable.

2. Use the New-PSSession cmdlet to create a new session on the Exchange server. Specify the
ConnectionUri in the form of http://servername/powershell and supply the credential object
from step 1 to the credential parameter. Store the returned session object in a variable.

3. Use the Import-PSSession cmdlet to connect to the session created in step 2.

The code that follows illustrates a connection to a remote Exchange server named EX1 being made
by the administrator from the contoso domain.

542 Windows PowerShell 3 Step by Step

PS C:\> $cred = Get-Credential contoso\administrator
PS C:\> $session = New-PSSession -ConfigurationName Microsoft.Exchange -ConnectionUri
 http://ex1/powershell -Credential $cred
PS C:\> Import-PSSession $session

When the Import-PSSession command runs, a warning appears that states some of the imported
commands use unapproved verbs. This is a normal warning for the Exchange commands and can be
safely ignored.

note To avoid confusing users with the warning message about nonapproved verbs, you
should always use approved verbs. You can display approved verbs by using the Get-Verb
cmdlet.

Once the connection is made, the Exchange cmdlets appear in the local Windows PowerShell
console, and they work as if locally installed. To obtain information about Exchange servers, use the
Get-ExchangeServer cmdlet. This command appears here:

Get-ExchangeServer

To avoid having to perform the several different steps involved in making an implicit remoting
connection to a remote Exchange 2010 server, you can use a function instead. Here is the complete
New-ExchangeSession function, which creates an implicit remoting connection to an Exchange server:

Function New-ExchangeSession
{
 <#
 .Synopsis
 This function creates an implicit remoting connection to an Exchange server
 .Description
 This function creates an implicit remoting session to a remote Exchange
 server. It has been tested on Exchange 2010. The Exchange commands are
 brought into the local PowerShell environment. This works in both the
 Windows PowerShell console as well as the Windows PowerShell ISE. It requires
 two parameters: the computername and the user name with rights on the remote
 Exchange server.
 .Example
 New-ExchangeSession -computername ex1 -user iammred\administrator
 Makes an implicit remoting connection to a remote Exchange 2010 server
 named ex1 using the administrator account from the iammred domain. The user
 is prompted for the administrator password.
 .Parameter ComputerName
 The name of the remote Exchange server
 .Parameter User
 The user account with rights on the remote Exchange server. The user
 account is specified as domain\username
 .Notes
 NAME: New-ExchangeSession
 AUTHOR: ed wilson, msft
 LASTEDIT: 01/13/2012 17:05:32
 KEYWORDS: Messaging & Communication, Microsoft Exchange 2010, Remoting
 .Link
 Http://www.ScriptingGuys.com

 CHAPTER 20 Managing Exchange Server 543

 #Requires -Version 2.0
 #>
 Param(
 [Parameter(Mandatory=$true,Position=0)]
 [String]
 $computername,
 [Parameter(Mandatory=$true,Position=1)]
 [String]
 $user
)
 $cred = Get-Credential -Credential $user
 $session = New-PSSession -ConfigurationName Microsoft.Exchange `
 -ConnectionUri http://$computername/powershell -Credential $cred
 Import-PSSession $session
} #end function New-ExchangeSession

To gain access to the New-ExchangeSession function, you can dot-source the script containing
the New-ExchangeSession function into your current Windows PowerShell session. When you run the
function, the credential dialog box shown in Figure 20-2 appears.

FIGURE 20-2 When using implicit remoting to connect to Exchange, specify appropriate credentials for the con-
nection to use.

Once you enter the credentials, the implicit remoting session starts, and you can use Exchange
cmdlets as if they were installed on the local computer. The following command retrieves information
about Microsoft Exchange mailbox databases:

PS C:\> Get-MailboxDatabase

Name Server Recovery ReplicationType
---- ------ -------- ---------------
Mailbox Database 1301642447 EX1 False None

One command that is not available is Get-ExCommand, which displays all of the available Exchange
commands.

544 Windows PowerShell 3 Step by Step

Configuring recipient settings

The most basic aspect of administering any messaging-and-collaboration system is configuring the
vast and varied settings that relate to recipients. First, the user account must be mailbox enabled,
which means you need to create a mailbox on the mailbox database for the user account. To do this,
you need to use the Enable-Mailbox cmdlet. This command appears here:

Enable-Mailbox -Identity nwtraders\MyNewUser -Database "mailbox database"

When this command runs, you will get a prompt back that appears as follows. It tells you the name
of the user account, the alias assigned, the server name on which the mailbox database resides, and
any quota restrictions applied to the account.

Name Alias ServerName ProhibitSendQuota
---- ----- ---------- -----------------
MyNewUser myNewUser smbex01 unlimited

tip You cannot mailbox-enable a user account that is disabled. Although this may seem
to make sense, keep in mind that often network administrators will create a group of user
accounts, and then leave them all disabled for security reasons. Then, when the user cre-
ates a support ticket, the help desk enables the accounts. For these types of scenarios,
use a single script that logon-enables the user account and at the same time mailbox-
enables the user.

Creating the user and the mailbox
If you want to create the user and the mailbox at the same time, then you can use the New-Mailbox
cmdlet. This cmdlet, as you might expect, has a large number of parameters owing to the need to
supply values for first name, last name, display name, mailbox name, user principal name (UPN),
and many other optional parameters. An example of using this cmdlet to create a user named
MyTestUser2 appears here:

New-Mailbox -Alias myTestUser2 -Database "mailbox database" `
-Name MyTestUser2 -OrganizationalUnit myTestOU -FirstName My `
-LastName TestUser2 -DisplayName "My TestUser2" `
-UserPrincipalName MyTestUser2@nwtraders.com

After you run the cmdlet, notice that it prompts for the password. It does this because the
password parameter must be a secureString data type. If you try to force the password in the com-
mand by hard-coding the password as an argument, such as -password "P@ssword1", you will get an
error that says, “Cannot convert type string to type secureString.” This error appears in Figure 20-3.

 CHAPTER 20 Managing Exchange Server 545

FIGURE 20-3 An error is returned when a password is supplied directly.

One solution to this error is not to supply the -password argument, in which case, the command
will pause, and Windows PowerShell will prompt for the password for the user account. When using
implicit remoting, a warning message appears stating that the remote Exchange server is sending a
prompt request. You should only type in credentials if you trust the remote computer and the script
or application generating the request. If you trust the remote computer (which will be pretty obvious
if you are the one who created the remoting session with the Exchange server in the first place), type
in the password for the new user account (and for the associated mailbox). Figure 20-4 illustrates this
behavior.

FIGURE 20-4 The New-Mailbox cmdlet prompts for the password.

If you put the command to create a new mailbox in a script, then it will be easier to create the
user, the mailbox, and the password. To do this, you use the ConvertTo-SecureString cmdlet to
convert a plain text string into an encrypted password that will be acceptable to Exchange 2010.
ConvertTo-SecureString has two arguments that enable you to do this. The first argument is the
-asplaintext argument. This tells the ConvertTo-SecureString cmdlet that you are supplying a plain text
string for it to convert. Because this is not a normal operation, you must also supply the -force argu-
ment. After you have a secure string for the password, you can supply it to the -password argument.
This appears in the NewMailboxAndUser.ps1 script.

newMailboxandUser.ps1

$password = ConvertTo-SecureString "P@ssW0rD!" -asplaintext -force

New-Mailbox -Alias myTestUser2 -Database "mailbox database" `
-Name MyTestUser2 -OrganizationalUnit myTestOU -FirstName My `
-LastName TestUser2 -DisplayName "My TestUser2" `
-UserPrincipalName MyTestUser2@nwtraders.com -password $password

546 Windows PowerShell 3 Step by Step

Perhaps a more interesting, and definitely more secure, method of creating a new mailbox and
user is not to store the password as plain text in the script, but rather to supply it interactively when
running the command. One easy way to do this is to use the Read-Host cmdlet. This technique
appears in the code that follows. (This is a single logical line of code and no line continuation marks
are included.)

New-Mailbox -Alias muhan -Name "Mu Han" -OrganizationalUnit test -FirstName Mu -LastName Han
-UserPrincipalName MuHan@Iammred.Net -Password (Read-host "password"-AsSecureString)

Once the command runs, the prompt specified in the Read-Host command appears. Characters
entered at the prompt appear as a mask. The use of this technique to create a new user named Mu
Han appears in Figure 20-5.

FIGURE 20-5 Using the Read-Host cmdlet to accept a secure string when creating a new mailbox.

Creating multiple new users and mailboxes

1. Open the Windows PowerShell ISE or your favorite Windows PowerShell script editor.

2. Create a variable called $password and use the ConvertTo-SecureString cmdlet to create a
secure string from the plain text string P@ssw0rd1. To ensure this command completes prop-
erly, use the -force parameter. The code to do this is shown here:

$password = ConvertTo-SecureString "P@ssW0rD!" -asplaintext -force

3. Create a variable called $strDatabase. This variable will be used to hold a string that is used
to tell the New-Mailbox cmdlet on which database to create the new mailbox-enabled user
account. This line of code is shown here:

$strDatabase = "Mailbox Database"

4. On the next line, create a variable called $strOU. This variable is used to hold the name of the
organizational unit (OU) that will hold the new user account. This line of code is shown here:

$strOU = "myTestOU"

5. Create a new variable called $strDomain. This variable will hold a string that will be used for
the domain portion of the user name to be created. This line of code is shown here:

$strDomain = "Nwtraders.msft"

 CHAPTER 20 Managing Exchange Server 547

6. Create a variable called $strFname, which will be used to hold the user’s first name. This line of
code is shown here:

$strFname = "My"

7. Create a variable called $strLname, which will be used to hold the user’s last name. This line of
code is shown here:

$strLname = "TestUser"

8. Use a for statement to create a loop that will increment 11 times. Use the variable $i as the
counter variable. Start the loop from 0 and continue until it is less than or equal to 10. Use the
double plus sign operator (++) to automatically increment the variable $i. This code is shown
here:

for($i=0;$i -le 10;$i++)

9. Type the opening and closing curly brackets as shown here:

{
}

10. Between the two curly brackets, use the New-Mailbox cmdlet. Use the $strFname, $strLname,
and $i variables to create the user’s alias. Use the $strDatabase variable to supply the name
for the -database argument. Use the $strFname, $strLname, and $i variables to create the
name of the account. Use the $strOU variable to supply the value for the -organizationalunit
argument. Use the $strFname variable to supply the value for the -firstname argument. Use
the $strLname variable to supply the value for the -lastname argument. Use the $strFname,
$strLname, and $i variables to create the value for the -displayname argument. To create the
-userprincipalname argument, use $strFname, $strLname, and $i, and supply the commercial-
at sign in parentheses (@), and the $strdomain variable. The last argument that should be sup-
plied is the password contained in the $password variable. This line of code is shown following.
Note that you can use the grave accent character (`) to break up the line of code for readabil-
ity purposes, as is done here.

New-Mailbox -Alias $strFname$strLname$i -Database $strDatabase `
-Name $strFname$strLname$i -OrganizationalUnit $strOU -FirstName `
$strFname -LastName $strLname -DisplayName $strFname$strLname$i `
-UserPrincipalName $strFname$strLname$i"@"$strDomain `
-password $password

11. Save your script as <yourname>CreateMultipleUsersAndMailboxes.ps1. Run your script. Go
to the Exchange Management Console and click the Mailbox node. Select Refresh from the
Action menu. The new users should appear within a minute or so.

This concludes the procedure.

548 Windows PowerShell 3 Step by Step

reporting user settings
After creating users in Exchange Server 2010, the next step in the user life cycle is to report on their
mailbox configuration settings. To do this, you can use the Get-Mailbox cmdlet. This command
appears here:

Get-Mailbox

Once this command runs, it produces a table of output that lists the user name, alias, server name,
and other information. A sample of this output appears here:

Name Alias ServerName ProhibitSendQuota
---- ----- ---------- ---------------
Administrator Administrator smbex01 unlimited
Claire O'Donnell claire smbex01 unlimited
Frank Miller frank smbex01 unlimited
Holly Holt holly smbex01 unlimited

If you are interested more detailed information, or different information, then you will need to
modify the default output from the Get-Mailbox command. If you already know the server, and you
are only interested in the alias and when the ProhibitSendQuota kicks in, you can use the following
command:

Get-Mailbox | Format-Table alias, prohibitsendquota -AutoSize

This command uses the Get-Mailbox cmdlet and pipelines the resulting object into the Format-
Table cmdlet. It then chooses the Alias column and the ProhibitSendQuota column, and uses the
-autosize argument to format the output. A sample of the resulting output appears here:

Alias ProhibitSendQuota
----- -----------------
Administrator unlimited
claire unlimited
frank unlimited
holly unlimited

If you use the Get-Mailbox cmdlet and supply the alias for a specific user, the same four default
columns you obtained earlier will be returned. This command is shown here:

Get-Mailbox mytestuser1

In reality, you are supplying the string mytestuser1 as the value for the -identity argument of the
Get-Mailbox cmdlet. The command shown here produces the same result:

Get-Mailbox -identity mytestuser1

Why is it important to know you are supplying a value for the -identity argument of the
Get-Mailbox cmdlet? There are two reasons: the first is that when you see the -identity argument
of this cmdlet, you will know what it does, and the second is that there is actually confusion in

 CHAPTER 20 Managing Exchange Server 549

Exchange Server 2010 about what the -identity attribute is and when to use it. For example, techni-
cally, the identity of a User object in Exchange Server 2010 would look something like this:

nwtraders.com/MyTestOU/MyTestUser1

What is interesting is the way I obtained the identity value. Take a look at the syntax of the
Get-Mailbox cmdlet:

Get-Mailbox -identity mytestuser1 | Format-List identity

Remember, this command returned the -identity attribute of the User object, so there is confu-
sion between the -identity argument of the Get-Mailbox cmdlet and the -identity attribute used
by Exchange Server 2010. But it gets even stranger. Supply the value for the -identity argument to
retrieve the specific mailbox. Pipeline the results to the Format-List cmdlet and retrieve both the alias
and the identity. The command to obtain the mailbox user alias from the identity is shown here:

Get-Mailbox -identity mytestuser1 | Format-List alias, identity

The data returned from this command is shown here:

Alias : MyTestUser1
Identity : nwtraders.com/MyTestOU/MyTestUser1

You could move the commands around a little bit and create a script that would be very useful
from an audit perspective. The FindUnrestrictedMailboxes.ps1 script uses the Get-Mailbox cmdlet to
retrieve a listing of all user mailboxes. It then uses the Where-Object cmdlet to filter out the amount
of returned data. It looks for objects that have the ProhibitSendQuota property set to unlimited. It
then pipelines the resulting objects to return only the alias of each User object.

FindUnrestrictedMailboxes.ps1

"Retrieving users with unrestricted mailbox limits "
"This may take a few minutes ..."
$a = get-mailbox|
 where-object {$_.prohibitSendQuota -eq "unlimited"}

"There are " + $a.length + " users without restrictions."
"They are listed below. `r"

$a | Format-List alias

If you were interested in the status of all the quota settings on the Exchange server, you could
revise the script to use the following command:

Get-Mailbox | Format-Table alias, *quota

Obviously, in a large environment with multiple Exchange servers, hard-coding the specific server
name into a script is problematic. When working with user mailboxes, mailbox servers are the target.
To avoid having to type in an array of mailbox server names, use the Get-MailboxServer cmdlet to
retrieve all the mailbox servers. Unfortunately, the Exchange cmdlets do not accept pipelined input. If

550 Windows PowerShell 3 Step by Step

they did accept pipelined input, the command would be simple. Instead, pipeline the results from the
Get-MailboxServer cmdlet to a Foreach-Object cmdlet and choose the name property from the piped
object. The syntax of this command appears here:

Get-MailboxServer | Foreach { Get-Mailbox -Server $_.name }

Managing storage settings

It is an Exchange administrator’s truism that the user’s need for storage expands to meet the total
amount of available storage plus 10 percent. Without management of storage demands, you will
never have enough disk space. Unfortunately, estimates of storage requirements are often haphazard
at best. It is very easy to go from “We have plenty of storage” to “Where did all the disk space go?”
Everything from attachments to deleted item retention to bulging inboxes demand storage space.
Fortunately, you can employ Windows PowerShell to bring some sanity to the situation.

The first step in working with the storage groups is to find out how many database objects the
server contains, along with names associated with the location of the database. Exchange Server 2010
no longer uses storage groups (which were used in Exchange 2007). Instead, the storage groups have
moved up in the hierarchy and are on the same level as servers; the storage groups themselves having
been deemed basically redundant and therefore do not exist.

Examining the mailbox database
What most administrators think about when it comes to Exchange Server is the mailbox database itself.
To retrieve information about the mailbox databases on your server, use the Get-MailboxDatabase
cmdlet with no arguments. This is shown here:

Get-MailboxDatabase

The results from this command, shown here, are useful for helping identify the name and location
of the Exchange Server mailbox database:

Name Server StorageGroup Recovery
---- ------ ------------ --------
Mailbox Database SMBEX01 First Storage Group False

After you have decided which mailbox database to work with, you can pipeline the object returned
by the Get-MailboxDatabase cmdlet to the Format-List cmdlet. This command appears here:

Get-MailboxDatabase | Format-List *

This command will return all the properties associated with the mailbox database and the associ-
ated values. A sampling of the returned data is shown here:

 CHAPTER 20 Managing Exchange Server 551

JournalRecipient :
MailboxRetention : 30 days
OfflineAddressBook :
OriginalDatabase :

If, however, you are only interested in storage quota limits, you can modify the command, as
shown here:

Get-MailboxDatabase | Format-list *quota

The results of this command are nice, neat, and succinct, as shown here:

ProhibitSendReceiveQuota : 2355MB
ProhibitSendQuota : 2GB
IssueWarningQuota : 1945MB

Managing the mailbox database
To create a new mailbox database, use the New-MailboxDatabase function. The Exchange server
requires access to the disk that will house the new database. Also, the folder containing the data-
base must exist. Even in you have a small Exchange 2010 installation that contains a single Exchange
server, the -server parameter is mandatory. The minimum required parameters for using the
New-MailboxDatabase command are the -name, -server, and -edbFilePath parameters. The use of this
command to create a new mailbox database named Mailbox2 on a server named ex1 in the mbdb2
folder on the E drive appears here:

New-MailboxDatabase -Name Mailbox2 -EdbFilePath e:\MbDb2\mailbox2.edb -Server ex1

Once the command to create the new Exchange mailbox database completes, it is a good idea to
use the Get-MailboxDatabase command to verify that the mailbox database has been created prop-
erly. The command to create a new mailbox database (along with the use of the Get-MailboxDatabase
command to verify the creation of the new data set, and the accompanying output from these com-
mands) appears in Figure 20-6.

FIGURE 20-6 Creating a new mailbox database via the New-MailboxDatabase command.

552 Windows PowerShell 3 Step by Step

Once created via the New-MailBoxDatabase command, the new mailbox database is available for
use when creating new users. However, new users will not be able to log on to their new mailboxes.
This is because the new mailbox database appears only in the schema, not as a physical database
file residing on disk. The physical database file residing on disk does not appear until the database is
mounted. By default, the database mounts at the startup of Exchange—but that does not mean you
must restart the Exchange server to mount the database. One reason for waiting is to permit staging
of new mailbox databases, with actual physical file creation occurring during periods of low system
utilization. It is, however, unfortunate there is no mount parameter on the New-MailBoxDatabase
cmdlet. Due to the need to replicate the mailbox database information for Active Directory, you can’t
write a script that creates the new mailbox database and then mounts it, because it will not work con-
sistently. It is possible to add a sleep command to pause execution, but due to differences in replica-
tion times, this technique would be hit or miss. A better approach would be to create a background
job that monitors for a new-object-creation event in Active Directory. Once the new-object-creation
event is triggered, then the script continues and mounts the database. To mount the mailbox data-
base, use the Mount-Database function and specify the name of the database to mount. When the
Mount-Database command runs, no feedback is returned to the command line. Here is an example of
using the Mount-Database cmdlet to mount a mailbox database named mb4:

Mount-Database mb4

To remove a mailbox database, use the Remove-MailboxDatabase cmdlet. As with the
Mount-Database cmdlet, the name of the database must uniquely identify the database as reflected
in Active Directory. If, for example, you wish to remove a mailbox database named mb5, and there is
only one mb5 mailbox database in the organization, you can use the command syntax indicated here:

Remove-MailboxDatabase mb5

If, on the other hand, the name mb5 is not unique, you will need to determine the full value of the
identity name. To do this, use the command that appears here:

Get-MailboxDatabase | Select identity

The Remove-MailboxDatabase cmdlet does not have a -force switched parameter, which means
that when using the command to remove a mailbox database, you must answer a prompt that
requests confirmation of the action. Upon removing the mailbox database, it is still necessary to
remove the actual database files. This is one reason for keeping mailbox databases contained in their
own folders—it simplifies removal later. Figure 20-7 illustrates the process of removing a mailbox
database.

 CHAPTER 20 Managing Exchange Server 553

FIGURE 20-7 Removing a mailbox database requires answering a confirmation message.

Managing Exchange logging

A fundamental aspect of maintenance and troubleshooting involves the configuration and modifica-
tion of logging settings on Exchange Server 2010. There are 210 different logs that can be configured
using Windows PowerShell. In the old days, merely finding a listing of the Exchange server log files
was a rather specialized and difficult task. When a problem arose on the Exchange server, you had
to call a Microsoft support professional, who would simply walk you through the task of configuring
logging, reproducing the problem, and then reading the appropriate log file. After reading the error
message in the log file, more often than not, the situation became rather transparent.

In Exchange Server 2010, troubleshooting still consists of configuring the appropriate log file,
but now you can easily do that yourself. For instance, to obtain a listing of all the event logs on your
server, you use the Get-EventLogLevel cmdlet, as shown here:

Get-EventLogLevel

When this command is run, output similar to that shown following appears. Notice the format of
the Identity property, because that is the required parameter to configure the logging level on any
particular Exchange log.

Identity EventLevel
-------- --------
MSExchange ActiveSync\Requests Lowest
MSExchange ActiveSync\Configuration Lowest
MSExchange Antispam\General Lowest
MSExchange Assistants\Assistants Lowest
MSExchange Autodiscover\Core Lowest

You can use the name of a specific Exchange log file with Get-EventLogLevel to retrieve information
about a specific log file. This is shown here, where you obtain the logging level of the routing log:

Get-EventLogLevel routing

554 Windows PowerShell 3 Step by Step

If you try to use the Set-EventLogLevel cmdlet to change the logging level to medium, as shown
here, an error occurs:

Set-EventLogLevel routing -Level medium

This is rather frustrating because the error that occurs says a specific error log must be supplied.
However, you confirmed that the routing log only referred to a single event log.

Set-EventLogLevel : Cannot set the EventLog level on more than one category. You must specify a
unique EventSource\Category.
At line:1 char:18 + Set-EventLogLevel <<<< routing -Level medium

To try to identify what Windows PowerShell is expecting for the command, you can look at all the
properties of the routing event log. To obtain these properties, you pipe the object returned by the
Get-EventLogLevel cmdlet to the Format-List cmdlet, as shown here:

Get-EventLogLevel routing | Format-List *

When you examine the properties of the routing event log, you see that it is not very complicated.
When you use Get-Help on Set-EventLoglevel, you see that it wants the Identity property of the log
file. As shown here, this would require a lot of typing:

Identity : MSExchangeTransport\routing
IsValid : True
ObjectState : Unchanged
Name : Routing
Number : 4
EventLevel : Lowest

As discussed earlier in this section, the Get-EventLogLevel routing command only returns a single
instance of an Exchange event log. You can use this fact to avoid typing. If you store the results of the
Get-EventLogLevel routing command in a variable, as shown here, you can reuse that variable later:

$a = Get-EventLogLevel routing

Because the $a variable holds only the routing event log, you can now use the Identity property of
the routing event log object to refer to that specific log file. As shown here, you can use this reference
to the routing event log when you use the Set-EventLogLevel cmdlet.

Set-EventLogLevel -Identity $a.Identity -Level medium

reporting transport-logging levels

1. Open the Windows PowerShell ISE or your favorite Windows PowerShell script editor.

2. Create a variable called $aryLog and use it to hold the object that is returned by using the
Get-EventLogLevel cmdlet. At the end of the line, use the pipe character (|) both to pass the
object to another object and to break the line for readability. This line of code is shown here:

$aryLog = Get-EventLogLevel |

 CHAPTER 20 Managing Exchange Server 555

3. On the next line, use the Where-Object cmdlet to filter the current pipeline object on the
Identity property and do a regular-expression match on the word transport. The line of code
that does this is shown here:

where-object {$_.identity -match "transport"}

4. On the next line, use the foreach command to walk through the array of Exchange transport
logs contained in the $aryLog variable. Use the variable $strLog as the individual instance of
the event log from inside the array. This line of code is shown here:

foreach ($strLog in $aryLog)

5. On the next line, open the code block with an opening curly bracket. Skip a couple of lines,
and then close the code block with a closing curly bracket. These two lines of code are shown
here:

{

}

6. Inside the newly created code block, create a variable called $strLogIdent and use it to hold
the object that is returned by querying the Identity property of the $strLog variable. This line
of code is shown here:

$strLogIdent = $strLog.identity

7. On the next line, use the Get-EventLogLevel cmdlet. Pass the identity string stored in the
$strLogIdent variable to the -identity argument of the Get-EventLogLevel cmdlet. The line of
code that does this is shown here:

Get-EventLogLevel -identity $strLogIdent

8. Save your script as <yourname>ReportTransportLogging.ps1 and run it. You should
see a list of 26 transport logs. If this is not the case, compare your script with the
ReportTransportLogging.ps1 script.

This concludes the procedure.

Configuring transport-logging levels

1. Open the Windows PowerShell ISE or your favorite Windows PowerShell script editor.

2. On the first line of your script, declare a variable called $strLevel and assign the value medium
to it. This line of code is shown here:

$strLevel = "medium"

556 Windows PowerShell 3 Step by Step

3. On the next line in your script, use the Get-EventLogLevel cmdlet to get a collection of event
log objects. At the end of the line, use the pipe character (|) to pass the object to the next line.
At the beginning of the line, use the variable $aryLog to hold the resulting object. This line of
code is shown here:

$aryLog = Get-EventLogLevel |

4. On the next line, use the Where-Object cmdlet to filter the current pipeline object on the
Identity property and to perform a regular-expression match on the word transport. The line
of code that does this is shown here:

where-object {$_.identity -match "transport"}

5. On the next line, use the ForEach command to walk through the array of Exchange transport
logs contained in the $aryLog variable. Use the variable $strLog as the individual instance of
the event log from inside the array. This line of code is shown here:

foreach ($strLog in $aryLog)

6. On the next line, open the code block with an opening curly bracket. Skip a couple of lines,
and then close the code block with a closing curly bracket. These two lines of code are shown
here:

{

}

7. Inside the newly created script block, create a variable called $strLogIdent and use it to hold
the object that is returned by querying the Identity property of the $strLog variable. This line
of code is shown here:

$strLogIdent = $strLog.identity

8. On the next line in your script, use the Set-EventLogLevel cmdlet to set the logging level of
the transport logs. Use the string contained in the $strLogIdent variable to supply the specific
log identity to the -identity argument of the cmdlet. Use the string in the $strLevel variable to
supply the logging level to the -level argument of the Set-EventLogLevel cmdlet. This code is
shown here:

Set-EventLogLevel -identity $strLogIdent -level $strLevel

9. Save your script as <yourname>ConfigureTransportLogging.ps1. Run your script. After a few
seconds, you will see the prompt return, but no output.

 CHAPTER 20 Managing Exchange Server 557

10. Run the ReportTransportLogging.ps1 script. You should now see a listing of all the transport
logs and see that their logging level has been changed to medium.

11. If you do not see the logging level changed, open the ConfigureTransportLogging.ps1 script
and it compare it with yours.

This concludes the procedure.

Managing auditing

If your Exchange administrators use their own user accounts to do their work, and they are not using
a generic login account, it is very possible that changes made to your Exchange 2010 server are
logged. This is because Exchange 2010 has a feature called Administrator Audit Logging. The good
news is that new installations of Exchange 2010 Service Pack (SP) 1 enable this logging by default.
This feature logs when a user or an administrator makes a change to the Exchange organization. This
permits the ability to trace changes back to a specific user for auditing purposes. In addition, the
detailed logging provides a history of changes to the organization that are useful from a regulatory
compliance perspective, or as a troubleshooting tool. By default, Microsoft Exchange Server 2010 SP1
enables audit logging on new installations. To determine the status of Administrator Audit Logging,
use the Get-AdminAuditLogConfig command. The use of this command and associated output from
the command appear in Figure 20-8.

FIGURE 20-8 The Get-AdminAuditLogConfig cmdlet returns valuable information about audit settings.

In a large network, it might be preferable to specify a specific domain controller from which
to retrieve the Administrative Audit Logging configuration. To do this, use the -domaincontroller

558 Windows PowerShell 3 Step by Step

parameter. On most networks, you can use either the host name or the fully qualified domain name.
These two commands appear here:

Get-AdminAuditLogConfig -DomainController dc1
Get-AdminAuditLogConfig -DomainController dc1.contoso.net

Prior to SP1, when enabled, the Administrator Audit Logging feature sent emails to a specific
mailbox-audit-log mailbox configured via the Set-AdminAuditLogConfig cmdlet and examined via an
email client. Since Exchange Server 2010 SP1, the audit entries reside in a hidden mailbox, and the
Search-AdminAuditLog cmdlet retrieves the entries. The mailbox appears in the Users container in the
Active Directory Users and Computers tool, and it is possible to obtain statistics about this mailbox by
using the Get-MailboxStatistics cmdlet. This command appears here:

Get-MailboxStatistics "SystemMailbox{e0dc1c29-89c3-4034-b678-e6c29d823ed9}"

When the Search-AdminAuditLog cmdlet runs without any parameters, the Search-AdminAuditLog
cmdlet returns all records. By default, the retention period for mailbox statistics is 90 days (on
a fresh Exchange 2010 SP1 or later installation). Configure the retention period by using the
Set-AdminAuditLog cmdlet. When making a change to the admin audit logging, keep in mind that
changes rely upon Active Directory replication to take place, and therefore could take up to an hour
to replicate through the domain. Also keep in mind that changes to auditing apply to the entire
Exchange organization—there is no granularity. The following command sets the retention period to
120 days:

Set-AdminAuditLogConfig -AdminAuditLogAgeLimit 120

To retrieve all of the admin audit logs, use the Search-AdminAuditLog cmdlet without any param-
eters. This command appears here:

Search-AdminAuditLog

The command to retrieve all of the admin audit logs, as well as the output associated with that
command, appears in Figure 20-9.

 CHAPTER 20 Managing Exchange Server 559

FIGURE 20-9 Use the Search-AdminAuditLog cmdlet to view Exchange audit information.

It is certainly possible to pipeline the results from the Search-AdminAuditLog cmdlet to a
Where-Object cmdlet, but it is better to use the parameters when possible. For example, to see only
changes from the Administrator user account, use the -userids parameter, as appears here:

Search-AdminAuditLog -userids administrator

To see audit log entries that occurred prior to a specific date, use the -enddate parameter. The
following commands retrieve audit entries from events that were created by the Administrator user
account and occurred prior to January 18, 2012.

Search-AdminAuditLog -UserIds administrator -EndDate 1/18/12

Search-AdminAuditLog -UserIds administrator -EndDate "january 18, 2012"

To review only the audit entries generated by a specific cmdlet, use the -cmdlets parameter. The
following example only retrieves audit entries generated by the Enable-Mailbox cmdlet:

Search-AdminAuditLog -Cmdlets Enable-Mailbox

The -cmdlets parameter accepts an array of cmdlet names. To find audit events generated by either
the Enable-Mailbox or the Set-Mailbox cmdlet, use the command shown here:

Search-AdminAuditLog -Cmdlets Enable-Mailbox, Set-Mailbox

560 Windows PowerShell 3 Step by Step

One powerful feature of the admin auditing framework is the ability to use the
New-AdminAuditLogSearch cmdlet. In addition to searching the admin audit logs, this cmdlet also
emails the report when completed. The email includes an XML attachment containing the results
from the search. The -startdate and -enddate parameters are mandatory parameters that limit the size
of the returned report. Reports are limited to 10 MB in size, and can take up to 15 minutes to arrive in
the inbox. The following command is a single logical line command (containing no line-continuation
characters) that creates a new report of all Enable-Mailbox commands used between January 1, 2012
and January 18, 2012. The command emails the report to edwilson@iammred.net.

New-AdminAuditLogSearch -cmdlets enable-Mailbox -StatusMailRecipients edwilson@iammred.net
-StartDate 1/1/2012 -EndDate 1/18/2012

The command and the output associated with the command appear in Figure 20-10.

FIGURE 20-10 The New-AdminAuditLogSearch cmdlet emails reports to the specified email address.

Figure 20-11 shows the email returning the search results from the previous query.

 CHAPTER 20 Managing Exchange Server 561

FIGURE 20-11 Autogenerated email with attached search results.

The XML attachment appears in Figure 20-12.

FIGURE 20-12 The SearchResult.xml file displayed in Internet Explorer.

562 Windows PowerShell 3 Step by Step

Parsing the audit XML file

The XML file that is generated from the New-AdminAuditLogSearch cmdlet is a standard formatted
file, and appears in XML Notepad in Figure 20-13.

FIGURE 20-13 XML Notepad clearly displays the structure of the SearchResult.xml file.

In Figure 20-13, the properties of the first event appear. The string properties appear here:

Caller
Cmdlet
Error
ObjectModified
OriginatingServer
RunDate
Succeeded

Two of the properties contain not simple strings but other objects. These two properties show up
as additional XML elements and appear here:

CmdletParameters
ModifiedProperties

 CHAPTER 20 Managing Exchange Server 563

One thing that is often confusing is that the Windows PowerShell Import-CliXML cmdlet does
not import just any old XML file; it imports only specially formatted XML that is generated from the
Export-CliXML cmdlet. This is why efforts to import the SearchResult.xml file via Import-CliXML do
not work.

You can use the Get-Content cmdlet to easily read the contents of the SearchResult.xml file and
cast the resulting text to a System.Xml.XmlDocument type by using the [xml] type accelerator. This is
much easier to accomplish than it sounds.

In the following example, the SearchResult.xml file, saved from Outlook, resides in the C:\fso
folder. The [xml] type accelerator converts the text, derived via the Get-Content cmdlet, into an XML
document.

[xml]$xml = Get-Content C:\fso\SearchResult.xml

When viewed, the searchresults XML element—the contents of the $xml variable—appears as
illustrated here:

PS C:\> $xml

xml SearchResults
--- -------------
version="1.0" encoding="utf-8" SearchResults

To view the objects stored in the searchresults XML element, use dotted notation to access the
searchresults property. This technique appears here:

PS C:\> $xml.SearchResults

Event

{Event, Event, Event}

In this example, the searchresults element contains three objects, each named event. To view the
objects, use dotted notation to access the event property, as appears here:

$xml.SearchResults.Event

As shown in Figure 20-14, the event property contains the audit information an Exchange adminis-
trator seeks.

564 Windows PowerShell 3 Step by Step

FIGURE 20-14 Use the [xml] type accelerator to gain access to search-result events.

Now use standard Windows PowerShell techniques to analyze the data. For example, if you’re only
interested in the caller and cmdlet run during the period of the report, use the Select-Object cmdlet,
as appears here:

PS C:\> $xml.SearchResults.Event | select caller, cmdlet

Caller Cmdlet
------ ------
iammred.net/Users/Administrator Enable-Mailbox
iammred.net/Users/Administrator Enable-Mailbox
iammred.net/Users/Administrator Enable-Mailbox

Output the results to a table by using the Format-Table cmdlet. The following command selects the
rundate, caller, and cmdlet, and outputs the results to an automatically sized table:

PS C:\> $xml.SearchResults.Event | Format-Table rundate, caller, cmdlet -AutoSize

RunDate Caller Cmdlet
------- ------ ------
2012-01-17T18:04:16-05:00 iammred.net/Users/Administrator Enable-Mailbox
2012-01-17T18:04:09-05:00 iammred.net/Users/Administrator Enable-Mailbox
2012-01-17T18:03:53-05:00 iammred.net/Users/Administrator Enable-Mailbox

 CHAPTER 20 Managing Exchange Server 565

The results, stored in the $xml variable, are addressable via array index notation. To view the run
date of the first event, use the [0] notation to retrieve the first element. This technique appears here:

PS C:\> $xml.SearchResults.Event[0].rundate
2012-01-17T18:04:16-05:00

One cool way to parse the data is to select the appropriate properties and pipeline the results to
the Out-GridView cmdlet. It is necessary to use the Select-Object cmdlet to choose the properties
because Out-GridView does not accept a complex object; therefore, a direct pipeline fails. This tech-
nique appears here:

$xml.SearchResults.Event | select caller, rundate, cmdlet | Out-GridView

The resulting grid appears in Figure 20-15.

FIGURE 20-15 The Out-GridView cmdlet provides an easy way to navigate audit entries.

Creating user accounts: step-by-step exercises

In this exercise, you will explore the use of Windows PowerShell to create several users whose names
are contained in a text file. Once these user accounts are created, you will use Windows PowerShell to
enable message tracking on an Exchange server.

Parsing a text file and creating Exchange user accounts

1. Open the Windows PowerShell ISE or some other Windows PowerShell script editor.

2. Create a UserNames.txt file, and ensure you have access to the path to this file. The file con-
tains a listing of users’ first and last names. A sample format for this file is shown here:

Chuck,Adams
Alice,Jones
Bob,Dentworth

566 Windows PowerShell 3 Step by Step

3. On the first line of your script, create a variable called $aryUsers to hold the array of text that
is returned by using the Get-Content cmdlet to read a text file that contains various user first
and last names. Make sure you edit the string that gets supplied to the -path argument of the
Get-Content cmdlet as required for your computer. This line of code is shown here:

$aryUsers = Get-Content -path "c:\ch9\UserNames.txt"

4. On the next line of your script, declare a variable called $password that will contain the pass-
word to use for all your users. For this example, the password is Password01. This line of code
is shown here:

$password = "Password01"

5. On the next line of your script, declare a variable called $strOU to hold the OU to place the
newly created users. For this example, place the users in the MyTestOU OU, which was created
in Chapter 15, “Working with Active Directory.” This line of code is shown here:

$strOU = "myTestOU"

6. On the next line, declare a variable called $strDomain. This variable will be used to hold the
domain name of the organization. This will become part of the user’s email address. For this
example, use nwtraders.msft, as shown here:

$strDomain = "nwtraders.msft"

7. Now declare a variable called $strDatabase. This variable will hold the name of the data-
base where the users’ mailboxes will reside. On this system, the database is called Mailbox
Database. This line of code is shown here:

$strDatabase = "Mailbox Database"

8. Use the ConvertTo-SecureString cmdlet to convert the string contained in the vari-
able $password into a secure string that can be used for the -password argument of
the New-Mailbox cmdlet. To convert a string to a secure string, you need to specify the
-asplaintext argument for the string contained in the $password variable, and use the -force
argument to force the conversion. Reuse the $password variable to hold the newly created
secure string. This line of code is shown here:

$password = ConvertTo-SecureString $password -asplaintext -force

9. Use the foreach statement to walk through the array of text that was created by using the
Get-Content cmdlet to read the text file. Use the variable $i as an individual counter. The vari-
able that holds the array of text from the Get-Content cmdlet is $aryUsers. This line of code is
shown here:

foreach ($i in $aryUsers)

 CHAPTER 20 Managing Exchange Server 567

10. Open and close the code block by using the opening and closing curly brackets, as shown
here. You will need space for at least 9 or 10 lines of code, but that can always be added later.

{

}

11. On the first line inside your code block, use the variable $newAry to hold a new array you will
create out of one line of text from the $aryUsers variable by using the Split method. When you
call the Split method, supply a comma to it because the default value of the Split method is a
blank space. The variable $i holds the current line of text from the $aryUsers variable. This line
of code is shown here:

$newAry = $i.split(',')

12. The first name is held in the first column in your text file. After this line of text is turned into an
array, the first column is addressed as element 0. To retrieve it, you use the name of the new
array and enclose the element number in square brackets. Hold the first name in the variable
$strFname, as shown here:

$strFname = $newAry[0]

13. The last name is in the second column of the text file and is addressed as element 1 in the new
array contained in the $newAry variable. Retrieve the value stored in $newAry[1] and store it in
the variable $strLname, as shown here:

$strLname = $newAry[1]

14. Now you need to use the New-Mailbox cmdlet. Supply the values for each of the parameters
you have hard-coded in the script. Use the first and last name values stored in the text file
to create the user name. The goal is to not have any of the arguments of the New-Mailbox
cmdlet be hard coded. This will greatly facilitate changing the script to run in different
domains and OUs, and with additional parameters.

15. On a new line, call the New-Mailbox cmdlet. For the -alias argument, create the user’s alias by
concatenating the first name contained in the $strFname variable with the last name con-
tained in the $strLname variable. The database that will hold the user’s mailbox is the one
supplied in the $strDatabase variable. Because the command will stretch for several lines, use
the line-continuation command (the grave accent character [`]) at the end of the line. This line
of code is shown here:

New-Mailbox -alias $strFname$strLname -Database $strDatabase `

16. The next line of your New-Mailbox command creates the user name attribute. To create it,
concatenate the first name and last name. The OU name is stored in the $strOU variable.
Continue the command to the next line. This line of code is shown here:

-Name $strFname$strLname -OrganizationalUnit $strOU `

568 Windows PowerShell 3 Step by Step

17. The next line is easy. The value for the -firstname argument is stored in $strFname, and the
value for the -lastname argument is stored in the $strLname variable. Use line continuation to
continue the command to the next line. This code is shown here:

-FirstName $strFname -LastName $strLname `

18. The display name for these users will be the first name and the last name concatenated. To
concatenate them, use the first name stored in $strFname and the last name stored in $strL-
name. Continue the command to the next line, as shown here:

-DisplayName $strFname$strLname `

19. The userprincipalname value is composed of the first name concatenated with the last name,
followed by the @ symbol and then the domain name stored in the $strDomain variable. It
looks like an email address, but it is not the same thing. The code to create this is shown here:

-UserPrincipalName $strFname$strLname"@"$strDomain `

20. The value for the -password argument is stored in the $password variable. This is the last
parameter you need to supply for this command.

-password $password

21. Save your script as <yourname>CreateUsersFromTxt.ps1. Run your script.

This concludes this step-by-step exercise.

In the next exercise, you will examine the use of Windows PowerShell to configure message track-
ing on an Exchange 2010 server.

Configuring message tracking

1. Open Windows PowerShell ISE or another Windows PowerShell script editor.

2. Declare a variable called $dteMaxAge and use the [timespan] accelerator to convert a string
type into a timespan data type. Set the time span to be equal to 30 days, 0 hours, 0 minutes,
and 0 seconds. The line of code that does this is shown here:

$dteMaxAge = [timespan]"30.00:00:00"

3. On the next line, create a variable called $intSize and use it to hold the value 50MB. The Set-
MailboxServer cmdlet expects a value with both the number and suffix to indicate whether the
number is in megabytes or kilobytes or some other unit. To do this, use the following code:

$intSize = 50MB

 CHAPTER 20 Managing Exchange Server 569

4. On the next line, use the variable $strLogPath to hold the string representing the path for
storing the message-tracking logs. This needs to be a path that is local to the actual Exchange
server. To do this, you use the following code:

$strLogPath = "c:\x2kLogs"

5. Use the variable $aryServer to hold a collection of Exchange mailbox servers obtained by
using the Get-MailboxServer cmdlet. This line of code is shown here:

$aryServer = Get-MailboxServer

6. Use the foreach statement to walk through the collection of Exchange servers held in the
$aryServer variable. Use the variable $strServer as the counter variable while you go through
the array. This line of code is shown here:

foreach ($strServer in $aryServer)

7. Open and close the code block by typing an opening curly bracket and a closing curly bracket,
as shown here:

{
}

8. Use the variable $strServer to hold the Identity property that is returned by querying the
Identity property from the object contained in the $strServer variable. This line of code is
shown here:

$strServer = $strServer.identity

9. On the next line, use the Set-MailboxServer cmdlet and supply the value for the -identity argu-
ment with the string contained in the $strServer variable. Use the grave accent character (`) to
continue the command to the next line. The code that does this is shown here:

Set-MailboxServer -identity $strServer`

10. On the next line, use the MessageTrackingLogEnabled argument to turn on message tracking.
To do this, use the value $true for the MessageTrackingLogEnabled argument. The line of code
that does this is shown following. Make sure you include the grave accent character at the end
of the line to continue the command to the next line.

-MessageTrackingLogEnabled $true`

11. On the next line, use the MessageTrackingLogMaxAge argument to set the maximum
age of the message-tracking logs. Use the timespan data type to supply the value to the
MessageTrackingLogMaxAge argument. To do this, use the value stored in the $dteMaxAge
variable. This line of code is shown following. At the end of the line, use the grave accent char-
acter to continue the code to the next line.

-MessageTrackingLogMaxAge $dteMaxAge`

570 Windows PowerShell 3 Step by Step

12. Now you need to configure the size of the logging directory. To do this, use the
MessageTrackingLogMaxDirectorySize argument of the Set-MailboxServer cmdlet. When you
specify a value for the directory size, you can tell it you want MB for megabytes, GB for giga-
bytes, KB for kilobytes, and even B for bytes and TB for terabytes. To make it easy to change
later, you store the max directory size value in a variable called $intSize. The code that sets this
argument is shown here:

-MessageTrackingLogMaxDirectorySize $intSize

13. The last parameter you need to configure for message tracking is the path for log storage.
This needs to be a local path on the Exchange server. You use the following line of code to
configure the -MessageTrackingLogPath argument:

-MessageTrackingLogPath $strLogPath

14. Save your script as <yourname>EnableMessageTracking.ps1, and run it.

This concludes the exercise.

Chapter 20 quick reference

To Do this

Create a new user in both Windows and Exchange Use the New-Mailbox cmdlet.

Find mailboxes that do not have quota limits applied to them Use the Get-Mailbox cmdlet.

Disable a mailbox Use the Disable-Mailbox cmdlet.

Enable a mailbox for an existing user Use the Enable-Mailbox cmdlet.

Produce information about the Exchange mailbox database Use the Get-MailboxDatabase cmdlet.

Produce a listing of all Exchange 2010–specific cmdlets Use the Get-ExCommand cmdlet.

Produce a listing of the logging level of all Exchange event logs Use the Get-EventLogLevel cmdlet.

 571

A P P E N D I X A

Windows PowerShell Core Cmdlets

There are 208 core Microsoft Windows PowerShell 3.0 cmdlets that are contained in two modules.
The two modules are the Microsoft.PowerShell.Management module and the Microsoft.Power-

Shell.Utility module. These cmdlets and their descriptions appear in Table A.

TABLE A Windows PowerShell 3.0 cmdlets

Name Description

Add-Computer Adds the local computer to a domain or workgroup.

Add-Content Appends content, such as words or data, to a file.

Add-Member Adds custom properties and methods to an instance of a Windows PowerShell
object.

Add-Printer Adds a printer to the specified computer.

Add-PrinterDriver Installs a printer driver on the specified computer.

Add-PrinterPort Installs a printer port on the specified computer.

Add-Type Adds a Microsoft .NET Framework type (a class) to a Windows PowerShell
session.

Checkpoint-Computer Creates a system restore point on the local computer.

Clear-Content Deletes the contents of a file, but does not delete the file.

Clear-EventLog Deletes all entries from specified event logs on the local or remote computers.

Clear-Item Deletes the contents of an item, but does not delete the item.

Clear-ItemProperty Deletes the value of a property but does not delete the property.

Clear-Variable Deletes the value of a variable.

Compare-Object Compares two sets of objects.

Complete-Transaction Commits the active transaction.

Connect-WSMan Connects to the WinRM service on a remote computer.

ConvertFrom-Csv Converts object properties in comma-separated value (CSV) format into CSV
versions of the original objects.

ConvertFrom-Json Converts a JSON-formatted string to a custom object.

ConvertFrom-StringData Converts a string containing one or more key/value pairs to a hash table.

Convert-Path Converts a path from a Windows PowerShell path to a Windows PowerShell
provider path.

572 Windows PowerShell 3 Step by Step

Name Description

ConvertTo-Csv Converts objects into a series of variable-length CSV strings.

ConvertTo-Html Converts .NET Framework objects into HTML that can be displayed in a web
browser.

ConvertTo-Json Converts an object to a JSON-formatted string.

ConvertTo-Xml Creates an XML-based representation of an object.

Copy-Item Copies an item from one location to another within a namespace.

Copy-ItemProperty Copies an item property and value from a specified item to another item.

Debug-Process Debugs one or more processes running on the local computer.

Disable-ComputerRestore Disables the System Restore feature on the specified file system drive.

Disable-PSBreakpoint Disables the breakpoints in the current console.

Disable-WSManCredSSP Disables Credential Security Support Provider (CredSSP) authentication on a
client computer.

Disconnect-WSMan Disconnects the client from the WinRM service on a remote computer.

Enable-ComputerRestore Enables the System Restore feature on the specified file system drive.

Enable-PSBreakpoint Enables the breakpoints in the current console.

Enable-WSManCredSSP Enables CredSSP authentication on a client or on a server computer.

Export-Alias Exports information about currently defined aliases to a file.

Export-Clixml Creates an XML-based representation of an object or objects and stores it in
a file.

Export-Csv Converts objects into a series of CSV strings and saves the strings in a CSV file.

Export-FormatData Saves formatting data from the current session in a formatting file.

Export-PSSession Imports commands from another session and saves them in a Windows
PowerShell module.

Format-Custom Uses a customized view to format the output.

Format-List Formats the output as a list of properties in which each property appears on
a new line.

Format-Table Formats the output as a table.

Format-Wide Formats objects as a wide table that displays only one property of each object.

Get-Alias Gets the aliases for the current session.

Get-ChildItem Gets the files and folders in a file system drive.

Get-ComputerRestorePoint Gets the restore points on the local computer.

Get-Content Gets the contents of a file.

Get-ControlPanelItem Gets control panel items.

Get-Culture Gets the current culture set in the operating system.

Get-Date Gets the current date and time.

Get-Event Gets the events in the event queue.

 APPENDIX A Windows PowerShell Core Cmdlets 573

Name Description

Get-EventLog Gets the events in an event log, or a list of the event logs, on the local or
remote computers.

Get-EventSubscriber Gets the event subscribers in the current session.

Get-FormatData Gets the formatting data in the current session.

Get-Host Gets an object that represents the current host program.

Get-HotFix Gets the hotfixes that have been applied to the local and remote computers.

Get-Item Gets the item at the specified location.

Get-ItemProperty Gets the properties of a specified item.

Get-Location Gets information about the current working location or a location stack.

Get-Member Gets the properties and methods of objects.

Get-PrintConfiguration Gets the configuration information of a printer.

Get-Printer Retrieves a list of printers installed on a computer.

Get-PrinterDriver Retrieves the list of printer drivers installed on the specified computer.

Get-PrinterPort Retrieves a list of printer ports installed on the specified computer.

Get-PrinterProperty Retrieves printer properties for the specified printer.

Get-PrintJob Retrieves a list of print jobs in the specified printer.

Get-Process Gets the processes that are running on the local computer or a remote
computer.

Get-PSBreakpoint Gets the breakpoints that are set in the current session.

Get-PSCallStack Displays the current call stack.

Get-PSDrive Gets drives in the current session.

Get-PSProvider Gets information about the specified Windows PowerShell provider.

Get-Random Gets a random number, or selects objects randomly from a collection.

Get-Service Gets the services on a local or remote computer.

Get-TraceSource Gets the Windows PowerShell components that are instrumented for tracing.

Get-Transaction Gets the current (active) transaction.

Get-TypeData Gets the extended type data in the current session.

Get-UICulture Gets the current user interface (UI) culture settings in the operating system.

Get-Unique Returns unique items from a sorted list.

Get-Variable Gets the variables in the current console.

Get-WmiObject Gets instances of Windows Management Instrumentation (WMI) classes or
information about the available classes.

Get-WSManCredSSP Gets the CredSSP-related configuration for the client.

Get-WSManInstance Displays management information for a resource instance specified by a
resource URI.

Group-Object Groups objects that contain the same value for specified properties.

574 Windows PowerShell 3 Step by Step

Name Description

Import-Alias Imports an alias list from a file.

Import-Clixml Imports a CLIXML file and creates corresponding objects within Windows
PowerShell.

Import-Csv Creates table-like custom objects from the items in a CSV file.

Import-LocalizedData Imports language-specific data into scripts and functions based on the UI
culture that is selected for the operating system.

Import-PSSession Imports commands from another session into the current session.

Invoke-AsWorkflow Runs a command or expression as a Windows PowerShell workflow.

Invoke-Expression Runs commands or expressions on the local computer.

Invoke-Item Performs the default action on the specified item.

Invoke-RestMethod Sends an HTTP or HTTPS request to a REST-compliant web service.

Invoke-WebRequest Sends an HTTP or HTTPS request to a web service.

Invoke-WmiMethod Calls WMI methods.

Invoke-WSManAction Invokes an action on the object that is specified by the resource URI and by
the selectors.

Join-Path Combines a path and a child path into a single path. The provider supplies the
path delimiters.

Limit-EventLog Sets the event log properties that limit the size of the event log and the age of
its entries.

Measure-Command Measures the time it takes to run script blocks and cmdlets.

Measure-Object Calculates the numeric properties of objects, and the characters, words, and
lines in string objects, such as files of text.

Move-Item Moves an item from one location to another.

Move-ItemProperty Moves a property from one location to another.

New-Alias Creates a new alias.

New-Event Creates a new event.

New-EventLog Creates a new event log and a new event source on a local or remote
computer.

New-Item Creates a new item.

New-ItemProperty Creates a new property for an item and sets its value. For example, you can
use New-ItemProperty to create and change registry values and data, which
are properties of a registry key.

New-Object Creates an instance of a.NET Framework or COM object.

New-PSDrive Creates temporary and persistent mapped network drives.

New-Service Creates a new Windows service.

New-TimeSpan Creates a TimeSpan object.

New-Variable Creates a new variable.

New-WebServiceProxy Creates a web service proxy object that lets you use and manage the web
service in Windows PowerShell.

 APPENDIX A Windows PowerShell Core Cmdlets 575

Name Description

New-WSManInstance Creates a new instance of a management resource.

New-WSManSessionOption Creates a WS-Management session option hash table to use as input
parameters to the following WS-Management cmdlets: Get-WSManInstance,
Set-WSManInstance, Invoke-WSManAction, and Connect-WSMan.

Out-File Sends output to a file.

Out-GridView Sends output to an interactive table in a separate window.

Out-Printer Sends output to a printer.

Out-String Sends objects to the host as a series of strings.

Pop-Location Changes the current location to the location most recently pushed onto the
stack. You can pop the location from the default stack or from a stack that you
create by using the Push-Location cmdlet.

Push-Location Adds the current location to the top of a location stack.

Read-Host Reads a line of input from the console.

Register-EngineEvent Subscribes to events that are generated by the Windows PowerShell engine
and by the New-Event cmdlet.

Register-ObjectEvent Subscribes to events that are generated by a.NET Framework object.

Register-WmiEvent Subscribes to a WMI event.

Remove-Computer Removes the local computer from its domain.

Remove-Event Deletes events from the event queue.

Remove-EventLog Deletes an event log or unregisters an event source.

Remove-Item Deletes the specified items.

Remove-ItemProperty Deletes the property and its value from an item.

Remove-Printer Removes a printer from the specified computer.

Remove-PrinterDriver Deletes the printer driver from the specified computer.

Remove-PrinterPort Removes the specified printer port from the specified computer.

Remove-PrintJob Removes a print job on the specified printer.

Remove-PSBreakpoint Deletes breakpoints from the current console.

Remove-PSDrive Deletes temporary Windows PowerShell drives and disconnects mapped
network drives.

Remove-TypeData Deletes extended types from the current session

Remove-Variable Deletes a variable and its value.

Remove-WmiObject Deletes an instance of an existing WMI class.

Remove-WSManInstance Deletes a management resource instance.

Rename-Computer Renames a computer.

Rename-Item Renames an item in a Windows PowerShell provider namespace.

Rename-ItemProperty Renames a property of an item.

Rename-Printer Renames the specified printer.

576 Windows PowerShell 3 Step by Step

Name Description

Reset-ComputerMachinePassword Resets the machine account password for the computer.

Resolve-Path Resolves the wildcard characters in a path and displays the path contents.

Restart-Computer Restarts (reboots) the operating system on local and remote computers.

Restart-PrintJob Restarts a print job on the specified printer.

Restart-Service Stops and then starts one or more services.

Restore-Computer Starts a system restore on the local computer.

Resume-PrintJob Resumes a suspended print job.

Resume-Service Resumes one or more suspended (paused) services.

Select-Object Selects objects or object properties.

Select-String Finds text in strings and files.

Select-Xml Finds text in an XML string or document.

Send-MailMessage Sends an email message.

Set-Alias Creates or changes an alias (alternate name) for a cmdlet or other command
element in the current Windows PowerShell session.

Set-Content Replaces the contents of a file with contents that you specify.

Set-Date Changes the system time on the computer to a time that you specify.

Set-Item Changes the value of an item to the value specified in the command.

Set-ItemProperty Creates or changes the value of a property of an item.

Set-Location Sets the current working location to a specified location.

Set-PrintConfiguration Sets the configuration information for the specified printer.

Set-Printer Updates the configuration of an existing printer.

Set-PrinterProperty Modifies the printer properties for the specified printer.

Set-PSBreakpoint Sets a breakpoint on a line, command, or variable.

Set-Service Starts, stops, and suspends a service, and changes its properties.

Set-TraceSource Configures, starts, and stops a trace of Windows PowerShell components.

Set-Variable Sets the value of a variable. It creates the variable if one with the requested
name does not exist.

Set-WmiInstance Creates or updates an instance of an existing WMI class.

Set-WSManInstance Modifies the management information that is related to a resource.

Set-WSManQuickConfig Configures the local computer for remote management.

Show-Command Creates Windows PowerShell commands in a graphical command window.

Show-ControlPanelItem Opens control panel items.

Show-EventLog Displays the event logs of the local or a remote computer in the Event Viewer
utility.

Sort-Object Sorts objects by property values.

Split-Path Returns the specified part of a path.

 APPENDIX A Windows PowerShell Core Cmdlets 577

Name Description

Start-Process Starts one or more processes on the local computer.

Start-Service Starts one or more stopped services.

Start-Sleep Suspends the activity in a script or session for the specified period of time.

Start-Transaction Starts a transaction.

Stop-Computer Stops (shuts down) local and remote computers.

Stop-Process Stops one or more running processes.

Stop-Service Stops one or more running services.

Suspend-PrintJob Suspends a print job on the specified printer.

Suspend-Service Suspends (pauses) one or more running services.

Tee-Object Saves command output in a file or variable and also sends it down the
pipeline.

Test-ComputerSecureChannel Tests and repairs the secure channel between the local computer and its
domain.

Test-Connection Sends ICMP echo request packets (pings) to one or more computers.

Test-Path Determines whether all elements of a file or directory path exist.

Test-WSMan Tests whether the WinRM service is running on a local or remote computer.

Trace-Command Configures and starts a trace of the specified expression or command.

Unblock-File Unblocks files that were downloaded from the Internet.

Undo-Transaction Rolls back the active transaction.

Unregister-Event Cancels an event subscription.

Update-FormatData Updates the formatting data in the current session.

Update-List Adds items to and removes items from a property value that contains a
collection of objects.

Update-TypeData Updates the extended type data in the session.

Use-Transaction Adds the script block to the active transaction.

Wait-Event Waits until a particular event is raised before continuing to run.

Wait-Process Waits for the processes to be stopped before accepting more input.

Write-Debug Writes a debug message to the console.

Write-Error Writes an object to the error stream.

Write-EventLog Writes an event to an event log.

Write-Host Writes customized output to a host.

Write-Output Sends the specified objects to the next command in the pipeline. If the
command is the last command in the pipeline, the objects are displayed in the
console.

Write-Progress Displays a progress bar within a Windows PowerShell command window.

Write-Verbose Writes text to the verbose message stream.

Write-Warning Writes a warning message.

 579

A P P E N D I X B

Windows PowerShell
Module Coverage

Microsoft Windows PowerShell 3.0 represents a major advance over Windows PowerShell 2.0.
Especially on Windows 8 and Windows Server 2012, the amount of cmdlet coverage vastly

increases. But many of the cmdlets are specialized, and the actual number of cmdlets varies depend-
ing on what roles and features the configuration enables. In addition, to get a fuller picture of cover-
age, it is necessary to include functions—because the Common Information Model (CIM) provider
wraps Windows Management Instrumentation (WMI) classes and exposes the result as a function,
not a cmdlet—as well as cmdlets. On a default install of Windows Server 2012 with only the File and
Storage Services role configured, there are 1,162 cmdlets and features. To get an idea of the cmdlet
coverage, load all of the modules, and then use the Get-Command cmdlet to examine the cmdlets.
The result is a list that details what modules exist and the number of cmdlets and functions exposed.
Table B shows this list. The command used to find this information appears here:

PS C:\> Get-Module -ListAvailable | Import-Module
PS C:\> Get-Command -CommandType cmdlet, function | Group-Object module -NoElement |
Sort-Object count -Descending | Format-Table -Property count, name -AutoSize -Wrap

TABLE B Count of cmdlets and functions from modules on Windows Server 2012

Count Name

135 ActiveDirectory

92 Microsoft.PowerShell.Utility

84 NetSecurity

83 Storage

82 Microsoft.PowerShell.Management

73 RemoteDesktop

64 NetAdapter

42 NFS

41 MsDtc

34 NetworkTransition

32 BranchCache

580 Windows PowerShell 3 Step by Step

Count Name

31 NetTCPIP

28 SmbShare

23 IscsiTarget

22 ServerManagerTasks

22 Dism

20 PrintManagement

19 ScheduledTasks

18 International

17 PKI

17 DnsClient

16 PSScheduledJob

14 UserAccessLogging

13 Microsoft.WSMan.Management

13 iSCSI

13 NetLbfo

12 CimCmdlets

12 Wdac

11 DirectAccessClientComponents

10 PSDiagnostics

10 Microsoft.PowerShell.Security

9 TrustedPlatformModule

8 BitsTransfer

7 NetSwitchTeam

6 Appx

6 Kds

6 VpnClient

5 AppLocker

5 Microsoft.PowerShell.Diagnostics

5 ServerManager

5 SecureBoot

4 MMAgent

4 NetworkConnectivityStatus

4 NetQos

4 BestPractices

 APPENDIX B Windows PowerShell Module Coverage 581

Count Name

3 ISE

3 WindowsDeveloperLicense

3 WindowsErrorReporting

2 PSWorkflow

2 SmbWitness

2 NetConnection

2 TroubleshootingPack

2 Whea

2 ServerCore

2 Microsoft.PowerShell.Host

 583

A P P E N D I X C

Windows PowerShell
Cmdlet naming

The cmdlets installed with Microsoft Windows PowerShell all follow a standard naming convention.
Windows PowerShell cmdlets use a verb-noun pair. For example, there are four commands that

start with the verb Add: Add-Content, Add-History, Add-Member, and Add-PSSnapin. When creating
cmdlets, you should endeavor to follow the same kind of naming convention. The recognition of this
naming convention is helpful in learning the cmdlets that come with Windows PowerShell. Table C
shows the number of Windows PowerShell cmdlets associated with each of the verbs. In addition,
it shows sample Windows PowerShell cmdlet names.

TABLE C Cmdlet naming

Count Name Sample use

88 Get Get-Acl, Get-Alias, Get-AppLockerFileInformation

40 Set Set-Acl, Set-Alias, Set-AppLockerPolicy

34 New New-Alias, New-AppLockerPolicy, New-CertificateNotificationTask

25 Remove Remove-AppxPackage, Remove-AppxProvisionedPackage

14 Add Add-AppxPackage, Add-AppxProvisionedPackage, Add-BitsFile

10 Invoke Invoke-CimMethod, Invoke-Command, Invoke-Expression

10 Import Import-Alias, Import-Certificate, Import-Clixml

10 Export Export-Alias, Export-Certificate, Export-Clixml

10 Enable Enable-ComputerRestore, Enable-JobTrigger, Enable-PSBreakpoint

10 Disable Disable-ComputerRestore, Disable-JobTrigger, Disable-PSBreakpoint

9 Test Test-AppLockerPolicy, Test-Certificate, Test-ComputerSecureChannel

9 Clear Clear-Content, Clear-EventLog, Clear-History

8 Start Start-BitsTransfer, Start-DtcDiagnosticResourceManager, Start-Job

8 Write Write-Debug, Write-Error, Write-EventLog

7 Out Out-Default, Out-File, Out-GridView

6 Register Register-CimIndicationEvent, Register-EngineEvent

584 Windows PowerShell 3 Step by Step

Count Name Sample use

6 Stop Stop-Computer, Stop-DtcDiagnosticResourceManager, Stop-Job

6 ConvertTo ConvertTo-Csv, ConvertTo-Html, ConvertTo-Json

5 Format Format-Custom, Format-List, Format-SecureBootUEFI

4 ConvertFrom ConvertFrom-Csv, ConvertFrom-Json, ConvertFrom-SecureString

4 Show Show-Command, Show-ControlPanelItem, Show-EventLog

4 Update Update-FormatData, Update-Help, Update-List

4 Unregister Unregister-Event, Unregister-PSSessionConfiguration

3 Select Select-Object, Select-String, Select-Xml

3 Resume Resume-BitsTransfer, Resume-Job, Resume-Service

3 Rename Rename-Computer, Rename-Item, Rename-ItemProperty

3 Wait Wait-Event, Wait-Job, Wait-Process

3 Complete Complete-BitsTransfer, Complete-DtcDiagnosticTransaction

3 Receive Receive-DtcDiagnosticTransaction, Receive-Job, Receive-PSSession

3 Suspend Suspend-BitsTransfer, Suspend-Job, Suspend-Service

2 Copy Copy-Item, Copy-ItemProperty

2 Send Send-DtcDiagnosticTransaction, Send-MailMessage

2 Save Save-Help, Save-WindowsImage

2 Restart Restart-Computer, Restart-Service

2 Resolve Resolve-DnsName, Resolve-Path

2 Disconnect Disconnect-PSSession, Disconnect-WSMan

2 Use Use-Transaction, Use-WindowsUnattend

2 Connect Connect-PSSession, Connect-WSMan

2 Move Move-Item, Move-ItemProperty

2 Measure Measure-Command, Measure-Object

2 Join Join-DtcDiagnosticResourceManager, Join-Path

2 Unblock Unblock-File, Unblock-Tpm

2 Undo Undo-DtcDiagnosticTransaction, Undo-Transaction

1 Compare Compare-Object

1 Tee Tee-Object

1 Split Split-Path

1 Checkpoint Checkpoint-Computer

1 Sort Sort-Object

1 Trace Trace-Command

1 Switch Switch-Certificate

 APPENDIX C Windows PowerShell Cmdlet Naming 585

Count Name Sample use

1 Dismount Dismount-WindowsImage

1 Repair Repair-WindowsImage

1 Reset Reset-ComputerMachinePassword

1 Confirm Confirm-SecureBootUEFI

1 Read Read-Host

1 Push Push-Location

1 Where Where-Object

1 Mount Mount-WindowsImage

1 Limit Limit-EventLog

1 Initialize Initialize-Tpm

1 Convert Convert-Path

1 Group Group-Object

1 ForEach ForEach-Object

1 Exit Exit-PSSession

1 Enter Enter-PSSession

1 Debug Debug-Process

1 Restore Restore-Computer

1 Pop Pop-Location

 587

A P P E N D I X D

Windows PowerShell FaQ

This appendix answers many questions that come up when I teach Windows PowerShell classes and
when making Windows PowerShell presentations at various events.

Q. How many cmdlets are available on a default Windows PowerShell 3.0 installation?

A. 403

Q. How do you find out how many cmdlets are available on a default Windows PowerShell
installation?

A. Use the following:

Get-Module -ListAvailable | Import-Module ; gcm -co cmdlet | measure

Q. What is the difference between a read-only variable and a constant?

A. A read-only variable is one whose content is read-only. You can, however, modify it by using
the Set-Variable cmdlet with the -force parameter. You can also delete it by using Remove-
Variable -force. A constant variable however, cannot be deleted, nor can it be modified, even
when using -force.

Q. What are the three most important cmdlets?

A. The three most important cmdlets are Get-Command, Get-Help, and Get-Member.

Q. Which cmdlets can I use to work with event logs?

A. To work with event logs, use the Get-EventLog cmdlet or the Get-WinEvent cmdlet.

Q. How did you find that cmdlet?

A. Use the following:

Get-Command -Noun *event*

588 Windows PowerShell 3 Step by Step

Q. What .NET Framework class is leveraged by the Get-EventLog cmdlet?

A. The following class is used by the Get-EventLog cmdlet:

System.Diagnostics.EventLogEntry

Q. How would I find the above information?

A. Use the following:

get-eventlog application | get-member

Q. What is the most powerful command in PowerShell?

A. Switch is the most powerful command.

Q. What is `t used for?

A. `t is used for a tab.

Q. How would I use the `t in a script to produce a tab?

A. You can do so as follows:

"`thi"

Q. That syntax above is ugly. What happens if I put a space in it, like this: "`t hi"?

A. If you include a space in the line, then you will tab over one tab stop and one additional space.

Q. Is the `t command case sensitive?

A. Yes. It is one of the few things that is case sensitive in Windows PowerShell. If you use the `t as
shown here, then you will produce Thi on the line:

"`Thi"

Q. How do I run a script with a space in the path?

A. Use the following:

PS > c:\my`folder\myscript.ps1
PS> &(“c:\my folder\myscript.ps1”)

 APPENDIX D Windows PowerShell FAQ 589

Q. What is the easiest way to create an array?

A. Use the following:

$array = “1”,”2”,”3”,”4”
$array = 1..4

Q. How do I display a calculated value (for example, megabytes instead of bytes) from a WMI
query when pipelining data into a Format-Table cmdlet?

A. Create a hash table in the position where you wish to display the data and perform the calcu-
lation inside curly brackets. Assign the results to the expression parameter. This is shown here:

gwmi win32_logicaldisk -Filter "drivetype=3" | ft -Property name, @{ Label="freespace";
expression={$_.freespace/1MB}}

Q. Which parameter of the Get-WMIObject cmdlet takes the place of a WQL Where clause?

A. The -filter parameter takes its place, as shown here:

Get-WMIObject win32_logicaldisk -filter "drivetype = 3"

Q. Which command, when typed at the beginning of a script, will cause Windows PowerShell to
ignore errors and continue executing the code?

A. The following command does this:

$erroractionpreference=SilentlyContinue

Q. How can I display only the current year?

A. Use the following:

get-date -Format yyyy
get-date -f yyyy
(Get-Date).year

Q. What is Windows PowerShell, in 30 words or less?

A. Windows PowerShell is the next-generation CMD prompt and scripting language
from Microsoft. It can be a replacement for VBScript and for the CMD prompt in most
circumstances.

590 Windows PowerShell 3 Step by Step

Q. How can you be sure that was 30 words or less?

A. Use the following code:

$a = "Windows PowerShell is the next-generation CMD prompt and scripting language
from Microsoft. It can be a replacement for VBScript and for the CMD prompt in most
circumstances."
Measure-Object -InputObject $a -Word

Q. What are three ways of querying Active Directory from within Windows PowerShell?

A. You can use ADO and perform an LDAP dialect query, or you can use ADO and perform an
SQL dialect query. You can also use the Get-ADOObject cmdlet from the Active Directory
module.

Q. How can I print out the amount of free space on a fixed disk in megabytes with two decimal
places?

A. Use a format specifier, as shown here:

"{0:n2}"-f ((gwmi win32_logicaldisk -Filter "drivetype='3'").freespace/1MB)

Q. I need to replace the 2 with 12 in the following $array variable: $array = “1”,“2”,“3”,“4”. How
can I do this?

A. Use the following:

$array=[regex]::replace($array,"2","12")

Q. I have the following Switch statement and I want to prevent the line Write-Host “switched”
from being executed. How can I do this?

$a = 3
switch ($a) {
 1 { "one detected" }
 2 { "two detected" }
}
Write-Host "switched"

A. Add an exit statement to the default switch, as shown here:

$a = 3
switch ($a) {
1 { "one detected" }
2 { "two detected"}
DEFAULT { exit}
}
Write-Host "switched

 APPENDIX D Windows PowerShell FAQ 591

Q. How can I supply alternate credentials for a remote WMI call when using the Get-WmiObject
cmdlet?

A. Use the -credential parameter, as shown here:

Get-WmiObject Win32_BIOS -ComputerName Server01 -credential (get-credential
` Domain01@User01)

or as shown here:

$c = Get-Credential
Get-WmiObject Win32_DiskDrive -ComputerName Server01 -credential $c

Once you have created the credential object, create a CIM session to the remote system by
using New-CimSession. You can also use the credential object to create a PS session to the
remote system by using New-PSSession.

Q. How can I generate a random number?

A. Use the Get-Random cmdlet, or use the System.Random .NET Framework class, and call the
next() method, as shown here:

([random]5).next()

Q. How can I generate a random number between the values of 1 and 10?

A. Use the System.Random .NET Framework class and call the next() method, as shown here:

([random]5).next(“1”,”10”)

You can also use the Get-Random cmdlet, as shown here:

Get-Random -Maximum 10 -Minimum 1

Q. Which of the commands support regular expressions?

A. Where-Object supports regular expressions, as shown here using -match:

get-process | where-object { $_.ProcessName -match "^p.*" }

In addition, the Switch statement uses regular expressions, as shown here:

switch -regex ("Hi there") { "hi" { "found" } }

Q. How can I create an audit file of all commands typed during a PowerShell session?

A. Use the Start-Transcript command, as shown here:

Start-transcript

592 Windows PowerShell 3 Step by Step

Q. How can I see how many seconds it takes to retrieve objects from the application log?

A. Use the following:

(Measure-Command { Get-EventLog application }).totalseconds

Q. I want to get a list of all the modules installed with Windows PowerShell on my machine. How
can I do this?

A. Inside a PowerShell console, type the following command:

Get-Module -ListAvailable

Q. I want to create an ASCII text file to hold the results of the Get-Process cmdlet. How can this
be done?

A. You can pipeline the results to the Out-File cmdlet and use the -encoding parameter to specify
ASCII. You can also use redirection, like this:

Get-Process >>c:\fso\myprocess.txt

Q. Someone told me the Write-Host cmdlet can use color for output. Can you give me some
samples of acceptable syntax?

A. The following are some examples:

write-host -ForegroundColor 12 "hi"
write-host -ForegroundColor 12 "hi" -BackgroundColor white
write-host -ForegroundColor blue -BackgroundColor white
write-host -ForegroundColor 2 hi
write-host -backgroundcolor 2 hi
write-host -backgroundcolor ("{0:X}" -f 2) hi
for($i=0 ; $i -le 15 ; $i++) { write-host -foregroundcolor $i "hi" }

Q. How can I tell if a command has completed successfully?

A. Query the $error automatic variable. If $error[0] reports no information, then no errors have
occurred. You can also query the $? automatic variable. If $? Is equal to true, then the com-
mand completed successfully.

Q. How can I split the string shown in the following $a variable?

$a = "atl-ws-01,atl-ws-02,atl-ws-03,atl-ws-04"

A. Use the split method, as follows:

$b = $a.split(",")

 APPENDIX D Windows PowerShell FAQ 593

Q. How do I join an array such as the one in the $a variable shown here?

 $a = "h","e","l","l","o"

A. Use the join static method from the String class:

$b = [string]::join("", $a)

Q. I need to build up a path to the Windows\system32 directory. How can I do this?

A. Use the following:

Join-Path -path (get-item env:\windir).value -ChildPath system32

Q. How can l print out the value of %systemroot%?

A. Use the following:

(get-item Env:\systemroot).value
$env:systemroot

Q. I need to display process output at the PowerShell prompt and write that same output to a
text file. How can I do this?

A. Use the following:

Get-process | Tee-Object -FilePath c:\fso\proc.txt

Q. I would like to display the ASCII character associated with the ASCII value 56. How can I do
this?

A. Use the following:

[char]56

Q. I want to create a strongly typed array of system diagnostics processes and store it in a vari-
able called $a. How can I do this?

A. Use the following:

[diagnostics.process[]]$a=get-process

Q. I want to display the number 1234 in hexadecimal. How can I do this?

A. Use the following:

"{0:x}" -f 1234

594 Windows PowerShell 3 Step by Step

Q. I want to display the decimal value of the hexadecimal number 0x4d2. How can I do this?

A. Use the following:

0x4d2

Q. I want to find out if a string contains the letter m. The string is stored in the variable $a, as
shown following. How can I do this?

A. Use the contains operator, as illustrated here:

$a=”northern hairy-nosed wombat”
[string]$a.contains(“m”)
$a.contains(“m”)
[regex]::match($a,"m")
([regex]::match($a,"m")).success

Q. How can I solicit input from the user?

A. Use the Read-Host cmdlet as shown here:

$in = Read-Host “enter the data”

Q. Can I use a variable named $input to hold input from the Read-Host cmdlet?

A. $input is an automatic variable that is used for script blocks in the middle of a pipeline. As
such, it would be a very poor choice. Call the variable $userInput or something similar if you
wish, but don’t call it $input.

Q. How can I cause the script to generate an error if a variable has not been declared?

A. Place Set-PSDebug -strict anywhere in the script. Any nondeclared variable will generate an
error when accessed. You can also use Set-StrictMode -version latest.

Q. How can I increase the number of entries stored by the Get-History buffer?

A. Assign the desired value to the $MaximumHistoryCount automatic variable, as shown here:

$MaximumHistoryCount = 65

Q. How can I specify the number 1 as a 16-bit integer array?

A. Use the following:

$a=[int16[]][int16]1

 APPENDIX D Windows PowerShell FAQ 595

Q. I have the string "this̀ "is a string" and I want to replace the quotation mark with nothing—no
space, just nothing. Effectively, I want to remove the quotation mark from the string. The
backtick(`) is here used to escape the quotation mark. How can I use the Replace method to
replace the quotation mark with nothing, if the string is held in a variable $arr? I want the
results to look like this:

thisis a string

A. Use the Replace method from the System.String .NET Framework class, as shown here:

$arr.Replace("`"","")

You can also use the ASCII value of the quotation mark, and use the Replace method from the
System.String .NET Framework class, as shown here:

$arr.Replace([char]34,"")

Q. How can I use Invoke-Expression to run a script inside PowerShell when the path has spaces
in it?

A. Escape the spaces with a backtick (grave) character (`) and surround the string containing the
path with single quotes, as shown here:

Invoke-Expression ('h:\LABS\extras\Run` With` Spaces.ps1')

Q. How can I create an array of byte values that contain hexadecimal values?

A. Use the [byte] type constraint, but include the [] array character such that the type constraint
now looks like [byte[]]. To specify a hexadecimal number, use 0x format. The resulting line of
code is shown here:

[byte[]]$mac = 0x00,0x19,0xD2,0x72,0x0E,0x2A

Q. I need to count backward. How can I do this?

A. Use a for statement. In the second position (the condition), ensure that you use greater-than-
or-equal-to for the condition. In the third position (the repeat), use the decrement-and-assign
character, which is a double minus (--). When you put it all together, it will look like this:

for($i=30;$i -ge 20 ; $i --){$i}

 597

A P P E N D I X E

Useful WMI Classes

With more than 2,000 WMI classes installed on a modern Microsoft Windows operating system,
the question is not what you can use in a script, but what you should script. Some WMI classes

return a lot of information, but for all practical purposes this information is basically useless. It makes
sense to home in on the WMI classes that produce the most valuable information. This appendix
doesn’t provide a complete list—rather, it offers a list of WMI classes that I have found myself using
again and again over the last few years. Tables E-1 through E-32 list WMI class names, as well as their
associated properties, methods, and descriptions. The tables are organized by hardware components,
software components, and finally by performance counter classes.

TABLE E-1 Cooling device classes

Class Properties Methods Description

Win32_Fan 22 3 Represents the properties of a fan device in the computer
system.

Win32_HeatPipe 20 2 Represents the properties of a heat pipe cooling device.

Win32_Refrigeration 20 2 Represents the properties of a refrigeration device.

Win32_TemperatureProbe 35 2 Represents the properties of a temperature sensor
(electronic thermometer).

TABLE E-2 Input device classes

Class Properties Methods Description

Win32_Keyboard 23 2 Represents a keyboard installed on a Windows system.

Win32_PointingDevice 33 2 Represents an input device used to point to and select
regions on the display of a Windows computer system.

598 Windows PowerShell 3 Step by Step

TABLE E-3 Mass storage classes

Class Properties Methods Description

Win32_AutochkSetting 4 0 Represents the settings for the autocheck operation of a
disk.

Win32_CDROMDrive 48 2 Represents a CD-ROM drive on a Windows computer
system.

Win32_DiskDrive 49 2 Represents a physical disk drive as shown by a computer
running the Windows operating system.

Win32_FloppyDrive 30 2 Manages the capabilities of a floppy disk drive.

Win32_PhysicalMedia 23 0 Represents any type of documentation or storage medium.

Win32_TapeDrive 40 2 Represents a tape drive on a Windows computer.

TABLE E-4 Motherboard, controller, and port classes

Class Properties Methods Description

Win32_1394Controller 23 2 Represents the capabilities and management
of a 1394 controller.

Win32_1394ControllerDevice 7 0 Relates the high-speed serial bus (IEEE
1394 FireWire) controller and the
Win32_LogonSession instance connected to it.

Win32_AllocatedResource 2 0 Relates a logical device to a system resource.

Win32_AssociatedProcessorMemory 3 0 Relates a processor and its cache memory.

Win32_BaseBoard 29 1 Represents a baseboard (also known as a
motherboard or system board).

Win32_BIOS 27 0 Represents the attributes of the computer
system’s basic input/output services (BIOS)
that are installed on the computer.

Win32_Bus 21 2 Represents a physical bus as shown by a
Windows operating system.

Win32_CacheMemory 53 2 Represents cache memory (internal and
external) on a computer system.

Win32_ControllerHasHub 7 0 Represents the hubs downstream from the
universal serial bus (USB) controller.

Win32_DeviceBus 2 0 Relates a system bus and a logical device
using the bus.

Win32_DeviceMemoryAddress 11 0 Represents a device memory address on a
Windows system.

Win32_DeviceSettings 2 0 Relates a logical device and a setting that can
be applied to it.

Win32_DMAChannel 19 0 Represents a direct memory access (DMA)
channel on a Windows computer system.

Win32_FloppyController 23 2 Represents the capabilities and management
capacity of a floppy disk drive controller.

 APPENDIX E Useful WMI Classes 599

Class Properties Methods Description

Win32_IDEController 23 2 Represents the capabilities of an Integrated
Drive Electronics (IDE) controller device.

Win32_IDEControllerDevice 7 0 Association class that relates an IDE controller
and the logical device.

Win32_InfraredDevice 23 2 Represents the capabilities and management
of an infrared device.

Win32_IRQResource 15 0 Represents an interrupt request line (IRQ)
number on a Windows computer system.

Win32_MemoryArray 39 2 Represents the properties of the computer
system memory array and mapped addresses.

Win32_MemoryArrayLocation 2 0 Relates a logical memory array and the
physical memory array upon which it exists.

Win32_MemoryDevice 39 2 Represents the properties of a computer
system's memory device along with its
associated mapped addresses.

Win32_MemoryDeviceArray 2 0 Relates a memory device and the memory
array in which it resides.

Win32_MemoryDeviceLocation 2 0 Association class that relates a memory device
and the physical memory on which it exists.

Win32_MotherboardDevice 22 2 Represents a device that contains the central
components of the Windows computer
system.

Win32_OnBoardDevice 20 0 Represents common adapter devices built
into the motherboard (system board).

Win32_ParallelPort 26 2 Represents the properties of a parallel port on
a Windows computer system.

Win32_PCMCIAController 23 2 Manages the capabilities of a Personal
Computer Memory Card Interface Adapter
(PCMCIA) controller device.

Win32_PhysicalMemory 30 0 Represents a physical memory device located
on a computer as available to the operating
system.

Win32_PhysicalMemoryArray 27 1 Represents details about the computer
system’s physical memory.

Win32_PhysicalMemoryLocation 3 0 Relates an array of physical memory and its
physical memory.

Win32_PNPAllocatedResource 2 0 Represents an association between logical
devices and system resources.

Win32_PNPDevice 2 0 Relates a device (known to Configuration
Manager as a PNPEntity) to the function it
performs.

Win32_PNPEntity 22 2 Represents the properties of a plug-and-play
device.

Win32_PortConnector 20 0 Represents physical connection ports, such as
DD-25 pin male, Centronics, and PS/2.

600 Windows PowerShell 3 Step by Step

Class Properties Methods Description

Win32_PortResource 11 0 Represents an I/O port on a Windows
computer system.

Win32_Processor 44 2 Represents a device capable of interpreting
a sequence of machine instructions on a
Windows computer system.

Win32_SCSIController 31 2 Represents a small computer system interface
(SCSI) controller on a Windows system.

Win32_SCSIControllerDevice 7 0 Relates a SCSI controller and the logical
device (disk drive) connected to it.

Win32_SerialPort 47 2 Represents a serial port on a Windows system.

Win32_SerialPortConfiguration 29 0 Represents the settings for data transmission
on a Windows serial port.

Win32_SerialPortSetting 2 0 Relates a serial port and its configuration
settings.

Win32_SMBIOSMemory 38 2 Represents the capabilities and management
of memory-related logical devices.

Win32_SoundDevice 23 2 Represents the properties of a sound device
on a Windows computer system.

Win32_SystemBIOS 2 0 Relates a computer system (including data
such as startup properties, time zones, boot
configurations, or administrative passwords)
to a system BIOS (services, languages, system
management properties).

Win32_SystemDriverPNPEntity 2 0 Relates a plug-and-play device on the
Windows computer system to the driver that
supports the plug-and-play device.

Win32_SystemEnclosure 37 1 Represents the properties associated with a
physical system enclosure.

Win32_SystemMemoryResource 10 0 Represents a system memory resource on a
Windows system.

Win32_SystemSlot 31 0 Represents physical connection points
including ports, motherboard slots and
peripherals, and proprietary connections
points.

Win32_USBController 23 2 Manages the capabilities of a universal serial
bus (USB) controller.

Win32_USBControllerDevice 7 0 Relates a USB controller and the
Win32_LogonSession instances connected to
it.

Win32_USBHub 28 3 Represents the management characteristics of
a USB hub.

 APPENDIX E Useful WMI Classes 601

TABLE E-5 Network device classes

Class Properties Methods Description

Win32_NetworkAdapter 36 2 Represents a network adapter on a
Windows system.

Win32_NetworkAdapterConfiguration 60 41 Represents the attributes and behaviors
of a network adapter. This class is not
guaranteed to be supported after
the ratification of the Distributed
Management Task Force (DMTF) CIM
network specification.

Win32_NetworkAdapterSetting 2 0 Relates a network adapter to its
configuration settings.

TABLE E-6 Power classes

Class Properties Methods Description

Win32_AssociatedBattery 2 0 Relates a logical device to the battery it is
using.

Win32_Battery 33 2 Represents a battery connected to the
computer system.

Win32_CurrentProbe 35 2 Represents the properties of a current
monitoring sensor (ammeter).

Win32_PortableBattery 36 2 Represents the properties of a portable
battery, such as one used for a notebook
computer.

Win32_PowerManagementEvent 4 0 Represents power management events
resulting from power state changes.

Win32_UninterruptiblePowerSupply 43 2 Represents the capabilities and management
capacity of an uninterruptible power supply.

Win32_VoltageProbe 35 2 Represents the properties of a voltage sensor
(electronic voltmeter).

TABLE E-7 Printing classes

Class Properties Methods Description

Win32_DriverForDevice 2 0 Relates a printer to a printer driver.

Win32_Printer 86 9 Represents a device connected to a Windows
computer system that is capable of reproducing a
visual image on a medium.

Win32_PrinterConfiguration 33 0 Defines the configuration for a printer device.

Win32_PrinterController 7 0 Relates a printer and the local device to which the
printer is connected.

Win32_PrinterDriver 22 3 Represents the drivers for a Win32_Printer instance.

Win32_PrinterDriverDll 2 0 Relates a local printer to its driver file (not the driver
itself).

602 Windows PowerShell 3 Step by Step

Class Properties Methods Description

Win32_PrinterSetting 2 0 Relates a printer to its configuration settings.

Win32_PrintJob 24 2 Represents a print job generated by a Windows
application.

Win32_TCPIPPrinterPort 17 0 Represents a TCP/IP service access point.

TABLE E-8 Telephony classes

Class Properties Methods Description

Win32_POTSModem 79 2 Represents the services and characteristics of a
plain-old telephone service (POTS) modem on a
Windows system.

Win32_POTSModemToSerialPort 7 0 Relates a modem to the serial port the modem
uses.

TABLE E-9 Video and monitor classes

Class Properties Methods Description

Win32_DesktopMonitor 28 2 Represents the type of monitor or display
device attached to the computer system.

Win32_DisplayConfiguration 15 0 Represents configuration information
for the display device on a Windows
system. This class is obsolete. In
place of this class, use the properties
in the Win32_VideoController,
Win32_DesktopMonitor, and
CIM_VideoControllerResolution classes.

Win32_DisplayControllerConfiguration 14 0 Represents the video adapter
configuration information of a Windows
system. This class is obsolete. In
place of this class, use the properties
in the Win32_VideoController,
Win32_DesktopMonitor, and
CIM_VideoControllerResolution classes.

Win32_VideoConfiguration 30 0 This class has been eliminated from
Windows XP and later operating systems;
attempts to use it generate a fatal error.
In place of this class, use the properties
contained in the Win32_VideoController,
Win32_DesktopMonitor, and
CIM_VideoControllerResolution classes.

Win32_VideoController 59 2 Represents the capabilities and
management capacity of the video
controller on a Windows computer
system.

Win32_VideoSettings 2 0 Relates a video controller to video
settings that can be applied to it.

 APPENDIX E Useful WMI Classes 603

TABLE E-10 COM classes

Class Properties Methods Description

Win32_ClassicCOMApplicationClasses 2 0 Association class. Relates a
DCOM application to a COM
component grouped under it.

Win32_ClassicCOMClass 6 0 Instance class. Represents the
properties of a COM component.

Win32_ClassicCOMClassSettings 2 0 Association class. Relates a COM
class to the settings used to
configure instances of the COM
class.

Win32_ClientApplicationSetting 2 0 Association class. Relates
an executable to a DCOM
application that contains the
DCOM configuration options for
the executable file.

Win32_COMApplication 5 0 Instance class. Represents a COM
application.

Win32_COMApplicationClasses 2 0 Association class. Relates a
COM component to the COM
application where it resides.

Win32_COMApplicationSettings 2 0 Association class. Relates
a DCOM application to its
configuration settings.

Win32_COMClass 5 0 Instance class. Represents the
properties of a COM component.

Win32_COMClassAutoEmulator 2 0 Association class. Relates a COM
class to another COM class that it
automatically emulates.

Win32_COMClassEmulator 2 0 Association class. Relates two
versions of a COM class.

Win32_ComponentCategory 6 0 Instance class. Represents a
component category.

Win32_COMSetting 3 0 Instance class. Represents the
settings associated with a COM
component or COM application.

Win32_DCOMApplication 6 0 Instance class. Represents
the properties of a DCOM
application.

Win32_DCOMApplicationAccessAllowedSetting 2 0 Association class. Relates the
Win32_DCOMApplication
instance to the user security
identifications (SID) that can
access it.

604 Windows PowerShell 3 Step by Step

Class Properties Methods Description

Win32_DCOMApplicationLaunchAllowedSetting 2 0 Association class. Relates the
Win32_DCOMApplication
instance to the user SIDs that can
launch it.

Win32_DCOMApplicationSetting 12 0 Instance class. Represents the
settings of a DCOM application.

Win32_ImplementedCategory 2 0 Association class. Relates a
component category to the
COM class using its interfaces.

TABLE E-11 Desktop classes

Class Properties Methods Description

Win32_Desktop 21 0 Instance class. Represents the common characteristics of a
user’s desktop.

Win32_Environment 8 0 Instance class. Represents an environment or system
environment setting on a Windows computer system.

Win32_TimeZone 24 0 Instance class. Represents the time zone information for a
Windows system.

Win32_UserDesktop 2 0 Association class. Relates a user account to desktop settings
that are specific to it.

TABLE E-12 Driver classes

Class Properties Methods Description

Win32_DriverVXD 21 0 Instance class. Represents a virtual device driver on a
Windows computer system.

Win32_SystemDriver 22 10 Instance class. Represents the system driver for a base service.

TABLE E-13 File system classes

Class Properties Methods Description

Win32_CIMLogicalDeviceCIMDataFile 4 0 Association class. Relates logical devices and
data files, indicating the driver files used by
the device.

Win32_Directory 31 14 Represents a directory entry on a Windows
computer system.

Win32_DirectorySpecification 13 1 Instance class. Represents the directory
layout for the product.

Win32_DiskDriveToDiskPartition 2 0 Association class. Relates a disk drive to a
partition existing on it.

Win32_DiskPartition 34 2 Instance class. Represents the capabilities
and management capacity of a partitioned
area of a physical disk on a Windows system.

Win32_DiskQuota 6 0 Association class. Tracks disk space usage for
NTFS file system volumes.

 APPENDIX E Useful WMI Classes 605

Class Properties Methods Description

Win32_LogicalDisk 40 5 Represents a data source that resolves to an
actual local storage device on a Windows
system.

Win32_LogicalDiskRootDirectory 2 0 Association class. Relates a logical disk to its
directory structure.

Win32_LogicalDiskToPartition 4 0 Association class. Relates a logical disk drive
to the disk partition it resides on.

Win32_MappedLogicalDisk 38 2 Represents network storage devices that are
mapped as logical disks on the computer
system.

Win32_OperatingSystemAutochkSetting 2 0 Association class. Represents the association
between a CIM_ManagedSystemElement
instance and the settings defined for it.

Win32_QuotaSetting 9 0 Instance class. Contains settings information
for disk quotas on a volume.

Win32_ShortcutFile 34 14 Represents files that are shortcuts to other
files, directories, and commands.

Win32_SubDirectory 2 0 Association class. Relates a directory (folder)
and one of its subdirectories (subfolders).

Win32_SystemPartitions 2 0 Association class. Relates a computer system
to a disk partition on that system.

Win32_Volume 2 0 Instance class. Represents an area of storage
on a hard disk.

Win32_VolumeQuota 2 0 Association class. Relates a volume to the
per-volume quota settings.

Win32_VolumeQuotaSetting 2 0 Association class. Relates disk quota settings
with a specific disk volume.

Win32_VolumeUserQuota 2 0 Association class. Relates per-user quotas to
quota-enabled volumes.

TABLE E-14 Job object classes

Class Properties Methods Description

Win32_CollectionStatistics 2 0 Association class. Relates a managed
system element collection and the class
representing statistical information about
the collection.

Win32_LUID 2 0 Instance class. Represents a locally unique
identifier (LUID).

Win32_LUIDandAttributes 2 0 Instance class. Represents a LUID and its
attributes.

Win32_NamedJobObject 4 0 Instance class. Represents a kernel object
that is used to group processes for the sake
of controlling the life and resources of the
processes within the job object.

606 Windows PowerShell 3 Step by Step

Class Properties Methods Description

Win32_NamedJobObjectActgInfo 19 0 Instance class. Represents the I/O
accounting information for a job object.

Win32_NamedJobObjectLimit 2 0 Instance class. Represents an association
between a job object and the job object
limit settings.

Win32_NamedJobObjectLimitSetting 14 0 Instance class. Represents the limit settings
for a job object.

Win32_NamedJobObjectProcess 2 0 Instance class. Relates a job object to the
process contained in the job object.

Win32_NamedJobObjectSecLimit 2 0 Instance class. Relates a job object to the
job object security limit settings.

Win32_NamedJobObjectSecLimitSetting 7 0 Instance class. Represents the security limit
settings for a job object.

Win32_NamedJobObjectStatistics 2 0 Instance class. Represents an association
between a job object and the job object I/O
accounting information class.

Win32_SIDandAttributes 2 0 Instance class. Represents a security
identifier (SID) and its attributes.

Win32_TokenGroups 2 0 Event class. Represents information about
the group SIDs in an access token.

Win32_TokenPrivileges 2 0 Event class. Represents information about a
set of privileges for an access token.

TABLE E-15 Memory and page file classes

Class Properties Methods Description

Win32_LogicalMemoryConfiguration 8 0 Instance class. This class is obsolete
and has been replaced by the
Win32_OperatingSystem class.

Win32_PageFile 36 14 Instance class. Represents the file
used for handling virtual memory file
swapping on a Windows system.

Win32_PageFileElementSetting 2 0 Association class. Relates the initial
settings of a page file and the state of
those setting during normal use.

Win32_PageFileSetting 6 0 Instance class. Represents the settings
of a page file.

Win32_PageFileUsage 9 0 Instance class. Represents the file
used for handling virtual memory file
swapping on a Windows system.

Win32_SystemLogicalMemoryConfiguration 2 0 Association class. This class is obsolete
because the properties existing in the
Win32_LogicalMemoryConfiguration
class are now a part of the
Win32_OperatingSystem class.

 APPENDIX E Useful WMI Classes 607

TABLE E-16 Media and audio class

Class Properties Methods Description

Win32_CodecFile 34 14 Instance class. Represents the audio or video codec installed on
the computer system.

TABLE E-17 Networking classes

Class Properties Methods Description

Win32_ActiveRoute 2 0 Association class. Relates the current IP4 route to
the persisted IP route table.

Win32_IP4PersistedRouteTable 9 0 Instance class. Represents persisted IP routes.

Win32_IP4RouteTable 18 0 Instance class. Represents information that governs
the routing of network data packets.

Win32_IP4RouteTableEvent 2 0 Event class. Represents IP route change events.

Win32_NetworkClient 6 0 Instance class. Represents a network client on a
Windows system.

Win32_NetworkConnection 17 0 Instance class. Represents an active network
connection in a Windows environment.

Win32_NetworkProtocol 23 0 Instance class. Represents a protocol and its
network characteristics on a Windows computer
system.

Win32_NTDomain 27 0 Instance class. Represents a Windows NT domain.

Win32_PingStatus 24 0 Instance class. Represents the values returned by
the standard ping command.

Win32_ProtocolBinding 3 0 Association class. Relates a system-level driver,
network protocol, and network adapter.

TABLE E-18 Operating system event classes

Class Properties Methods Description

Win32_ComputerShutdownEvent 4 0 Represents computer shutdown events.

Win32_ComputerSystemEvent 3 0 Represents events related to a computer
system.

Win32_DeviceChangeEvent 3 0 Represents device-change events
resulting from the addition, removal, or
modification of devices on the computer
system.

Win32_ModuleLoadTrace 6 0 Indicates that a process has loaded a new
module.

Win32_ModuleTrace 2 0 Base event for module events.

Win32_ProcessStartTrace 8 0 Indicates that a new process has started.

Win32_ProcessStopTrace 8 0 Indicates that a process has terminated.

Win32_ProcessTrace 8 0 Base event for process events.

608 Windows PowerShell 3 Step by Step

Class Properties Methods Description

Win32_SystemConfigurationChangeEvent 3 0 Indicates that the device list on the system
has been refreshed (a device has been
added or removed, or the configuration
has changed).

Win32_SystemTrace 2 0 Base class for all system trace events,
including module, process, and thread
traces.

Win32_ThreadStartTrace 11 0 Indicates that a new thread has started.

Win32_ThreadStopTrace 4 0 Indicates that a thread has stopped.

Win32_ThreadTrace 4 0 Base event class for thread events.

Win32_VolumeChangeEvent 4 0 Represents a network-mapped drive event
resulting from the addition of a network
drive letter or mounted drive on the
computer system.

TABLE E-19 Operating system settings classes

Class Properties Methods Description

Win32_BootConfiguration 9 0 Instance class. Represents the
boot configuration of a Windows
system.

Win32_ComputerSystem 54 4 Instance class. Represents a
computer system operating in a
Windows environment.

Win32_ComputerSystemProcessor 2 0 Association class. Relates a
computer system to a processor
running on that system.

Win32_ComputerSystemProduct 8 0 Instance class. Represents a
product.

Win32_DependentService 3 0 Association class. Relates two
interdependent base services.

Win32_LoadOrderGroup 7 0 Instance class. Represents a group
of system services that define
execution dependencies.

Win32_LoadOrderGroupServiceDependencies 2 0 Instance class. Represents an
association between a base service
and a load order group that
the service depends on to start
running.

Win32_LoadOrderGroupServiceMembers 2 0 Association class. Relates a load
order group and a base service.

Win32_OperatingSystem 61 4 Instance class. Represents an
operating system installed on a
Windows computer system.

Win32_OperatingSystemQFE 2 0 Association class. Relates an
operating system to product
updates applied, as represented in
Win32_QuickFixEngineering.

 APPENDIX E Useful WMI Classes 609

Class Properties Methods Description

Win32_OSRecoveryConfiguration 15 0 Instance class. Represents the
types of information that will be
gathered from memory when the
operating system fails.

Win32_QuickFixEngineering 11 0 Instance class. Represents system-
wide Quick Fix Engineering (QFE)
or updates that have been applied
to the current operating system.

Win32_StartupCommand 7 0 Instance class. Represents a
command that runs automatically
when a user logs on to the
computer system.

Win32_SystemBootConfiguration 2 0 Association class. Relates a
computer system to its boot
configuration.

Win32_SystemDesktop 2 0 Association class. Relates a
computer system to its desktop
configuration.

Win32_SystemDevices 2 0 Association class. Relates a
computer system to a logical
device installed on that system.

Win32_SystemLoadOrderGroups 2 0 Association class. Relates a
computer system to a load order
group.

Win32_SystemNetworkConnections 2 0 Association class. Relates a network
connection to the computer
system on which it resides.

Win32_SystemOperatingSystem 3 0 Association class. Relates a
computer system to its operating
system.

Win32_SystemProcesses 2 0 Association class. Relates a
computer system to a process
running on that system.

Win32_SystemProgramGroups 2 0 Association class. Relates a
computer system to a logical
program group.

Win32_SystemResources 2 0 Association class. Relates a system
resource to the computer system it
resides on.

Win32_SystemServices 2 0 Association class. Relates a
computer system to a service
program that exists on the system.

Win32_SystemSetting 2 0 Association class. Relates a
computer system to a general
setting on that system.

610 Windows PowerShell 3 Step by Step

Class Properties Methods Description

Win32_SystemSystemDriver 2 0 Association class. Relates a
computer system to a system
driver running on that computer
system.

Win32_SystemTimeZone 2 0 Association class. Relates a
computer system to a time zone.

Win32_SystemUsers 2 0 Association class. Relates a
computer system to a user account
on that system.

TABLE E-20 Process classes

Class Properties Methods Description

Win32_Process 45 6 Instance class. Represents a sequence of events on a
Windows system.

Win32_ProcessStartup 14 0 Instance class. Represents the startup configuration of a
Windows process.

Win32_Thread 22 0 Instance class. Represents a thread of execution.

TABLE E-21 Registry class

Class Properties Methods Description

Win32_Registry 8 0 Instance class. Represents the system registry on a Windows
computer system.

TABLE E-22 Scheduler job classes

Class Properties Methods Description

Win32_LocalTime 10 0 Instance class. Represents an instance in time as component
seconds, minutes, day of the week, and so on.

Win32_ScheduledJob 19 2 Instance class. Represents a job scheduled using the Windows
NT schedule service.

TABLE E-23 Security classes

Class Properties Methods Description

Win32_AccountSID 2 0 Association class. Relates a security
account instance with a security descriptor
instance.

Win32_ACE 6 0 Instance class. Represents an access
control entry (ACE).

 APPENDIX E Useful WMI Classes 611

Class Properties Methods Description

Win32_LogicalFileAccess 7 0 Association class. Relates the security
settings of a file or directory to one
member of its discretionary access control
list (DACL).

Win32_LogicalFileAuditing 7 0 Association class. Relates the security
settings of a file or directory to one
member of its system access control list
(SACL).

Win32_LogicalFileGroup 2 0 Association class. Relates the security
settings of a file or directory to its group.

Win32_LogicalFileOwner 2 0 Association class. Relates the security
settings of a file or directory to its owner.

Win32_LogicalFileSecuritySetting 6 2 Instance class. Represents the security
settings for a logical file.

Win32_LogicalShareAccess 7 0 Association class. Relates the security
settings of a share to one member of its
DACL.

Win32_LogicalShareAuditing 7 0 Association class. Relates the security
settings of a share to one member of its
SACL.

Win32_LogicalShareSecuritySetting 5 2 Instance class. Represents the security
settings for a logical share.

Win32_PrivilegesStatus 7 0 Instance class. Represents information
about privileges required to complete an
operation.

Win32_SecurityDescriptor 5 0 Instance class. Represents a structural
representation of a SECURITY_
DESCRIPTOR.

Win32_SecuritySetting 4 2 Instance class. Represents the security
settings for a managed element.

Win32_SecuritySettingAccess 7 0 Instance class. Represents the rights
granted and denied to a trustee for a
given object.

Win32_SecuritySettingAuditing 7 0 Instance class. Represents the auditing for
a given trustee on a given object.

Win32_SecuritySettingGroup 2 0 Association class. Relates the security of an
object to its group.

Win32_SecuritySettingOfLogicalFile 2 0 Instance class. Represents the security
settings of a file or directory object.

Win32_SecuritySettingOfLogicalShare 2 0 Instance class. Represents the security
settings of a share object.

Win32_SecuritySettingOfObject 2 0 Association class. Relates an object to its
security settings.

Win32_SecuritySettingOwner 2 0 Association class. Relates the security
settings of an object to its owner.

Win32_SID 5 0 Instance class. Represents an arbitrary SID.

Win32_Trustee 5 0 Instance class. Represents a trustee.

612 Windows PowerShell 3 Step by Step

TABLE E-24 Service classes

Class Properties Methods Description

Win32_BaseService 22 10 Instance class. Represents executable objects that are installed
in a registry database maintained by the Service Control
Manager.

Win32_Service 25 10 Instance class. Represents a service on a Windows computer
system.

TABLE E-25 Share classes

Class Properties Methods Description

Win32_DFSNode 25 10 Association class. Represents a root or junction node of
a domain-based or stand-alone distributed file system
(DFS).

Win32_DFSNodeTarget 25 10 Association class. Represents the relationship of a DFS
node to one of its targets.

Win32_DFSTarget 25 10 Association class. Represents the target of a DFS node.

Win32_ServerConnection 12 0 Instance class. Represents the connections made from
a remote computer to a shared resource on the local
computer.

Win32_ServerSession 13 0 Instance class. Represents the sessions that are
established with the local computer by users on a remote
computer.

Win32_ConnectionShare 2 0 Association class. Relates a shared resource on the
computer and the connection made to the shared
resource.

Win32_PrinterShare 2 0 Association class. Relates a local printer and the share
that represents it as it is viewed over a network.

Win32_SessionConnection 2 0 Association class. Represents an association between a
session established with the local server by a user on a
remote machine and the connections that depend on the
session.

Win32_SessionProcess 2 0 Association class. Represents an association between
a logon session and the processes associated with that
session.

Win32_ShareToDirectory 2 0 Association class. Relates a shared resource on the
computer system and the directory to which it is mapped.

Win32_Share 10 4 Instance class. Represents a shared resource on a
Windows system.

TABLE E-26 Start menu classes

Class Properties Methods Description

Win32_LogicalProgramGroup 7 0 Instance class. Represents a program
group in a Windows system.

Win32_LogicalProgramGroupDirectory 2 0 Association class. Relates logical program
groups (groupings in the Start menu)
to the file directories in which they are
stored.

 APPENDIX E Useful WMI Classes 613

Class Properties Methods Description

Win32_LogicalProgramGroupItem 5 0 Instance class. Represents an element
contained by a Win32_ProgramGroup
instance that is not itself another
Win32_ProgramGroup instance.

Win32_LogicalProgramGroupItemDataFile 2 0 Association class. Relates the program
group items of the Start menu to the files
in which they are stored.

Win32_ProgramGroup 6 0 Instance class. Deprecated.
Represents a program group in a
Windows computer system. Use the
Win32_LogicalProgramGroup class
instead.

Win32_ProgramGroupContents 2 0 Association class. Relates
a program group order to an individual
program group or item contained in it.

Win32_ProgramGroupOrItem 5 0 Instance class. Represents a logical
grouping of programs on the user’s Start
| Programs menu.

TABLE E-27 Storage classes

Class Properties Methods Description

Win32_ShadowBy 5 0 Association class. Represents the association
between a shadow copy and the provider that
creates the shadow copy.

Win32_ShadowContext 5 0 Association class. Specifies how a shadow copy
is to be created, queried, or deleted.

Win32_ShadowCopy 5 0 Instance class. Represents a duplicate copy of
the original volume at a previous time.

Win32_ShadowDiffVolumeSupport 5 0 Association class. Represents an association
between a shadow copy provider and a storage
volume.

Win32_ShadowFor 5 0 Association class. Represents an association
between a shadow copy and the volume for
which the shadow copy is created.

Win32_ShadowOn 5 0 Association class. Represents an association
between a shadow copy and where the
differential data is written.

Win32_ShadowProvider 5 0 Association class. Represents a component that
creates and represents volume shadow copies.

Win32_ShadowStorage 5 0 Association class. Represents an association
between a shadow copy and where the
differential data is written.

614 Windows PowerShell 3 Step by Step

Class Properties Methods Description

Win32_ShadowVolumeSupport 5 0 Association class. Represents an association
between a shadow copy provider and a
supported volume.

Win32_Volume 42 9 Instance class. Represents an area of storage on
a hard disk.

Win32_VolumeUserQuota 6 0 Association class. Represents a volume to the
per-volume quota settings.

TABLE E-28 User classes

Class Properties Methods Description

Win32_Account 9 0 Instance class. Represents information about
user accounts and group accounts known to the
Windows system.

Win32_Group 9 1 Instance class. Represents data about a group
account.

Win32_GroupInDomain 2 0 Association class. Identifies the group accounts
associated with a Windows NT domain.

Win32_GroupUser 2 0 Association class. Relates a group to an account
that is a member of that group.

Win32_LogonSession 9 0 Instance class. Describes the logon session or
sessions associated with a user.

Win32_LogonSessionMappedDisk 2 0 Association class. Represents the mapped logical
disks associated with the session.

Win32_NetworkLoginProfile 32 0 Instance class. Represents the network login
information of a specific user on a Windows
system.

Win32_SystemAccount 9 0 Instance class. Represents a system account.

Win32_UserAccount 16 1 Instance class. Represents information about a
user account on a Windows system.

Win32_UserInDomain 2 0 Association class. Relates a user account and a
Windows domain.

TABLE E-29 Event log classes

Class Properties Methods Description

Win32_NTEventlogFile 39 16 Instance class. Represents data stored in a Windows
log file.

Win32_NTLogEvent 16 0 Instance class. Represents Windows NT/Windows
2000 events.

Win32_NTLogEventComputer 2 0 Association class. Relates instances of
Win32_NTLogEvent to Win32_ComputerSystem.

Win32_NTLogEventLog 2 0 Association class. Relates instances of
Win32_NTLogEvent to Win32_NTEventLogFile classes.

Win32_NTLogEventUser 2 0 Association class. Relates instances of
Win32_NTLogEvent to Win32_UserAccount.

 APPENDIX E Useful WMI Classes 615

TABLE E-30 Windows product-activation classes

Class Properties Methods Description

Win32_ComputerSystemWindows
ProductActivationSetting

2 0 Association class. Relates instances
of Win32_ComputerSystem to
Win32_WindowsProductActivation.

Win32_Proxy 6 1 Instance class. Contains properties and methods
to query and configure an Internet connection
related to WPA.

Win32_WindowsProductActivation 9 5 Instance class. Contains properties and methods
related to WPA.

TABLE E-31 Formatted-data classes

Class Properties Methods Description

Win32_PerfFormattedData 9 0 Abstract base class for the formatted-
data classes.

Win32_PerfFormattedData_ASP_
ActiveServerPages

9 0 Represents performance counters for
the Active Server Pages (ASP) device
on the computer system.

Win32_PerfFormattedData_ContentFilter_
IndexingServiceFilter

12 0 Represents performance information
about an Indexing Service filter.

Win32_PerfFormattedData_ContentIndex_
IndexingService

20 0 Represents performance data about
the state of the Indexing Service.

Win32_PerfFormattedData_InetInfo_
InternetInformationServicesGlobal

20 0 Represents counters that monitor
Internet Information Services (IIS) (the
web service and the FTP service) as a
whole.

Win32_PerfFormattedData_ISAPISearch_
HttpIndexingService

17 0 Represents performance data from
the HTTP Indexing Service.

Win32_PerfFormattedData_MSDTC_
DistributedTransactionCoordinator

22 0 Represents Microsoft Distributed
Transaction Coordinator (DTC)
performance counters.

Win32_PerfFormattedData_NTFSDRV_
SMTPNTFSStoreDriver

22 0 Represents global counters for the
Exchange NTFS store driver.

Win32_PerfFormattedData_PerfDisk_
LogicalDisk

32 0 Represents counters that monitor
logical partitions of a hard or fixed
disk drive.

Win32_PerfFormattedData_PerfDisk_
PhysicalDisk

30 0 Represents counters that monitor
hard or fixed disk drives on a
computer.

Win32_PerfFormattedData_PerfNet_Browser 29 0 Represents counters that measure
the rates of announcements,
enumerations, and other browser
transmissions.

Win32_PerfFormattedData_PerfNet_
Redirector

46 0 Represents counters that monitor
network connections originating at
the local computer.

616 Windows PowerShell 3 Step by Step

Class Properties Methods Description

Win32_PerfFormattedData_PerfNet_Server 35 0 Represents counters that monitor
communications using the WINS
Server service.

Win32_PerfFormattedData_PerfNet_
ServerWorkQueues

26 0 Represents counters that monitor the
length of the queues and objects in
the queues.

Win32_PerfFormattedData_PerfOS_Cache 26 0 Represents counters that monitor the
file system cache, an area of physical
memory that stores recently used data
as long as possible to permit access to
the data without having to read from
the disk.

Win32_PerfFormattedData_PerfOS_Memory 26 0 Represents counters that describe
the behavior of physical and virtual
memory on the computer.

Win32_PerfFormattedData_PerfOS_Objects 26 0 Represents counts of the objects
contained by the operating system
(for example, events, mutexes,
processes, sections, semaphores, and
threads).

Win32_PerfFormattedData_PerfOS_
PagingFile

26 0 Represents counters that monitor the
paging files on the computer.

Win32_PerfFormattedData_PerfOS_Processor 26 0 Represents counters that measure
aspects of processor activity.

Win32_PerfFormattedData_PerfOS_System 26 0 Represents counters that apply
to more than one instance of
a component processor on the
computer.

Win32_PerfFormattedData_PerfProc_
FullImage_Costly

17 0 Represents counters that monitor
the virtual address usage of images
executed by processes on the
computer.

Win32_PerfFormattedData_PerfProc_Image_
Costly

17 0 Represents counters that monitor
the virtual address usage of images
executed by processes on the
computer.

Win32_PerfFormattedData_PerfProc_
JobObject

22 0 Represents the accounting and
processor usage data collected by
each active named job object.

Win32_PerfFormattedData_PerfProc_
JobObjectDetails

36 0 Represents detailed performance
information about the active
processes that make up a job object.

Win32_PerfFormattedData_PerfProc_Process 36 0 Represents counters that monitor
running application program and
system processes.

Win32_PerfFormattedData_PerfProc_
ProcessAddressSpace_Costly

46 0 Represent counters that monitor
memory allocation and use for a
selected process.

 APPENDIX E Useful WMI Classes 617

Class Properties Methods Description

Win32_PerfFormattedData_PerfProc_Thread 21 0 Represents counters that measure
aspects of thread behavior.

Win32_PerfFormattedData_PerfProc_
ThreadDetails_Costly

10 0 Represents counters that measure
aspects of thread behavior that are
difficult or time-consuming to collect.

Win32_PerfFormattedData_PSched_
PSchedFlow

10 0 Represents flow statistics from the
packet scheduler.

Win32_PerfFormattedData_PSched_
PSchedPipe

10 0 Represents pipe statistics from the
packet scheduler.

Win32_PerfFormattedData_RemoteAccess_
RASPort

10 0 Represents counters that monitor
individual Remote Access Service
(RAS) ports of the RAS device on the
computer.

Win32_PerfFormattedData_RemoteAccess_
RASTotal

10 0 Represents counters that combine
values for all ports of the RAS device
on the computer.

Win32_PerfFormattedData_RSVP_
ACSRSVPInterfaces

10 0 Represents the number of local
network interfaces visible to and used
by the RSVP service.

Win32_PerfFormattedData_RSVP_
ACSRSVPService

10 0 Represents RSVP or ACS service
performance counters.

Win32_PerfFormattedData_SMTPSVC_
SMTPServer

10 0 Represents counters specific to the
SMTP server.

Win32_PerfFormattedData_Spooler_
PrintQueue

22 0 Represents performance statistics
about a print queue.

Win32_PerfFormattedData_TapiSrv_
Telephony

18 0 Represents the telephony system.

Win32_PerfFormattedData_Tcpip_ICMP 18 0 Consists of counters that measure the
rates at which messages are sent and
received by using ICMP protocols.

Win32_PerfFormattedData_Tcpip_IP 18 0 Represents counters that measure the
rates at which IP datagrams are sent
and received by using IP protocols.

Win32_PerfFormattedData_Tcpip_
NBTConnection

18 0 Represents counters that measure
the rates at which bytes are sent and
received over the NBT connection
between the local computer and a
remote computer.

Win32_PerfFormattedData_Tcpip_
NetworkInterface

18 0 Represents counters that measure
the rates at which bytes and packets
are sent and received over a TCP/IP
network connection.

Win32_PerfFormattedData_Tcpip_TCP 18 0 Represents counters that measure
the rates at which TCP segments are
sent and received by using the TCP
protocol.

618 Windows PowerShell 3 Step by Step

Class Properties Methods Description

Win32_PerfFormattedData_Tcpip_UDP 18 0 Represents counters that measure
the rates at which UDP datagrams are
sent and received by using the UDP
protocol.

Win32_PerfFormattedData_TermService_
TerminalServices

12 0 Represents terminal services summary
information.

Win32_PerfFormattedData_TermService_
TerminalServicesSession

84 0 Represents terminal services per-
session resource monitoring.

Win32_PerfFormattedData_W3SVC_WebService 84 0 Represents counters specific to the
World Wide Web Publishing Service.

TABLE E-32 Raw performance monitor classes

Class Properties Methods Description

Win32_PerfRawData 9 0 Abstract base class for all concrete
raw performance counter classes.

Win32_PerfRawData_ASP_ActiveServerPages 9 0 Represents the ASP device on the
computer system.

Win32_PerfRawData_ContentFilter_
IndexingServiceFilter

12 0 Represents performance information
about an Indexing Service filter.

Win32_PerfRawData_ContentIndex_
IndexingService

20 0 Represents performance data about
the state of the Indexing Service.

Win32_PerfRawData_InetInfo_
InternetInformationServicesGlobal

20 0 Represents counters that monitor IIS
(the web service and the FTP service)
as a whole.

Win32_PerfRawData_ISAPISearch_
HttpIndexingService

19 0 Represents performance data from
the HTTP Indexing Service.

Win32_PerfRawData_MSDTC_
DistributedTransactionCoordinator

22 0 Represents Microsoft DTC
performance counters.

Win32_PerfRawData_NTFSDRV_
SMTPNTFSStoreDriver

22 0 Represents global counters for the
Exchange NTFS store driver.

Win32_PerfRawData_PerfDisk_LogicalDisk 43 0 Represents counters that monitor
logical partitions of a hard or fixed
disk drive.

Win32_PerfRawData_PerfDisk_PhysicalDisk 40 0 Represents counters that monitor
hard or fixed disk drives on a
computer.

Win32_PerfRawData_PerfNet_Browser 29 0 Represents counters that measure
the rates of announcements,
enumerations, and other browser
transmissions.

Win32_PerfRawData_PerfNet_Redirector 46 0 Represents counters that monitor
network connections originating at
the local computer.

 APPENDIX E Useful WMI Classes 619

Class Properties Methods Description

Win32_PerfRawData_PerfNet_Server 35 0 Represents counters that monitor
communications using the WINS
Server service.

Win32_PerfRawData_PerfNet_
ServerWorkQueues

26 0 Represents counters that monitor the
length of the queues and objects in
the queues.

Win32_PerfRawData_PerfOS_Cache 26 0 Represents counters that monitor the
file system cache.

Win32_PerfRawData_PerfOS_Memory 26 0 Represents counters that describe
the behavior of physical and virtual
memory on the computer.

Win32_PerfRawData_PerfOS_Objects 26 0 Represents counts of the objects
contained by the operating system
(for example, events, mutexes,
processes, sections, semaphores, and
threads).

Win32_PerfRawData_PerfOS_PagingFile 26 0 Represents counters that monitor the
paging files on the computer.

Win32_PerfRawData_PerfOS_Processor 26 0 Represents counters that measure
aspects of processor activity.

Win32_PerfRawData_PerfOS_System 26 0 Represents counters that apply
to more than one instance of
a component processor on the
computer.

Win32_PerfRawData_PerfProc_FullImage_
Costly

17 0 Represents counters that monitor
the virtual address usage of images
executed by processes on the
computer.

Win32_PerfRawData_PerfProc_Image_Costly 17 0 Represents counters that monitor
the virtual address usage of images
executed by processes on the
computer.

Win32_PerfRawData_PerfProc_JobObject 22 0 Represents the accounting and
processor usage data collected by
each active named job object.

Win32_PerfRawData_PerfProc_
JobObjectDetails

36 0 Represents detailed performance
information about the active
processes that make up a job object.

Win32_PerfRawData_PerfProc_Process 36 0 Represents counters that monitor
running application program and
system processes.

Win32_PerfRawData_PerfProc_
ProcessAddressSpace_Costly

46 0 Represents counters that monitor
memory allocation and use for a
selected process.

Win32_PerfRawData_PerfProc_Thread 21 0 Represents counters that measure
aspects of thread behavior.

Win32_PerfRawData_PerfProc_ThreadDetails_
Costly

10 0 Represents counters that measure
aspects of thread behavior that are
difficult or time-consuming to collect.

620 Windows PowerShell 3 Step by Step

Class Properties Methods Description

Win32_PerfRawData_PSched_PSchedFlow 10 0 Represents flow statistics from the
packet scheduler.

Win32_PerfRawData_PSched_PSchedPipe 10 0 Represents pipe statistics from the
packet scheduler.

Win32_PerfRawData_RemoteAccess_RASPort 10 0 Represents counters that monitor
individual RAS ports of the RAS
device on the computer.

Win32_PerfRawData_RemoteAccess_RASTotal 10 0 Represents counters that combine
values for all ports of the RAS device
on the computer.

Win32_PerfRawData_RSVP_ACSRSVPInterfaces 10 0 Represents the number of local
network interfaces visible to and used
by the RSVP service.

Win32_PerfRawData_RSVP_ACSRSVPService 10 0 Represents RSVP or ACS service
performance counters.

Win32_PerfRawData_SMTPSVC_SMTPServer 10 0 Represents the counters specific to
the SMTP server.

Win32_PerfRawData_Spooler_PrintQueue 22 0 Represents performance statistics
about a print queue.

Win32_PerfRawData_TapiSrv_Telephony 18 0 Represents the telephony system.

Win32_PerfRawData_Tcpip_ICMP 18 0 Represents counters that measure the
rates at which messages are sent and
received by using ICMP protocols.

Win32_PerfRawData_Tcpip_IP 18 0 Represents counters that measure the
rates at which IP datagrams are sent
and received by using IP protocols.

Win32_PerfRawData_Tcpip_NBTConnection 18 0 Represents counters that measure
the rates at which bytes are sent and
received over the NBT connection
between the local computer and a
remote computer.

Win32_PerfRawData_Tcpip_NetworkInterface 18 0 Represents counters that measure
the rates at which bytes and packets
are sent and received over a TCP/IP
network connection.

Win32_PerfRawData_Tcpip_TCP 18 0 Represents counters that measure
the rates at which TCP segments are
sent and received by using the TCP
protocol.

Win32_PerfRawData_Tcpip_UDP 18 0 Represents counters that measure
the rates at which UDP datagrams are
sent and received by using the UDP
protocol.

Win32_PerfRawData_TermService_
TerminalServices

12 0 Represents terminal services
summary information.

Win32_PerfRawData_TermService_
TerminalServicesSession

84 0 Represents terminal services per-
session resource monitoring.

Win32_PerfRawData_W3SVC_WebService 84 0 Represents counters specific to the
World Wide Web Publishing Service.

 621

A P P E N D I X F

Basic troubleshooting tips

This appendix contains a collection of general troubleshooting tips. They are not necessarily in any
particular order of importance.

■■ Remember, spelling counts. Always look for misspelled cmdlet names, property names,
method calls, and so on. In Windows PowerShell, if you do not spell a property name correctly,
when you try to run the script, it will not generate an error. When the following code is typed
inside the shell, there is no output—nothing to indicate that you choose a bad property of the
WIN32_Service WMI class.

PS C:\> $wmi = Get-WmiObject -Class win32_service
PS C:\> $wmi.badproperty
PS C:\>

■■ Do not break the pipeline. This one is particularly easy to do. For example, say you start off
with a command you typed at the Windows PowerShell console. You then decide to add
something else to it, so you press the up arrow key and add a pipe character. Next, you
decide you like the results so much, you want to create a script. Finally, you decide to clean
it up and add a column header to the top of the printout—which means that you break your
pipeline. The following code illustrates this. In the Get-WMIObject statement, you end the line
with a pipe character. But you then call a function that prints out the name of the computer.
The problem is that this breaks the pipeline, and the script will end with only the line Service
Dependencies on localhost. Since you called a function, the code does not generate an error.

Param($computer = "localhost")

function funline ($strIN)
{
 $num = $strIN.length
 for($i=1 ; $i -le $num ; $i++)
 { $funline = $funline + "=" }
 Write-Host -ForegroundColor yellow $strIN
 Write-Host -ForegroundColor darkYellow $funline
}

622 Windows PowerShell 3 Step by Step

Get-WmiObject -Class Win32_DependentService -computername $computer |
funline("Service Dependencies on $($computer)")
Foreach-object `
 {
 [wmi]$_.Antecedent
 [wmi]$_.Dependent
 }

On the other hand, if you do not call the function, then an error will be generated. This
is shown in the following code. Note that just as in the preceding code sample, after the
Get-WMIObject command, you end the line with a pipe character. You then break the pipeline
by printing out the string Dependent services on the local computer.

Get-WmiObject -Class Win32_DependentService |
 "Dependent services on the local computer"
Foreach-object `
 {
 [wmi]$_.Antecedent
 [wmi]$_.Dependent
 }

When this code is run, an error will be generated. The error, shown here, explains that you are
not allowed to use an expression in the middle of a pipeline, which of course is true.

Expressions are only permitted as the first element of a pipeline.
At C:\Users\EDWILS~1.NOR\AppData\Local\Temp\temp.ps1:4 char:44
+ "Dependent services on the local computer" <<<<

■■ Use debug statements when trying to see what is going on with your script. If a script is pro-
ducing some strange results, then print out the value of the variable. I always try to include a
debug statement behind the variable so I will know it is safe to delete the variable when I am
done testing my script. In the following script, you are trying to add two numbers. However,
you want to make sure the results that are printed out are correct. To do this, you use debug
statements to confirm the answer is actually correct. Once you have fixed the script or veri-
fied that it is working properly, you will delete the lines containing the debug statements. If
you always make your debug statements the same, then it will be easy to search for them.
You could clean the script up by using the Find and Replace feature of Notepad. The code is
shown here:

$a = 5
$b = 4
'$a is ' + $a # debug
'$b is ' +$b # debug
$c = $a + $b
"The answer to `$a + `$b is $c"

 APPENDIX F Basic Troubleshooting Tips 623

■■ Use the Test-Path cmdlet to verify that a file or other object actually exists when trying to work
with the object. Of course, make sure that you use a # debug statement following the com-
mand if it is not an essential part of your script. An example of using the Test-Path technique is
shown in the following code:

$script = "c:\fso\mydebugscript.ps1"
Test-Path $script # debug
$debug = "# debug"

switch -regex -file $script
{
 "debug" { $switch.current }
}

■■ Initialize variables and set their value to $null or 0, as appropriate. When using variables to
count the number of items, if you remain inside the same Windows PowerShell console ses-
sion, then the values of the variables can produce unexpected results if they are not properly
initialized. An example of doing this is shown in the ParseAppLog.ps1 script from the Extras
folder. This script is shown here:

ParseappLog.ps1

$tcp=$udp=$dns=$icmp=$PdnsServer=$SdnsServer=$web=$ssl=$null

$fwlog = get-content "C:\Windows\system32\LogFiles\Firewall\firewall.log"
switch -regex ($fwlog)
 {
 "65.53.192.15" { $PdnsServer+=1 }
 "65.53.192.14" { $SdnsServer+=1 }
 "tcp" { $tcp+=1 }
 "udp" { $udp+=1 }
 "icmp" { $icmp+=1 }
 "\s53" { $dns+=1 }
 "\s80" { $web+=1 }
 "\s443" { $ssl+=1 ; $switch.current}
 }

"`$PdnsServer $Pdnsserver"
"`$SdnsServer $SdnsServer"
"`$tcp $tcp"
"`$udp $udp"
"`$icmp $icmp"
"`$dns $dns"
"`$web $web"
"`$ssl $ssl"

■■ $ErrorActionPreference specifies the action to take when data is written using Write-Error in
a script, or WriteError in a cmdlet or provider. In scripts, check for $ErrorActionPreference =
"SilentlyContinue". By default, Windows PowerShell issues an error message the moment an
error occurs. If you prefer that processing continue without an error message being displayed,
then set the value of the Windows PowerShell automatic variable to $ErrorActionPreference to
SilentlyContinue.

624 Windows PowerShell 3 Step by Step

■■ The $error variable contains objects for which an error occurred while being processed in a
cmdlet. The following example illustrates working with error objects contained in the $error
variable.

$erroractionpreference = "SilentlyContinue"
$a = New-Object test #creates an error
$b = New-Object testB #creates another error
 if ($error.count -eq 1)
 {"There is currently 1 error"}
 else
 {"There are currently " + $error.count + " errors"}
for ($i = 0 ; $error.count ; $i++)
 {$error[$i].CategoryInfo
 $error[$i].ErrorDetails
 $error[$i].Exception
 $error[$i].FullyQualifiedErrorId
 $error[$i].InvocationInfo
 $error[$i].TargetObject}

■■ You can use Set-PSDebug to enable debugging features in your script. It can turn script
debugging features on and off, set the trace level, and toggle strict mode. Here’s an example:

C:\PS>set-psdebug -step; foreach ($i in 1..3) {$i}

This command turns on stepping and then runs a script that displays the numbers 1, 2, and 3.

DEBUG:1+ Set-PsDebug -step; foreach ($i in 1..3) {$i}
Continue with this operation?
 1+ Set-PsDebug -step; foreach ($i in 1..3) {$i}
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):a
DEBUG:1+ Set-PsDebug -step; foreach ($i in 1..3) {$i}
1
2
3

Not all objects are created equal. Just because that old COM object had a method called cre-
ate() does not mean it exists in Windows PowerShell.

 625

A P P E N D I X G

General PowerShell
Scripting Guidelines

This appendix details Microsoft Windows PowerShell scripting guidelines. These scripting guide-
lines have been collected from more than a dozen different script writers from around the world.

Most of these are Microsoft employees actively involved in the world of Windows PowerShell. Some
are non-Microsoft employees such as network administrators and consultants who use Windows
PowerShell on a daily basis to improve their work/life balance. Not every script will adhere to all of
these guidelines; however, you will find that the closer you adhere to these guidelines, the easier your
scripts will be to understand and to maintain. They will not necessarily be easier to write, but they will
be easier to manage, and you will find that your total cost of ownership on the scripts should be low-
ered significantly. In the end, I only have three requirements for a script: that it is easy to read, easy to
understand, and easy to maintain.

General script construction

This section will look at some general considerations for the overall construction of scripts. This in-
cludes the use of functions, a related module, and other considerations.

Include functions in the script that uses the function
While it is possible to use an include file or dot-source a function within Windows PowerShell, it can
become a support nightmare. If you know which function you want to use, but don’t know which
script provides it, you have to go looking (unless the function resides in a module stored in a known
location). If a script provides the function you want but has other elements that you don’t want, it’s
hard to pick and choose from the script file. Additionally, you must be very careful when it comes to
variable-naming conventions because you could end up with conflicting variable names. When you
use an include file, you no longer have a portable script. It must always travel with the function library.

I use functions in my scripts because it makes them easier to read and maintain. If I were to store
these functions in separate files and then dot-source them, then neither of my two personal objec-
tives of function use would really be met.

There is one other consideration: when a script references an external script containing functions,
there now exists a relationship that must not be disturbed. If, for instance, you decide you would like

626 Windows PowerShell 3 Step by Step

to update the function, you may not remember how many external scripts are calling this function
and how it will affect their performance and operation. If there is only one script calling the function,
then the maintenance is easy. However, for only one script, just copy the silly thing into the script file
itself and be done with the whole business. The best way to deal with these situations is to store the
functions in modules.

Use full cmdlet names and full parameter names
There are several advantages to spelling out cmdlet names and avoiding the use of aliases in scripts.
First of all, this makes your scripts nearly self-documenting and therefore much easier to read.
Secondly, it makes the scripts resilient to alias changes by the user and more compatible with future
versions of Windows PowerShell. This is easy to do using the IntelliSense feature of the Windows
PowerShell 3.0 ISE.

Understanding the use of aliases
There are three kinds of aliases in Windows PowerShell: compatibility aliases, canonical aliases, and
user-defined aliases.

You can identify the compatibility aliases by using this command:

Get-childitem alias: |
where-object {$_.options -notmatch "Readonly" }

The compatibility aliases are present in Windows PowerShell to provide an easier transition from
using older command shells. You can remove the compatibility aliases by deleting aliases that are not
ReadOnly. To do this every time you start Windows PowerShell, add the following command to your
Windows PowerShell profile):

Get-childitem alias: |
where-object {$_.options -notmatch "Readonly" } |
remove-item

The canonical aliases were created specifically to make the Windows PowerShell cmdlets easier to
use from within the Windows PowerShell console. Shortness of length and ease of typing were the
primary driving factors in their creation. To find the canonical aliases, use this command:

Get-childitem alias: |
where-object {$_.options -match "Readonly" }

If you must use an alias, only use canonical aliases in a script
You are reasonably safe in using the canonical aliases in a script; however, they make the script much
harder to read. Also, because there are often several aliases for the same cmdlet, different users of
Windows PowerShell may have their own personal favorite aliases. Additionally, because the canonical
aliases are only read-only, even a canonical alias can be removed. But worse than deleting an alias is
changing its meaning.

 APPENDIX G General PowerShell Scripting Guidelines 627

always use the description property when creating an alias
When adding aliases to your profile, you may wish to specify the read-only or constant options. You
should always include the description property for your personal aliases and make the description
something that is relatively constant. Here is an example from my personal Windows PowerShell
profile:

New-Alias -Name gh -Value Get-Help -Description "mred alias"
New-Alias -Name ga -Value get-alias -Description "mred alias"

Use Get-Item to convert path strings to rich types
This is actually a pretty cool trick. When working with a listing of files, if you use the Get-Content
cmdlet, you can only read each line and have it as a path to work with. If, however, you use Get-Item,
then you have an object with a corresponding number of both properties and methods to work with.
Here’s an example that illustrates this:

$files = Get-Content “filelist.txt” |
Get-Item $files |
Foreach-object { $_.Fullname }

General script readability

The following are points to keep in mind to promote the readability of your script:

■■ When creating an alias, include the -description parameter, and use it when searching for your
personal aliases. An example of this is shown here (a better approach is to load the aliases
from a private module. This way, the modulepath parameter also loads).

 Get-Alias |
 where-object { $_.description -match 'mred' } |
 Format-Table -Property " ",name, definition -autosize `
 -hideTableHeaders

■■ Scripts should provide help. Use comment-based help to do this.

■■ All procedures should begin with a brief comment describing what they do. This description
should not describe the implementation details (how the procedure works) because these
often change over time, resulting in unnecessary comment-maintenance work, or worse, er-
roneous comments. Place comments on individual lines—do not use inline comments.

■■ Arguments passed to a function should be described when their purpose is not obvious and
when the function expects the arguments to be in a specific range.

■■ Return values for variables that are changed by a function should also be described at the
beginning of each function.

628 Windows PowerShell 3 Step by Step

■■ Every important variable declaration should include an inline comment describing the use of
the variable if the name of the variable is not obvious.

■■ Variables and functions should be named clearly to ensure that inline comments are only
needed for complex functions.

■■ When creating a complex function with multiple code blocks, place an inline comment for
each closing curly bracket at the end of the closing brace.

■■ At the beginning of your script, you should include an overview that describes the script, sig-
nificant objects and cmdlets, and any unique requirements for the script.

■■ When naming functions, use the verb-noun construction used by cmdlet names.

■■ Scripts should use named parameters if they accept more than one argument. If a script only
accepts a single argument, then it is okay to use an unnamed (positional) argument.

■■ Always assume that the users will copy your script and modify it to meet their needs. Place
comments in the code to facilitate this process.

■■ Never assume the current path. Always use the full path, either via an environment variable or
an explicitly named path.

Formatting your code

Screen space should be conserved as much as possible while still allowing code formatting to reflect
logical structure and nesting. Here are a few suggestions:

■■ Indent standard nested blocks by at least two spaces.

■■ Block overview comments for a function by using the Windows PowerShell multiline comment
feature.

■■ Block the highest-level statements, with each nested block indented an additional two spaces.

■■ You should align the begin and end script block brackets. This will make it easier to follow the
code flow.

■■ Avoid single-line statements. In addition to making it easier to follow the flow of the code, this
also makes it easier when you end up searching for a missing curly bracket.

■■ Break each pipelined object at the pipe. Leave all pipes on the right. Do this unless it is a very
short, simple pipe statement.

■■ Avoid line continuation—the backtick character (`). The exception here is when not using line
continuation would cause the user to have to scroll to read the code or the output—generally
around 90 characters. One way to avoid extremely long command lines for cmdlets with a

 APPENDIX G General PowerShell Scripting Guidelines 629

large number of parameters is through the use of hash tables and splatting of parameters to
Windows PowerShell cmdlets.

■■ Scripts should follow Pascal-case guidelines for long variable names—the same as Windows
PowerShell parameters.

■■ Scripts should use the Write-Progress cmdlet if they take more than 1 or 2 seconds to run.

■■ Consider supporting the -whatif and -confirm parameters in your functions as well as in your
scripts, especially if they will change system state. Following is an example using the -whatif
parameter:

param(
 [switch]$whatif
)

function funwhatif()
 {
 "what if: Perform operation xxxx"
 }

if($whatif)
 {
 funwhatif #calls the funwhatif() function
 }

■■ If your script does not accept a variable set of arguments, you should check the value of
$args.count and call the help function if the number is incorrect. Here is an example:

if($args.count -ge 0)
 {
 "wrong number of arguments"
 Funhelp #calls the funhelp() function
 }

■■ If your script does not accept any arguments, you should use code such as the following:

If($args -ge 0) { funhelp }

Working with functions
The following are points to keep in mind when working with your functions. It will make your code
easier to read and understand.

■■ Functions should handle mandatory parameter checking. To make this possible, use parameter
property attributes.

■■ Utility or shared functions should be placed in a module.

■■ If you are writing a function library script, consider using feature and parameter variable
names that incorporate a unique name to minimize the chances of conflict with other variables

630 Windows PowerShell 3 Step by Step

in the scripts that call them. It is best to store these function libraries in modules to facilitate
sharing and use.

■■ Consider supporting standard parameters when it makes sense for your script. The easiest way
to do this is to implement cmdlet binding.

Creating template files
The following are points to keep in mind when creating template files. Create templates that can
be used for different types of scripts. Some examples might be WMI scripts, ADSI scripts, and ADO
scripts. You can then add these templates to the Windows PowerShell ISE as snippets by using the
New-ISESnippet cmdlet. When you are creating your templates, consider the following:

■■ Add in common functions that you would use on a regular basis.

■■ Do not hard-code specific values that the connection strings might require: server names,
input file paths, output file paths, and so on. Instead, contain these values in variables.

■■ Do not hard-code version information into the template.

■■ Make sure you include comments where the template will require modification to be made
functional.

■■ You may want to turn your templates into code snippets to facilitate their usage.

Functions
When writing your own functions, there are some things you may want to consider:

■■ Create highly specialized functions. Good functions do one thing well.

■■ Make the function completely self-contained. Good functions should be portable.

■■ Alphabetize the functions in your script if possible. This promotes readability and
maintainability.

■■ Give your functions descriptive names and follow verb-noun naming convention. Nouns
should be singular. If the function name becomes too long, create an alias for the function and
store the alias in the same module as the function.

■■ Every function should have a single output point (this does not include the error, verbose, or
debug streams).

■■ Every function should have a single entry point.

■■ Use parameters to avoid problems with local and global variable scopes.

■■ Implement the common parameters -verbose, -debug, -whatif, and -confirm where appropriate
to promote reusability.

 APPENDIX G General PowerShell Scripting Guidelines 631

Variables, constants, and naming
When creating variables and constants, and when naming, there are some things to consider.

■■ Avoid hard-coded numbers. When calling methods or functions, avoid hard-coding numeric
literals. Instead, create a constant that is descriptive enough that someone reading the code
would be able to figure out what it is supposed to do. In the ServiceDependencies.ps1 script, a
portion of which follows, you use a number to offset the printout. This number is determined
by the position of a certain character in the output. Rather than just writing “+14,” you create a
constant with a descriptive name. Refer to Chapter 12, “Remoting WMI,” for more information
on this script. The applicable portion of the code is shown here:

New-Variable -Name c_padline -value 14 -option constant
Get-WmiObject -Class Win32_DependentService -computername $computer |
Foreach-object `
 {
 "=" * ((([wmi]$_.dependent).pathname).length + $c_padline)

■■ Do not recycle variables. Recycled variables are referred to as unfocused variables. Variables
should serve a single purpose, and those that do are called focused variables.

■■ Give variables descriptive names. Remember that you can use tab completion to simplify
typing.

■■ Minimize variable scope. If you are only going to use a variable in a function, then declare it in
the function.

■■ When a constant is needed, use a read-only variable instead. Remember that constants cannot
be deleted, nor can their value change.

■■ Avoid hard-coding values into method calls or in the worker section of the script. Instead,
place values into variables.

■■ When possible, group your variables into a single section of each level of the script.

■■ Avoid using Hungarian Notation, in which you embed type names into the variable names.
Remember that everything in PowerShell is basically an object, so there is no value in naming
a variable $objWMI.

■■ There are times when it makes sense to use the following: bln, int, dbl, err, dte, and str. This is
due to the fact that Windows PowerShell is a strongly typed language. It just acts like it is not.

■■ Scripts should avoid populating the global variable space. Instead, consider passing values to a
function by reference [ref].

 633

$ErrorActionPreference variable, 391, 392, 524, 525, 623
$error.clear() method, 391
$error variable, 142, 191, 389, 390, 392, 624
$ExecutionContext variable, 142
$false variable, 142
$foreach variable, 142
$FormatEnumerationLimit value, 381
$formatEnumeration variable, 225
$help parameter, 184
$HOME variable, 142
$host variable, 97, 142
$input variable, 142, 202, 594
$intGroupType variable, 394, 395
$intSize variable, 568, 570
$intUsers variable, 415
$i++ operator, 415
$i++ syntax, 149
$item variable, 264
$i variable, 143, 148, 152, 328, 390, 415, 547, 566
$LastExitCode variable, 142
$logon variable, 374
$Match variable, 142
$MaximumHistoryCount variable, 594
$message variable, 505
$modulepath variable, 233
$month parameter, 206
$MyInvocation variable, 142
$namespace variable, 524, 525
$newAry variable, 567
$noun variable, 507
$null variable, 142
$num variable, 477, 478, 485, 486, 487, 490
$obj1 variable, 529, 530
$objADSI variable, 384, 413, 415
$objDisk variable, 313
$objEnv variable, 104, 105
$objGroup variable, 395

Index

Symbols
$$ variable, 142
$acl variable, 362
$args variable, 139, 142, 211, 213
$aryElement variable, 413
$aryLog variable, 554, 556
$aryServer variable, 569
$aryText array, 413
$aryText variable, 413, 416
$aryUsers variable, 566, 567
$ary variable, 151, 154, 158
$bios variable, 354
$caps array, 153
$caption variable, 505
$_ character, 75
$choiceRTN variable, 505
$class variable, 525
$clsID variable, 520
$cn variable, 344, 464
$colDrives variable, 62
$colPrinters variable, 62
$computerName variable, 62, 502, 503
$confirmpreference variable, 216
$constASCII variable, 324
$credential variable, 341, 444, 464
$cred variable, 118, 127
$dc1 variable, 116
$DebugPreference variable, 465
$ (dollar sign) character, 141
$driveData variable, 187, 189
$drives hash table, 527
$dteDiff variable, 329
$dteEnd variable, 329
$dteMaxAge variable, 568
$dteStart variable, 329
$env:psmodulepath variable, 222

$objOU variable

634 Index

$objOU variable, 384
$objUser variable, 395, 415
$objWMIServices variable, 322, 328
$objWMI variable, 631
$OFS variable, 142
$oldVerbosePreference variable, 516, 521
$oupath variable, 435
$password variable, 546, 566, 568
$path parameter, 206, 207
$process variable, 138, 264, 345, 364
$profile variable, 268–270, 279
$providername variable, 518, 521
$provider variable, 518
$PSCmdlet variable, 219
$PSHome variable, 142, 267, 272
$PSModulePath variable, 232
$psSession variable, 353
$PSVersionTable variable, 225
$query variable, 326
$rtn variable, 124
$scriptRoot variable, 469, 470
$servers array, 509, 510
$session variable, 345, 352
$share variable, 365
$ShellID variable, 142
$StackTrace variable, 142
$strClass variable, 384, 395, 412, 413, 414, 415
$strComputer variable, 320, 322, 327
$strDatabase variable, 546, 566
$strDomain variable, 410, 546, 566
$strFile variable, 323
$strFname variable, 547, 567
$strLevel variable, 555
$strLname variable, 547
$strLogIdent variable, 555, 556
$strLogPath variable, 569
$strLog variable, 555
$strManager variable, 410
$strName variable, 142, 143, 408, 412, 415
$strOUName variable, 384, 413, 414
$strOU variable, 410, 546, 566, 567
$strPath variable, 142
$strUserName variable, 142
$strUserPath variable, 142
$strUser variable, 410, 415
$this variable, 142
$true variable, 142
$userDomain variable, 62
$userName variable, 62

$users variable, 443
$^ variable, 142
$_ variable, 86, 137, 142, 183, 332
$? variable, 142
$VerbosePreference variable, 210, 516, 519, 521
$verbose variable, 516
$v variable, 381
$wmiClass variable, 320
$wmiFilter variable, 320
$wmiNS variable, 322, 327
$wmiQuery variable, 322, 328
$wshnetwork.EnumPrinterConnections()

command, 62
$wshnetwork variable, 61
$xml variable, 563, 565
$year parameter, 206
$zip parameter, 190
[0] syntax, 230
& (ampersand) character, 12
* (asterisk) wildcard operator, 7, 17, 21, 68, 293, 309,

442
' (backtick) character, 137, 480, 628
\ (backward slash), 68
! CALL prefix, 470
^ character, 291
__CLASS property, 188
: (colon), 68
-computername parameter, 108, 118, 124, 246
{ } (curly brackets), missing, 177–178
__DERIVATION property, 188
__DYNASTY property, 188
= (equal) character, 162, 320
= (equal sign), 162, 320
! (exclamation mark), 470
-Force parameter, 459
__GENUS property, 188
' (grave accent) character, 143, 319, 321
> (greater-than) symbol, 320
< (less-than) symbol, 320
__NameSpace class, 287
__NAMESPACE property, 188
`n escape sequence, 328
__PATH property, 188
| (pipe) character, 24, 324, 556
+ (plus symbol), 137, 143
-property argument, 77
__PROPERTY_COUNT property, 188
__provider class, 289
? (question mark), 291
>> (redirect-and-append arrow), 6

 AddOne function

 Index 635

> (redirection arrow), 6, 318
__RELPATH property, 188
#requires statement, 234
__SERVER property, 188
! SET keyword, 470
. (shortcut dot), 320
' (single quote) character, 92
__SUPERCLASS property, 188
%windir% variable, 51

A
abstract qualifier, 371
abstract WMI classes, 370
access control lists (ACLs), 90, 362
Access Denied error, 287, 463, 464
Access property, 187
account lockout policy, checking, 430
accounts, user

creating, 395–396
deleting, 411–412

AccountsWithNoRequiredPassword.ps1 script, 132
ACLs (access control lists), 90, 362
-action parameter, 488
Active Directory

cmdlets for
creating users using, 435–436
discovering information about forest and

domain, 428–431
finding information about domain controller

using, 424–428
committing changes to, 389
finding unused user accounts using, 440–442
installing RSAT for, 420
locked-out users, unlocking, 436–437
managing users using, 432–434
objects in

ADSI providers and, 385–387
binding and, 388
connecting to, 388
error handling, adding, 392
errors, 389–392
LDAP naming convention and, 387–388
organizational units, creating, 383–384,

413–414
overview, 383

objects, updating using Active Directory
module, 443–444

querying, 590
renaming sites, 431–432
users

address information, exposing, 400–401
computer account, 395–396
creating, 435–436
deleting, 411–412
disabled, finding, 438–439
finding and unlocking user accounts, 436–

437
general user information, 398–399
groups, 394–395
managing, 432–434
multiple users, creating, 408–409
multivalued users, creating, 414–417
organizational settings, modifying, 409–411
overview, 393–394
passwords, changing, 444–445
profile settings, modifying, 403–405
properties, modifying, 397–398
telephone settings, modifying, 405–407
unused user accounts, finding, 440–442
user account control, 396–397

Active Directory Domain Services. See AD DS
Active Directory Management Gateway Service

(ADMGS), 419
Active Directory Migration Tool (ADMT), 385
Active Directory module

automatic loading of, 421
connecting to server containing, 421–422
default module locations, 421
finding FSMO role holders, 422–427
importing via Windows PowerShell profile, 436
installing, 419–420
overview, 419
updating Active Directory objects using, 443–

444
verifying, 421

Active Directory Service Interfaces (ADSI), 383,
385–387

ActiveX Data Object (ADO), 153
Add cmdlet, 583
Add-Computer cmdlet, 571
Add-Content cmdlet, 84, 571
Add Criteria button, 33
Add-Member cmdlet, 571
AD_Doc.txt file, 431, 462
AddOne filter, 202
AddOne function, 490

Add-Printer cmdlet

636 Index

Add-Printer cmdlet, 571
Add-PrinterDriver cmdlet, 571
Add-PrinterPort cmdlet, 571
Add-RegistryValue function, 467, 468–469, 470
address information, 400–401
Address tab, Active Directory Users and

Computers, 401
AD DS (Active Directory Domain Services)

AD DS Tool, 385
deploying

domain controller, adding to domain, 453–
455

domain controller, adding to new forest, 458–
459

domain controller prerequisites,
installing, 457–458

features, adding, 448
forests, creating, 452–453
infrastructure prerequisites, 447
IP address assignment, 448
read-only domain controller, adding, 455–

457
renaming computer, 448
restarting computer, 449
role-based prerequisites, 448
script execution policy, setting, 447
verification steps, 449–450

tools installation, 448
ADDSDeployment module, 452, 454, 456, 459
AddTwo function, 490
Add-Type cmdlet, 571
Add-WindowsFeature cmdlet, 386, 420, 448, 455,

458
AD LDS Tool, 385
ADMGS (Active Directory Management Gateway

Service), 419
admin environment variable, 78, 79
Administrator Audit Logging feature, 557
administrator variable, 100
ADMT (Active Directory Migration Tool), 385
ADO (ActiveX Data Object), 153
ADSI (Active Directory Service Interfaces), 383,

385–387
ADsPath, 384
ADS_UF_ACCOUNTDISABLE flag, 397
ADS_UF_DONT_EXPIRE_PASSWD flag, 397
ADS_UF_DONT_REQUIRE_PREAUTH flag, 397
ADS_UF_ENCRYPTED_TEXT_PASSWORD_ALLOWED

flag, 397
ADS_UF_HOMEDIR_REQUIRED flag, 397

ADS_UF_INTERDOMAIN_TRUST_ACCOUNT flag, 397
ADS_UF_LOCKOUT flag, 397
ADS_UF_MNS_LOGON_ACCOUNT flag, 397
ADS_UF_NORMAL_ACCOUNT flag, 397
ADS_UF_NOT_DELEGATED flag, 397
ADS_UF_PASSWD_CANT_CHANGE flag, 397
ADS_UF_PASSWD_NOTREQD flag, 396, 397
ADS_UF_PASSWORD_EXPIRED flag, 397
ADS_UF_SCRIPT flag, 397
ADS_UF_SERVER_TRUST_ACCOUNT flag, 397
ADS_UF_SMARTCARD_REQUIRED flag, 397
ADS_UF_TEMP_DUPLICATE_ACCOUNT flag, 397
ADS_UF_TRUSTED_FOR_DELEGATION flag, 397
ADS_UF_TRUSTED_TO_AUTHENTICATE_FOR_

DELEGATION flag, 397
ADS_UF_USE_DES_KEY_ONLY flag, 397
ADS_UF_WORKSTATION_TRUST_ACCOUNT flag, 396,

397
-alias argument, 567
aliases, 489, 626–627

creating for cmdlets, 19
finding all for object, 59
finding for cmdlets, 150–151
provider for, 66–68
setting, 246

AllowMaximum property, 315
AllowPasswordReplicationAccountName

parameter, 456
AllSigned execution policy, 134
All Users, All Hosts profile, 275–276
AllUsersCurrentHost profile, 269
alphabetical sorting, 77
ampersand (&) character, 12
-a parameter, 212
AppLocker module, 580
Appx module, 580
ArgumentList block, 263
arguments, for cmdlets, 12
[array] alias, 146, 190
Array function, 151
array objects, 54
arrays

using -contains operator to examine contents
of, 507–509

creating, 589
indexing, 377

ASCII values, casting to, 152–153
-asjob parameter, 350, 353
-asplaintext argument, 545, 566
assignment operators, 163

 CIM (Common Information Model)

 Index 637

association classes, WMI, 370, 373–378
asterisk (*) wildcard operator, 7, 17, 21, 68, 293, 309,

442
ast-write-time property, 30
Attributes property, 82
audit logging (Exchange Server 2010), 557–561
-autosize argument, 313, 327, 331
-AutoSize parameter, 27
Availability property, 187

B
Backspace key, 38
backtick (`) character, 137, 480, 628
backup domain controllers (BDCs), 385
backward slash (\), 68
basename property, 230
BDCs (backup domain controllers), 385
Begin block, 199, 205
BestPractices module, 580
binary SD format, 362
binding, 388
BIOS information, 115, 308–311, 371
bios pattern, 291
BitsTransfer module, 236, 580
BlockSize property, 187
bogus module, 234
[bool] alias, 146, 190
boundary-checking function, 526–527
BranchCache module, 579
breakpoints

deleting, 494
enabling and disabling, 494
ID number, 494
listing, 492–493
purpose of, 483
responding to, 490–492
script location and, 485
setting

on commands, 489–490
on line number, 483–484
on variables, 485–489
overview, 483

vs. stepping functionality, 483
storage location, 492

Break statement, 160, 167
business logic

encapsulating with functions, 194–196
program logic vs., 194

BusinessLogicDemo.ps1 script, 194
Bypass execution policy, 134
bypass option, 134, 136, 238
[byte] alias, 146, 190

C
canonical aliases, 626–627
Caption property, 187, 315
Case Else expression, 165
casting, 152–153
Catch block, 529. See also Try…Catch…Finally blocks
CategoryInfo property, 389
C attribute, 388
-ccontains operator, 507
cd alias, 67
cd .. command, 7
Certificate drive, 102
certificates

deleting, 74
finding expired, 75
listing, 69–73
provider for, 68
searching, 74–75
viewing properties of, 72–73

Certificates Microsoft Management Console
(MMC), 69

Certmgr.msc file, 73–74
[char] alias, 146, 190
char data type, 153
chdir alias, 67
Check-AllowedValue function, 526
Checkpoint cmdlet, 584
Checkpoint-Computer cmdlet, 571
Chkdsk method, 187
ChoiceDescription class, 505
choices, limiting. See limiting choices
cimclassname property, 380, 381
cimclassqualifiers property, 380
CIM cmdlets

filtering classes by qualifier, 369–371
finding WMI class methods, 368–369
module for, 580
overview, 367
retrieving associated WMI classes, 381–382
using -classname parameter, 367–368
video classes, 380–381

CIM (Common Information Model), 108, 112,
343–344, 579. See also CIM cmdlets

CIM_LogicalDevice class

638 Index

CIM_LogicalDevice class, 362
CIM_UnitaryComputerSystem class, 290
CIMWin32WMI provider, 516
-class argument, 321
Class box, 253
classes

in WMI, 289–293
querying WMI, 293–296
retrieving data from specific instances of, 319–

320
retrieving every property from every instance

of, 314
retrieving specific properties from, 316

-classname parameter, 348, 367–368, 368, 372
-class parameter, 264, 523
__CLASS property, 517
Clear cmdlet, 583
Clear-Content cmdlet, 571
Clear-EventLog cmdlet, 571
Clear-Host cmdlet, 60, 478
Clear-Item cmdlet, 571
Clear-ItemProperty cmdlet, 571
clear method, 392
Clear-Variable cmdlet, 571
ClientLoadableCLSID property, 517
cls command, 21
CLSID property, 517, 519
CMD (command) shell, 1, 76
[cmdletbinding] attribute

adding -confirm support, 215–216
adding -whatif support to function, 214–215
enabling for functions, 210
for functions, checking parameters

automatically, 211–214
overview, 209, 209–210
specifying default parameter set, 216–217
-verbose switch for, 210–211

[CmdletBinding()] attribute, 464, 465
CmdletInfo object, 540
cmdlets. See also CIM cmdlets

Active Directory
creating users using, 435–436
finding information about domain controller

using, 424–428
finding locked out users using, 436
finding unused user accounts using, 440–442
managing users using, 432–434

defined, 3
descriptions of all, 571–578
displaying graphical command picker of, 52

execution of
confirming, 8
controlling, 7

finding aliases for, 150–151
for working with event logs, 587
most important, 587
names of, 626–627
naming, 3, 54–56, 583–586

verb distribution, 55–56
verb grouping for, 54–55

number of on installation, 587
options for, 12
overview, 3, 23–24
searching for using wildcards, 36–39, 43
suspending execution of, 9
using Get-Command cmdlet for, 36–39, 43
verbs for, 174
with Exchange Server 2010, 539–540

-cmdlets parameter, 559
cn alias, 124, 247
CN attribute, 388
cn parameter, 465
code formatting. See formatting code
code, reusing, 178–179
colon (:), using after PS drive name, 68
column heading buttons, 32
-columns argument, 28
command (CMD) shell, 1
commandlets. See cmdlets
command-line input, 501
command-line parameter, 502–503
command-line utilities

exercises using, 20–21
ipconfig command, 5
multiple, running, 6
overview, 4, 5

-command parameter, 489
commands

most powerful, 588
setting breakpoints on, 489–490
whether completed successfully, 592

Commands add-on
overview, 252–256
turning off, 256
using with script pane, 255

command window, prompt for, 76
comments, 179, 627–628
Common Information Model. See CIM
-comobject parameter, 50, 61, 62
Compare cmdlet, 584

 DC attribute

 Index 639

Compare-Object cmdlet, 571
comparison operators, 162–163
compatibility aliases, 626
Complete cmdlet, 584
Complete-Transaction cmdlet, 571
Compressed property, 187
computer account, 395–396
computer connectivity, identifying, 506
-computername parameter, 182, 293, 344
Concurrency property, 517
ConfigManagerErrorCode property, 187
ConfigManagerUserConfig property, 187
ConfigurationNamingContext property, 431
ConfigureTransportLogging.ps1 script, 557
-Confirm:$false command, 434
-confirm argument, 8–10
Confirm cmdlet, 585
confirmimpact property, 216
ConfirmingExecutionOfCmdlets.txt file, 8
-confirm parameter, 12, 438, 629
-confirm switch, 215–216, 437
Connect cmdlet, 584
connectivity. See computer connectivity
Connect-WSMan cmdlet, 571
console, launch options for, 11
ConsoleProfile variable, 280
console window

copying in, 72
quotation marks in, 133

constants, 587, 631
compared with variables, 146
creating, 170
creating in scripts, 146
using, 146–147

-contains operator, 504, 594
using to examine contents of array, 507–509
using to test for properties, 509–511

Continue command, 491
Continue statement, 191
Control Properties dialog box, 285
ConversionFunctions.ps1 script, 179
ConversionModuleV6 module, 237
Convert cmdlet, 585
ConvertFrom cmdlet, 584
ConvertFrom-Csv cmdlet, 571
ConvertFromDateTime method, 188
ConvertFrom-Json cmdlet, 571
ConvertFrom-StringData cmdlet, 571
Convert-Path cmdlet, 571
ConvertTo cmdlet, 584

ConvertTo-Csv cmdlet, 572
ConvertToDateTime method, 188
ConvertTo-Html cmdlet, 572
ConvertTo-Json cmdlet, 572
ConvertToMeters.ps1 script, 178
ConvertTo-SecureString cmdlet, 435, 545, 566
ConvertTo-Xml cmdlet, 572
Copy button, Commands add-on, 255
Copy cmdlet, 584
copying from PowerShell window, 72
Copy-Item cmdlet, 230, 279, 572
Copy-ItemProperty cmdlet, 572
Copy-Module function, 229, 231
Copy-Modules.ps1 script, 229, 231, 237, 241, 244
counting backward, 595
-count parameter, 506
count property, 104, 125, 212, 389
CountryCode attribute, 401
country codes, 401–402
CPU (central processing unit), listing processes using

CPU time criteria, 34
-CreateDnsDelegation parameter, 459
CreateShortCutToPowerShell.vbs script, 141
CreatingFoldersAndFiles.txt file, 80
CreationClassName property, 187
CreationTime property, 82
CreationTimeUtc property, 82
credentials

-credential parameter, 109, 110, 591
for remote connection, 339–342

CRSS process, 216
Ctrl+J shortcut, 257
Ctrl+N shortcut, 254, 258
Ctrl+V shortcut, 255, 258
curly brackets ({ }), missing, 177–178
Current Host profile, 268
current property, 202
CurrentUserCurrentHost property, 269, 270
Current User profile, 268
CurrentUser scope, 134

D
-DatabasePath parameter, 459
data types, incorrect, 523–525
date, obtaining current, 75
DateTime object, 205
[DBG] prefix, 495
DC attribute, 388

DDL (dynamic-link library) file

640 Index

DDL (dynamic-link library) file, 66
Debug cmdlet, 585
debugging. See also errors

cmdlets for, list of, 483
functions, 495–496
scripts, using breakpoints

deleting breakpoints, 494
enabling and disabling breakpoints, 494
exercise, 496–498
listing breakpoints, 492–493
responding to breakpoints, 490–492
setting on commands, 489–490
setting on line number, 483–484
setting on variables, 485–489

using Set-PSDebug cmdlet
overview, 467
script-level tracing, 467–471
stepping through script, 471–479

strict mode, enabling
overview, 479
using Set-PSDebug -Strict, 479–480
using Set-StrictMode cmdlet, 481–482

-debug parameter, 12, 465
Debug-Process cmdlet, 572
[decimal] alias, 146, 190
DefaultDisplayPropertySet configuration, 294
DEFAULT IMPERSONATION LEVEL key, 307
DefaultMachineName property, 517
DefaultParameterSetName property, 216, 217
default property, 89, 90
default value, setting for registry keys, 95
definition attribute, 86
-definition parameter, 150
Delete method, 412
DeleteUser.ps1 script, 412
deleting

breakpoints, 494
users, 411–412

DemoAddOneFilter.ps1 script, 203
DemoAddOneR2Function.ps1 script, 203
DemoBreakFor.ps1 script, 160
DemoDoUntil.vbs script, 154
DemoDoWhile.ps1 script, 151
DemoDoWhile.vbs script, 151
DemoExitFor.ps1 script, 160
DemoExitFor.vbs script, 160
DemoForEachNext.vbs script, 158
DemoForEach.ps1 scrip, 158
DemoForLoop.ps1 script, 156, 157
DemoForLoop.vbs script, 156
DemoForWithoutInitOrRepeat.ps1 script, 156, 157

demoIfElseIfElse.ps1 script, 164
DemoIfElse.vbs script, 163
DemoIf.ps1 script, 161
DemoIf.vbs script, 162
DemoQuitFor.vbs script, 161
DemoSelectCase.vbs script, 164, 166
DemoSwitchArrayBreak.ps1 script, 167
DemoSwitchArray.ps1 scrip, 167
DemoSwitchMultiMatch.ps1 script, 166
DemoTrapSystemException.ps1 script, 191
DemoWhileLessThan.ps1 script, 148, 149
dependencies, checking for modules, 234–236
deploying

AD DS (Active Directory Domain Services)
domain controller, adding to domain, 453–

455
domain controller, adding to new forest, 458–

459
domain controller prerequisites,

installing, 457–458
features, adding, 448
forest, creating, 452–453
infrastructure prerequisites, 447
IP address assignment, 448
read-only domain controller, adding, 455–

457
renaming computer, 448
restarting computer, 449
role-based prerequisites, 448
script execution policy, setting, 447
verification steps, 449–450

PowerShell to enterprise systems, 4
deprecated qualifier, 370
__DERIVATION property, 517
-Descending parameter, 35
-description parameter, 187, 260, 315, 627
design considerations, analyzing before

development, 94
-detailed argument, 21
DeviceID property, 187
dir alias, 88
DirectAccessClientComponents module, 580
directories

creating, 82–83
listing contents of, 81
listing contents with Get-ChildItem cmdlet, 24–

26
formatting with Format-List cmdlet, 26
formatting with Format-Table cmdlet, 29
formatting with Format-Wide cmdlet, 27–29

properties for, 81–82

 equal sign (=)

 Index 641

DirectoryInfo object, 44
DirectoryListWithArguments.ps1 script, 131–132
DirectoryName property, 82
Directory property, 82
Directory Restore Password prompt, 456
Disable cmdlet, 583
Disable-ComputerRestore cmdlet, 572
Disable-PSBreakpoint cmdlet, 483, 494, 572
Disable-WSManCredSSP cmdlet, 572
Disconnect cmdlet, 584
Disconnect-WSMan cmdlet, 572
-Discover switch, 424
Diskinfo.txt file, 318
disktype property, 146
Dism module, 580
Dismount cmdlet, 585
DisplayCapitalLetters.ps1 script, 153
displaying commands, using Show-Command

cmdlet, 52
DisplayName property, 302–303, 432
divide-by-zero error, 492
DivideNum function, 490, 491–492, 492
DnsClient module, 580
DNS Manager tool, 453
DNS server, adding to IP configuration, 453
DNSServerSearchOrder property, 196
Documents and Settings\%username% folder, 141
Do keyword, 154
dollar sign ($), 141, 189
domain controller

adding to domain, 453–455
adding to new forest, 458–459
checking, 430
prerequisites, installing, 457–458

-DomainMode parameter, 459
-DomainName parameter, 459
DomainNamingMaster role, 425
-DomainNetbiosName parameter, 459
domain password policy, checking, 429
Do statement, 152, 154
dot-sourced functions, using, 182–184
DotSourceScripts.ps1 script, 198
dot-sourcing scripts, 178, 179–181, 180–181
dotted notation, 39, 357
[double] alias, 146, 190
Do...Until statement, 155
DoWhileAlwaysRuns.ps1 script, 155
Do...While statement

always runs once, 155
casting and, 152–153

in VBScript compared with in PowerShell, 151
range operator, 152

drives
creating for modules, 232–233
creating for registry, 87
for registry, 87–88
using WMI with, 312–314

DriveType property, 187, 312, 314
dynamic-link library (DLL) file, 66
dynamic qualifier, 370, 371
dynamic WMI classes, 370
__DYNASTY property, 517

E
ea alias, 97, 136
-ea parameter, 27
echo command, 76
-edbFilePath parameter, 551
Else clause, 97, 163, 169, 236
Else If clause, 163
empty parentheses, 105
Enable cmdlet, 583
Enable-ComputerRestore cmdlet, 572
Enabled property, 517
Enable-Mailbox cmdlet, 544, 559
Enable-PSBreakpoint cmdlet, 483, 494, 572
Enable-PSRemoting function, 112
Enable-WSManCredSSP cmdlet, 572
-enddate parameter, 559
EndlessDoUntil.ps1 script, 155
End parameter, 201
Enter cmdlet, 585
Enter in Windows PowerShell option, 71
enterprise systems, deploying PowerShell to, 4
Enter-PSSession cmdlet, 115, 116, 127, 428, 444
EnumNetworkDrives method, 61
EnumPrinterConnections method, 61
Environment PS drive, 77
environment variables

creating temporary, 78
deleting, 80
listing, 77–78
provider for, 76
renaming, 79
viewing using WMI, 330–335

-eq operator, 162
-equals argument, 300, 304
equal sign (=), 162, 320

error[0] variable

642 Index

error[0] variable, 389
-erroraction parameter, 136
-ErrorAction parameter, 12
ErrorCleared property, 187
ErrorDescription property, 187
error handling

incorrect data types, 523–525
limiting choices

using -contains operator to examine contents
of array, 507–509

using -contains operator to test for
properties, 509–511

overview, 504
using PromptForChoice, 504–505, 534–535
using Test-Connection to identify computer

connectivity, 506
missing parameters

assigning value in param statement, 502–503
detecting missing value and assigning in

script, 502
making parameter mandatory, 503
overview, 501

missing rights
attempt and fail, 512
checking for rights and exiting gracefully, 513
overview, 512

missing WMI providers, 513–523
out-of-bounds errors

overview, 526
placing limits on parameter, 528
using boundary-checking function, 526–527

using Try…Catch…Finally
Catch block, 529
catching multiple errors, 532–533
exercise, 536–537
Finally block, 529–530

error messages
importance of, 136
using Trap keyword to avoid confusing

messages, 191–192
ErrorMethodology property, 187
ErrorRecord class, 191
ErrorRecord object, 532
errors. See also debugging

command for ignoring, 589
logic, 466
run-time, 462–465
simple typing errors, 479–480
syntax, 461–462
terminating vs. nonterminating, 512

-ErrorVariable parameter, 12
escape character (\), 149, 157
-examples argument, 18, 21
Exception property, 532
Exchange Server 2010, 562–565

audit logging, 557–561
cmdlets with, 539–540
logging settings, 553–557

overview, 553
transport-logging levels, 554–557

mailboxes, creating
multiple mailboxes, 546–547
using Enable-Mailbox cmdlet, 543–544
when creating user, 544–546

message tracking, 568–570
parsing audit XML file, 562–565
remote servers, 540–543
reporting user settings, 548–550
storage settings

mailbox database, 550–552
overview, 550–551

user accounts, creating
exercise, 565–568
when creating mailbox, 544–546

exclamation mark (!), 470
execution policies for scripts

overview, 134
required for using profiles, 268
required for using snippets, 259
retrieving current, 135–136
setting, 135–136

execution policy, restricted, 513
execution, unwanted, preventing using While

statement, 155–156
Exists property, 82
Exit cmdlet, 585
exit command, 115, 128
Exit For statement, 159
Exit statement, 160–161
ExpandEnvironmentStrings method, 51
expanding strings, 148, 157
expired certificates

finding, 75
needed for old executables, 75

explorer filter, 34
Export-Alias cmdlet, 572
Export-CliXML cmdlet, 345, 563, 572
Export cmdlet, 583
Export-Console cmdlet, 11
Export-Csv cmdlet, 572

 Function keyword

 Index 643

exportedcommands property, 225
Export-FormatData cmdlet, 572
Export-ModuleMember cmdlet, 241, 248
Export-PSSession cmdlet, 572
Extension property, 82, 193

F
FacsimileTelephoneNumber attribute, 406
FeatureLog.txt file, 450
FileInfo object, 44
-filePath argument, 323
files

creating, 82–83
overwriting contents of, 85
reading from, 84–85
writing to, 84–85

FileSystemObject, 150
FileSystem property, 187
filesystem provider, 80
FilterHasMessage.ps1 script, 204
Filter keyword, 196, 204
-filter parameter, 199, 312, 326–327, 347, 372, 425,

440, 518, 589
quotation marks used with, 318
using to reduce number of returned WMI class

instances, 378
filters

advantages of, 204–205
overview, 201–203
performance and, 203–204
readability of, 204–205

FilterToday.ps1 script, 205
Finally block, of Try…Catch…Finally, 529–530
Find and Replace feature, 622
FindLargeDocs.ps1 script, 196
firewall exceptions, 114
-firstname argument, 568
fl alias, 295
folders

creating, 82–83
for user modules, 227–230
multiple

creating using scripts, 168–169
deleting using scripts, 169–170

-force parameter, 81, 82, 94, 112, 134, 269, 279, 434,
440, 545, 552

foreach alias, 143
Foreach alias, 489

ForEach cmdlet, 413, 585
ForEach-Object cmdlet, 137, 159, 183, 287, 292, 381,

382, 489, 550
foreach snippet, 264
Foreach statement

exiting early, 159–160
overview, 158
using from inside PowerShell consule, 159

ForEach statement, 443
-foregroundcolor argument, 328
ForEndlessLoop.ps1 script, 157
-ForestMode parameter, 459
forests

adding domain controller to, 458–459
creating, 452–453

For keyword, 156
Format cmdlet, 309, 584
Format-Custom cmdlet, 572
Format-IPOutput function, 200
Format-List cmdlet, 26, 72, 77, 98, 143, 269, 309, 316,

321, 386, 485, 525, 549, 550, 572
Format-NonIPOutput function, 200
*.format.ps1xml files, 371
Format-Table cmdlet, 29, 139, 255, 313, 318, 373,

380, 493, 564, 572
formatting code, 628–629

constants, 631
functions, 629–630
template files, 630

formatting returned data, 189
Format-Wide cmdlet, 572

alias for, 68
formatting output with, 27–29
using, 27–29

For...Next loop, 152
For statement

flexibility of, 156–157
in VBScript compared with in PowerShell, 156
making into infinite loop, 157–158

FreeSpace property, 187, 189
FSMO (Flexible Single Master Operation), 422–427
fsutil utility, 2, 20
ft alias, 295
-full argument, 19, 21
FullName property, 82, 231
FullyQualifiedErrorId property, 389
Function drive, 181
FunctionGetIPDemo.ps1 script, 198
FunctionInfo object, 540
Function keyword, 172, 174, 177, 186, 193, 205, 279

function libraries, creating

644 Index

function libraries, creating, 178–179
function notation, 481
function provider, 85
functions

adding help for
overview, 184
using here-string object for, 184–186

advantages of using, 197–198
as filters, 201–204
[cmdletbinding] attribute for, 209–210

adding -confirm support, 215–216
adding -whatif support, 214–215
checking parameters automatically, 211–214
specifying default parameter set, 216–217
-verbose switch, 210–211

comments at end of, 179
creating, 172
debugging, 495–496
delimiting script block on, 177
dot-sourced, 182–184
enabling [cmdletbinding] attribute for, 210
encapsulating business logic with, 194–196
flexibility of, 198–199
formatting, 629–630
including in PowerShell using dot-sourcing, 180–

181
including in scripts, 625
in VBScript, 171
listing all, 85–87
naming, 174–175, 628
parameters for

overview, 176
using more than two, 192–193
using two input parameters, 186–187

passing values to, 175
performance of, 203–204
readability of, 198
reusability of, 198
separating data and presentation activities into

different functions, 199–202
signature of, 195
type constraints in, 190–191
using for code reuse, 178–179
using from imported module, 242–244
using Get-Help cmdlet with, 243–245

Functions.psm1 module, 239
fw alias, 68

G
gal alias, 45–46
gc alias, 150
gci alias, 79, 85, 333
gcm alias, 37, 238
__GENUS property, 517
-ge operator, 162
Get-Acl cmdlet, 362
Get-ADDefaultDomainPasswordPolicy cmdlet, 429
Get-ADDomain cmdlet, 429
Get-ADDomainController cmdlet, 424, 430
Get-ADForest cmdlet, 428
Get-ADObject cmdlet, 425, 431
Get-ADOrganizationalUnit cmdlet, 435
Get-ADRootDSE cmdlet, 431
Get-ADUser cmdlet, 435, 443, 444
Get-Alias cmdlet, 21, 24, 150, 332, 572
Get-AllowedComputerAndProperty.ps1 script, 511
Get-AllowedComputer function, 508, 509, 510
Get-ChildItem cmdlet, 20, 75, 131, 196, 231, 237,

331, 572
alias for, 67
exercises using, 59–60
listing certificates using, 69
listing directory contents with, 24–26
listing registry keys using, 65

Get-Choice function, 505
Get-CimAssociatedInstance cmdlet, 374, 377, 378,

381, 382
Get-CimClass cmdlet, 367–368, 380, 381
Get-CimInstance cmdlet, 183, 246, 343, 353, 371,

373, 381
Get cmdlet, 583
Get-Command cmdlet, 21, 36–39, 43, 56, 172, 238,

242, 421, 423, 579
Get-Command -module <modulename>

command, 225
Get-ComputerInfo function, 241, 242
Get-ComputerRestorePoint cmdlet, 572
Get-Content cmdlet, 150, 177, 185, 413, 415,

462–463, 508, 563, 572, 627
Get-ControlPanelItem cmdlet, 572
Get_Count method., 105
Get-Credential cmdlet, 127, 339, 444, 456, 541
Get-Culture cmdlet, 572
Get-Date cmdlet, 20, 329, 572
Get-DirectoryListing function, 192, 193
Get-DirectoryListingToday.ps1 script, 193
Get-Discount function, 194

 gh alias

 Index 645

Get-DiskInformation function, 527
Get-DiskSpace.ps1 script, 189
Get-Doc function, 196
Get-Event cmdlet, 572
Get-EventLog cmdlet, 573, 588
Get-EventLogLevel cmdlet, 553, 555
Get-EventSubscriber cmdlet, 573
Get-ExchangeServer cmdlet, 542
Get-ExCommand cmdlet, 539, 540, 543
Get-ExecutionPolicy cmdlet, 135, 259, 278
Get-FilesByDate function, 194, 205
Get-FilesByDate.ps1 script, 207
Get-FilesByDateV2.ps1 file, 207
GetFolderPath method, 272
Get-FormatData cmdlet, 573
Get-FreeDiskSpace function, 186
Get-FreeDiskSpace.ps1 script, 186
GetHardDiskDetails.ps1 script, 146
Get-Help cmdlet, 58, 68, 243, 245, 540

creating alias for, 19
examples using, 21
overview, 15–20

Get-History cmdlet, 332
Get-Host cmdlet, 573
Get-HotFix cmdlet, 573
GetInfoByZip method, 190
GetIPDemoSingleFunction.ps1 script, 197
Get-IPObjectDefaultEnabledFormatNonIPOutput.ps1

script, 200
Get-IPObjectDefaultEnabled.ps1 script, 199
Get-IPObject function, 199, 200
Get-IseSnippet cmdlet, 261
Get-Item cmdlet, 573
Get-ItemProperty cmdlet, 89, 143, 308, 573
Get-Job cmdlet, 121, 351
Get-Location cmdlet, 68, 573
Get-Mailbox cmdlet, 548
Get-MailboxDatabase cmdlet, 550, 551
Get-MailboxServer cmdlet, 550
Get-MailboxStatistics cmdlet, 558
Get-Member cmdlet, 67, 122, 268, 269, 374, 378,

381, 529, 573
exercises using, 59–60
retrieving information about objects using, 44–

48
Get-Member object, 376
Get-Module cmdlet, 223, 241
Get-MyBios function, 245, 247, 248
Get-MyBios.ps1 file, 248
Get-MyModule function, 234, 236, 419

Get-MyModule.ps1 script, 236
Get-Net6to4Configuration job, 124
Get-NetAdapter cmdlet, 126, 448, 457
Get-NetConnectionProfile function, 225
Get-OperatingSystemVersion function, 174, 228
Get-OperatingSystemVersion.ps1 script, 174
Get-OptimalSize function, 244
Get-PowerShellRequirements.ps1 script, 3–4
Get-PrintConfiguration cmdlet, 573
Get-Printer cmdlet, 573
Get-PrinterDriver cmdlet, 573
Get-PrinterPort cmdlet, 573
Get-PrinterProperty cmdlet, 573
Get-PrintJob cmdlet, 573
Get-Process cmdlet, 7, 129, 174, 263, 317, 573, 592
Get-Process note* command, 8–9
Get-PSBreakPoint cmdlet, 483, 485, 492, 493, 494,

497, 498, 573
Get-PSCallStack cmdlet, 483, 491, 573
Get-PSDrive cmdlet, 18, 77, 87, 520, 573
Get-PSProvider cmdlet, 66, 67, 573
Get-PSSession cmdlet, 116
Get-Random cmdlet, 573
Get-Service cmdlet, 174, 573
Get-TextStatistics function, 174, 176
Get-TextStats function, 180, 183
Get-TraceSource cmdlet, 573
Get-Transaction cmdlet, 573
Get-TypeData cmdlet, 573
GetType method, 523
Get-UICulture cmdlet, 573
Get-Unique cmdlet, 573
Get-ValidWmiClass function, 523, 524, 525
Get-Variable administrator command, 101
Get-Variable cmdlet, 573
Get-Variable ShellId command, 100
Get-Verb cmdlet, 3, 54, 205, 542
Get-WindowsFeature cmdlet, 385, 386, 420, 448
GetWmiClassesFunction.ps1 script, 184
Get-WmiInformation function, 525
Get-WmiNameSpace function, 286–288
Get-WmiObject cmdlet, 68, 115, 124, 139, 174, 189,

196, 199, 253, 255, 264, 286, 291, 308, 311,
312, 314, 316, 317, 318, 322, 326, 338, 350,
355, 358, 364, 373, 428, 502, 509, 511, 514,
525, 573, 621

Get-WmiProvider function, 289, 516, 521
Get-WSManCredSSP cmdlet, 573
Get-WSManInstance cmdlet, 573
gh alias, 281

G+H keystroke combination

646 Index

G+H keystroke combination, 19
ghy alias, 332, 334
gi alias, 78, 82
globally unique identifier (GUID), 425
gm alias, 122, 292, 361
gmb alias, 248
GPO (Group Policy Object), 4
gps alias, 31, 122, 129
grave accent character (`), 137, 143, 319, 321
greater-than (>) symbol, 320
Group cmdlet, 585
Group-Object cmdlet, 172, 573
group policy, 337–338, 513
Group Policy Object (GPO), 4
groups, 394–395
-groupScope parameter, 433
gsv alias, 32, 130
-gt argument, 59, 61, 162
GUID (globally unique identifier), 425
gwmi alias, 68, 291, 296, 301, 311, 330, 355
gwmi win32_logicaldisk command, 312

H
hard-coded numbers, avoiding, 631
[hashtable] alias, 146, 190
HasMessage filter, 204
hasmoredata property, 129
-Height parameter, 52
Help command, 13–20, 491
Help function, 18, 249
HelpMessage parameter property, 217, 221
here-string object, 184–186
Hit Variable breakpoint, 486
HKEY_CLASSES_ROOT registry hive, 87, 281, 519
HomeDirectory attribute, 404
HomeDrive attribute, 405
HomePhone attribute, 405
HostingModel property, 517
hostname command, 6
HSG key, 93
Hungarian Notation, 631
Hyperv server, 425

I
-icontains operator, 507
IdentifyingPropertiesOfDirectories.txt file, 80
IdentifyServiceAccounts.ps1 script, 323

-identity parameter, 425, 434, 438, 439, 443, 548
-id parameter, 494
IDs for jobs, 120
If statement, 97, 157, 515

assignment operators, 163
compared with VBScript's If...Then...End

statement, 161
comparison operators, 162–163

ihy alias, 334
ImpersonationLevel property, 517
Import-Alias cmdlet, 574
Import-Clixml cmdlet, 574
Import cmdlet, 583
Import-Csv cmdlet, 574
importing modules, 241–242
Import-LocalizedData cmdlet, 574
Import-Module cmdlet, 225, 226, 237, 241, 248, 421,

422, 443
Import-PSSession cmdlet, 541, 574
in32_PerfFormattedData_TermService_

TerminalServicesSession class, 618
incorrect data types, 523–525
info attribute, 407
InitializationReentrancy property, 517
InitializationTimeoutInterval property, 517
InitializeAsAdminFirst property, 517
Initialize cmdlet, 585
initializing variables, 623
inline code vs. functions, 197–198
InLineGetIPDemo.ps1 script, 196, 197
-inputobject argument, 48, 300, 377, 381
Insert button, 253, 255
Install-ADDSDomainController cmdlet, 454, 456
Install-ADDSForest cmdlet, 459
InstallDate property, 187, 315
-installDNS parameter, 454, 459
installed software, finding, 327–330
installing

Active Directory module, 419–420
PowerShell 3.0, 3
RSAT for Active Directory, 420

InstallNewForest.ps1 script, 452
instance methods, executing

Invoke-WmiMethod cmdlet, 358–360
overview, 355–357
using terminate method directly, 357–358
[wmi] type accelerator, 360–361

[int] alias, 146, 190
integers, 145

 using -contains operator to test for properties

 Index 647

IntelliSense, 256, 462
International module, 580
Internet Protocol (IP) addresses, 112, 196

adding DNS servers, 453
assigning, 448

InvocationInfo property, 390
Invoke-AsWorkflow cmdlet, 574
Invoke cmdlet, 583
Invoke-Command cmdlet, 308, 341, 342, 350

running command on multiple computers
using, 118–120

running single command using, 117–118
Invoke-Expression cmdlet, 574
Invoke-History cmdlet, 281
Invoke-Item cmdlet, 73, 574
Invoke-RestMethod cmdlet, 574
Invoke-WebRequest cmdlet, 68, 574
Invoke-WmiMethod cmdlet, 68, 262, 357, 358–360,

359, 574
Invoke-WSManAction cmdlet, 574
IPAddress property, 196
ipconfig command, 5, 6
IP (Internet Protocol) addresses, 112, 196

adding DNS servers, 453
assigning, 448

IPPhone attribute, 406
IPSubNet property, 196
iSCSI module, 580
IscsiTarget module, 580
ise alias, 271
ISE module, 581
ISEProfile variable, 280
IsGlobalCatalog property, 425
isNullOrEmpty method, 443
IsReadOnly property, 82
IsToday filter, 205
i variable, 151
IwbemObjectSet object, 328
iwmi alias, 68
iwr alias, 68

J
jobs

checking status of, 124–127
IDs for, 120
naming, 121–122
naming return object, 123–124
overview, 119

receiving, 120–121, 123–125
removing, 121
running, 120
using cmdlets with, 122–124

Join cmdlet, 584
Join-Path cmdlet, 230, 287, 574
join static method, String class, 593

K
Kds module, 580
-keep parameter, 121, 126, 130, 351
-key parameter, 468
keys, registry

creating and setting value at once, 95
creating using full path, 94
creating with New-Item cmdlet, 93
listing, 65, 90–91
overwriting, 94
setting default value, 95

L
language parser, 461
LastAccessTime property, 82
LastAccessTimeUtc property, 82
LastErrorCode property, 187
LastWriteTime property, 60, 82, 206
LastWriteTimeUtc property, 82
-latest parameter, 176
l attribute, 401
launch options for console, 11
-LDAPFilter parameter, 435
LDAP (Lightweight Directory Access Protocol), 284,

385, 387–388, 425
length property, 30, 150
Length property, 82
-le operator, 162
less-than (<) symbol, 320
Lightweight Directory Access Protocol (LDAP), 284,

385, 387–388, 425
-like operator, 86, 162
Limit cmdlet, 585
Limit-EventLog cmdlet, 574
limiting choices

using -contains operator to examine contents of
array, 507–509

using -contains operator to test for
properties, 509–511

overview

648 Index

overview, 504
using PromptForChoice, 504–505, 534–535
using Test-Connection to identify computer

connectivity, 506
line number, setting breakpoints, 483–484
-list argument, 290
-ListAvailable parameter, 223, 226, 235, 241, 278,

421
List command, 491
listing

certificates, 69–73
directory contents, 81
directory contents with Get-ChildItem cmdlet

formatting with Format-List cmdlet, 26
formatting with Format-Table cmdlet, 29
formatting with Format-Wide cmdlet, 27–29
overview, 24–26

environment variables, 77–78
filtered process list, 34
functions, 85–87
modules, 223–225
providers, 66
registry keys, 65, 90–91
WMI classes, 290–291

ListProcessesSortResults.ps1 script, 132
literal strings, 149
loading modules, 225–227
LocalMachine scope, 134
Local User Management module, 445
locations for modules, 222
-LockedOut parameter, 436
locked-out users, 436–437
logging service accounts, 323–324
logging settings (Exchange Server 2010)

overview, 553
transport-logging levels

configuring, 554–557
reporting, 554–555

logic errors, 466
logon.vbs script, 404
-LogPath parameter, 459
[long] alias, 146, 190
looping

Do...While statement, 152–154
Foreach statement, 159–160
While statement, 150

-lt operator, 162

M
Mailbox2 database, 551
mailboxes (Exchange Server 2010)

creating
using Enable-Mailbox cmdlet, 544
when creating user, 544

database for
examining, 550–551
managing, 551–552

ManagementClass object, 291
mandatory parameter property, 217–218, 503
manifest for modules, 241
-match operator, 59, 162, 291
MaximumAllowed property, 315
MaximumComponentLength property, 187
MD alias, 365
MeasureAddOneFilter.ps1 script, 201
MeasureAddOneR2Function.ps1 script, 204
Measure cmdlet, 584
Measure-Command cmdlet, 574
Measure-Object cmdlet, 313, 574
MediaType property, 187
-Members parameter, 434
MemberType method, 48
-membertype parameter, 46, 47, 81, 122
message tracking (Exchange Server 2010), 568–570
MessageTrackingLogEnabled argument, 569
MessageTrackingLogMaxAge argument, 569
MessageTrackingLogMaxDirectorySize

argument, 570
-MessageTrackingLogPath argument, 570
method notation, 481
methods

of WMI classes, 368–369
retrieving for objects using Get-Member

cmdlet, 44–48
Microsoft Exchange Server 2010. See Exchange

Server 2010
Microsoft Management Console (MMC), 69, 386
Microsoft.PowerShell.Diagnostics module, 580
Microsoft.PowerShell.Host module, 581
Microsoft.PowerShell.Management module, 223,

579
Microsoft.PowerShell.Security module, 580
Microsoft.PowerShell.Utility module, 223, 579
Microsoft Systems Center Configuration Manager

package, 4
Microsoft TechNet article KB310516, 93
Microsoft TechNet article KB322756, 93

 NetLbfo module

 Index 649

Microsoft TechNet Script Center, 65, 153
Microsoft.WSMan.Management module, 580
missing parameters, handling

assigning value in param statement, 502–503
detecting missing value and assigning in

script, 502
making parameter mandatory, 503
overview, 501

missing rights, handling
attempt and fail, 512
checking for rights and exiting gracefully, 513
overview, 512

missing WMI providers, handling, 513–523
misspelled words, 462, 621
mkdir function, 365
MMAgent module, 580
MMC (Microsoft Management Console), 69, 386
Mobile attribute, 406
-mode parameter, 486, 487
ModifySecondPage.ps1 script, 405
ModifyUserProperties.ps1 script, 398
module coverage, 579–582
-Module parameter, 242, 421
$modulePath variable, 230–231
modules

checking for dependencies, 234–236
creating

manifest for, 241
overview, 244
using Get-Help cmdlet with, 243–245
using Windows PowerShell ISE, 238–239

creating drive for, 232–233
deploying providers in, 66
directory for, 229
features of, 227
user folders for, 227–230
using functions from imported, 242–244
getting list of, 592
grouping profile functionality into, 277–278
importing, 241–242, 244
installing, 244
listing all available, 223–225
listing loaded, 223
loading, 225–227
locations for, 222
$modulePath variable, 230–231
overview, 222
using with profiles, 274
script execution policy required to install, 232
using from shared location, 237–239

Mount cmdlet, 585
Mount-Database function, 552
Move-ADObject cmdlet, 435
Move cmdlet, 584
Move-Item cmdlet, 574
Move-ItemProperty cmdlet, 574
moveNext method, 202
mred alias, 60
MsDtc module, 579
MSIPROV WMI provider, 516
multiple commands, running, 6
multiple folders

creating using scripts, 168–169
deleting using scripts, 169–170

multiple users, creating, 408–409
multivalued users, creating, 414–417
MyDocuments variable, 280
myfile.txt file, 84
Mytestfile.txt file, 20
Mytest folder, 83

N
named parameters, 628
Name input box, 252
-name parameter, 78, 143, 218, 317, 433, 551
Name property, 30, 82, 92, 187, 289, 291, 315, 517
-namespace parameter, 285, 289, 293, 328
__NAMESPACE property, 517
namespaces

explained, 284
exploring, 367
in WMI, 284–288

__namespace WMI class, 517
Name variable, 331
naming

cmdlets, 3, 54–56, 583–586
verb distribution, 55–56
verb grouping for, 54–55

functions, 174–175, 628
jobs, 121–122
return object for job, 123–124
variables, 631

NDS provider, 385
-ne operator, 162
NetAdapter module, 579
NetBIOS name, 458
NetConnection module, 225, 581
NetLbfo module, 580

NetQos module

650 Index

NetQos module, 580
NetSecurity module, 579
NetSwitchTeam module, 580
NetTCPIP module, 580
NetworkConnectivityStatus module, 580
network shares, modules from, 237–239
NetworkTransition module, 579
New-ADComputer cmdlet, 432
New-ADGroup cmdlet, 433
New-AdminAuditLogSearch cmdlet, 560, 562
New-ADOrganizationalUnit cmdlet, 432
New-Alias cmdlet, 19, 248, 574
New-CimSession cmdlet, 343
New cmdlet, 583
-newest parameter, 126
New-Event cmdlet, 574
New-EventLog cmdlet, 574
New-ExchangeSession function, 542
New-IseSnippet cmdlet, 259, 260, 630
New-Item cmdlet, 78, 93, 169, 230, 270, 278, 574
New-ItemProperty cmdlet, 574
New-Line function, 180, 183
NewMailboxAndUser.ps1 script, 545
New-Mailbox cmdlet, 539, 545
New-MailBoxDatabase cmdlet, 551, 552
-NewName parameter, 79
New-NetIPAddress cmdlet, 453, 458
New-Object cmdlet, 44, 529, 530, 536, 574

exercises, 61
using, 50–51

New-PSDrive cmdlet, 87, 103, 232, 520, 574
New-PSSession cmdlet, 116, 353, 541
New-Service cmdlet, 574
New-TimeSpan cmdlet, 329, 574
New-Variable cmdlet, 100, 168, 324, 574
New-WebServiceProxy cmdlet, 574
New-WSManInstance cmdlet, 575
New-WSManSessionOption cmdlet, 575
Next keyword, 156
NFS module, 579
-noexit parameter, 138, 140
nonterminating errors, 512
-noprofile parameter, 223
notafter property, 75
Notepad.exe file, 7
-notlike operator, 86, 162
-notmatch operator, 162
-not operator, 81, 228, 235
-noun parameter, 42
Novell Directory Services servers, 385

Novell NetWare 3.x servers, 385
NumberOfBlocks property, 188
numbers

hard-coded, avoiding, 631
random, generating, 591

NWCOMPAT provider, 385
NwTraders.msft domain, 384, 385, 413

O
O attribute, 388
Object Editor, for Win32_Product WMI class, 518
objects

finding aliases for, 59
New-Object cmdlet, 50–51
retrieving information about using Get-Member

cmdlet, 44–48
objFile variable, 147
objFSO variable, 147
objWMIServices variable, 320
-off parameter, 479
ogv alias, 32
On Error Resume Next command, 136
OneStepFurtherWindowsEnvironment.txt file, 335
opening PowerShell, 10, 11
OpenTextFile method, 147
OperationTimeoutInterval property, 517
operators for WMI queries, 321–322
optional modules, 419
-option parameter, 146, 168
options for cmdlets, 12
organizational settings, modifying, 409–411
organizational units (OUs), 4, 383–384, 413, 432
Organization tab, Active Directory Users and

Computers, 409, 411
OSinfo.txt file, 319
OtherFacsimileTelephoneNumber attribute, 407
OtherHomePhone attribute, 407
OtherIPPhone attribute, 407
OtherMobile attribute, 407
OtherPager attribute, 407
OtherTelephone attribute, 399
OU attribute, 388
OUs (organizational units), 4, 383–384, 413, 432
-OutBuffer parameter, 12
Out cmdlet, 583
Out-File cmdlet, 324, 575, 592
Out-GridView cmdlet, 31–34, 309, 565, 575
Out-Null cmdlet, 230, 233, 520

 Process scope

 Index 651

out-of-bounds errors, handling
overview, 526
placing limits on parameter, 528
using boundary-checking function, 526–527

Out-Printer cmdlet, 575
output

formatting with Format-Table cmdlet, 29
formatting with Format-Wide cmdlet, 27–29
formatting with Out-GridView cmdlet, 31–34
transcript tool and, 115–116

Out-String cmdlet, 575
-OutVariable parameter, 12

P
Pager attribute, 406
parameter attribute

HelpMessage property, 221
mandatory property, 217–218
overview, 217
ParameterSetName property, 219
position property, 218–219
ValueFromPipeline property, 220–221

parameters
missing, handling

assigning value in param statement, 502–503
detecting missing value and assigning in

script, 502
making parameter mandatory, 503
overview, 501

named vs. unnamed, 628
placing limits on, 528
reducing data via, 347–350

ParameterSetName parameter property, 217, 219,
246

Parameters For... parameter box, 254
parameters, function

avoiding use of many, 194
checking automatically, 211–214
using more than two, 192–193
using multiple, 186–187
positional, 96
specifying, 176
specifying default parameter set, 216–217
switched parameters, 193
unhandled, 213–214

param keyword, 465, 502–503
Param statement, 192, 209
Pascal case, 385

-passthru parameter, 137
passwords

changing, 444
domain password policy, checking, 429

Paste button, Command add-on, 255
Paste command, 255
-path parameter, 69, 78, 80, 96, 143, 150, 176, 192,

415, 432, 433
Path property, 315, 359, 517
paths

for module location, 229
for profiles, 267

pause function, 87
PDCs (primary domain controllers), 385
performance, of functions, 203–204
PerLocaleInitialization property, 517
permission issues, 462, 463
PerUserInitialization property, 517
PING commands, 114
PinToStartAndTaskBar.ps1 script, 11
pipe character (|), 24, 75, 324, 556, 622
pipeline, avoiding breaking, 621
PKI module, 580
plus symbol (+), 137, 143
PNPDeviceID property, 188
Pop cmdlet, 585
Pop-Location cmdlet, 93, 96, 575
Popup method, 62
poshlog directory, 448
positional parameters, 96, 175
position message, 136
position parameter property, 218–219
postalCode attribute, 401
postOfficeBox attribute, 401
PowerManagementCapabilities property, 188
PowerManagementSupported property, 188
PowerShell

adding to task bar in Windows 7, 10–11
deploying to enterprise systems, 4
opening, 10, 11
profiles for, 57

PowerShell.exe file, 141
primary domain controllers (PDCs), 385
PrintManagement module, 580
Process block, 200, 203, 205
processes

filtered list of, 34, 35
retrieving list of running processes, 317–318

process ID, 8
Process scope, 134

profileBackup.ps1 file

652 Index

profileBackup.ps1 file, 279
ProfilePath attribute, 404
profiles

All Users, All Hosts profile, 275–276
using central script for, 276–277
creating, 57, 270–271
deciding how to use, 271–272
determining existence of, 270
grouping functionality into module, 277–278
using modules with, 274
using multiple, 273–275
overview, 267–268
paths for, 267
$profile variable, 268–270
script execution policy required for, 268
usage patterns for, 272

program logic, 194
ProhibitSendQuota property, 549
PromptForChoice method, 504–505, 534–535
prompt, PowerShell, 76
properties

using -contains operator to test for, 509–511
for certificates, 72–73
for directories, 81–82
retrieving every property from every instance of

class, 314
retrieving for objects using Get-Member

cmdlet, 44–48
retrieving specific properties from, 316

__PROPERTY_COUNT property, 518
-property parameter, 26, 256, 296, 313, 325, 326,

347, 372, 373, 441
-ProtectedFromAccidentalDeletion parameter, 433
__provider class, 517
ProviderName property, 188
provider property, 90
providers

alias, 66–68
certificate, 68
defined, 65
environment provider, 76
filesystem provider, 80
function provider, 85
in WMI, 289
listing, 66
overview, 65–66
registry, 90
variable, 97–98

__provider WMI system class, 517
.ps1 extension, 133

PSComputerName property, 118, 183, 342
Psconsole file, 11
-psconsolefile argument, 12
.psd1 extension, 228
PSDiagnostics module, 580
PSDrives

for registry, 87–88, 520
switching, 68

PsisContainer property, 75, 82
.psm1 extension, 228, 237, 239
PSModulePath variable, 229, 421
-PSProvider parameter, 103
PSScheduledJob module, 580
PSStatus property, 188, 295
PSWorkflow module, 581
Pure property, 517
Purpose property, 188
Push cmdlet, 585
Push-Location cmdlet, 93, 575
Put method, 393, 395
pwd alias, 68

Q
-QualifierName parameter, 367, 369
querying

Active Directory, 590
WMI

eliminating WMI query argument, 320–321
finding installed software, 327–330
identifying service accounts, 322–323
logging service accounts, 323–324
obtaining BIOS information, 308–311
using operators, 321–322
overview, 293
retrieving data from specific instances of

class, 319–320
retrieving default WMI settings, 308
retrieving every property from every instance

of class, 314
retrieving information about all shares on

local machine, 315
retrieving list of running processes, 317–318
retrieving specific properties from class, 316
shortening syntax, 325–326
specific class, 293–296
specifying maximum number of connections

to server, 316–317
substituting Where clause with variable, 325

 testing configuration

 Index 653

viewing Windows environment
variables, 330–335

Win32_Desktop class, 296–298
working with disk drives, 312–314

-query parameter, 314, 348
QuickEdit mode, 72
-quiet parameter, 506
QuotasDisabled property, 188
QuotasIncomplete property, 188
QuotasRebuilding property, 188
quotation marks, 189

in console, 133
used with -filter argument, 318

R
random numbers, 591
range operator, 152
-rate parameter, 195
RDN (relative distinguished name), 384, 387
readability

of filters, 204–205
of functions, 198

Read cmdlet, 585
Read-Host cmdlet, 174, 546, 575, 594
ReadingAndWritingForFiles.txt file, 80
Read mode, 485
read-only variables, 587
ReadUserInfoFromReg.ps1 script

cmdlets used, 143
code, 143–144
variables used, 142

ReadWrite mode, 485
rebooting server, 454, 456
-rebootoncompletion parameter, 459
Receive cmdlet, 584
Receive-Job cmdlet, 120, 123, 129, 350, 353, 354
recipient settings, configuring (Exchange Server

2010)
mailbox, creating

multiple mailboxes, 546–547
using Enable-Mailbox cmdlet, 544
when creating user, 544–546

reporting user settings, 548–550
-recurse parameter, 27, 29, 61, 69, 83, 102, 196, 231
recycled variables, 631
redirect-and-append arrow (>>), 6
redirection arrow (>), 6, 318

red squiggly lines, 462
Regedit.exe file, 90
Register cmdlet, 583
Register-EngineEvent cmdlet, 575
Register-ObjectEvent cmdlet, 575
Register-WmiEvent cmdlet, 575
registry

backing up, 93
determining existence of property, 96
drives for, 87–88
keys for

creating and setting value at once, 95
creating using full path, 94
creating with New-Item cmdlet, 93
overwriting, 94
setting default value, 95

listing keys in, 65, 90–91
modifying property value, 95
modifying property value using full path, 96
provider overview, 90
remote access to, 87
retrieving default property value from, 90
retrieving values from, 89–90
searching for software in, 92
taking care when modifying, 93
testing for property before writing, 97

regular expressions, 591
relative distinguished name (RDN), 384, 387
__RelPath property, 358, 359, 360, 518
RemoteDesktop module, 579
Remote Management firewall exception, 114
remote procedure call (RPC), 338
Remote Server Administration Tools (RSAT), 419
remote servers, 540–543
RemoteSigned execution policy, 134
remoting

accessing local registry, 87
cmdlets for, 107–112
configuring, 112–114
creating session, 115–118
-credential parameter support, 110
firewall exceptions, 114
impersonating current user, 115
running command as different user, 110–111
running single command

on multiple computers, 118–120
on single computer, 117–118

saving sessions, 116–117
testing configuration, 113–114

Windows PowerShell

654 Index

Windows PowerShell
discovering information about forest and

domain, 428–431
obtaining FSMO information using, 428

WMI
disadvantages of, 341
remote results, 344–348
supplying alternate credentials for remote

connection, 338–341
using CIM classes to query WMI classes, 343–

344
using group policy to configure WMI, 337–

338
Remove-ADGroupMember cmdlet, 434
Remove cmdlet, 583
Remove-Computer cmdlet, 575
Remove-Event cmdlet, 575
Remove-EventLog cmdlet, 575
Remove-IseSnippet cmdlet, 261
Remove-Item cmdlet, 74, 80, 83, 169, 279, 575
Remove-ItemProperty cmdlet, 575
Remove-Job cmdlet, 121
Remove-MailboxDatabase cmdlet, 552
Remove-Printer cmdlet, 575
Remove-PrinterDriver cmdlet, 575
Remove-PrinterPort cmdlet, 575
Remove-PrintJob cmdlet, 575
Remove-PSBreakPoint cmdlet, 483, 494, 497, 498,

575
Remove-PSDrive cmdlet, 103, 521, 575
Remove-PSSession cmdlet, 116
Remove-TypeData cmdlet, 575
RemoveUserFromGroup.ps1 script, 434
Remove-Variable cmdlet, 101, 575
Remove-WmiObject cmdlet, 68, 365, 575
Remove-WSManInstance cmdlet, 575
Rename-ADObject cmdlet, 432
Rename cmdlet, 584
Rename-Computer cmdlet, 448, 455, 458, 575
Rename-Item cmdlet, 79, 575
Rename-ItemProperty cmdlet, 575
Rename-Printer cmdlet, 575
renaming environment variables, 79
Repair cmdlet, 585
Repeat command, 491
Replace method, System.String .NET Framework

class, 595
-replicationsourcedc parameter, 454

reporting user settings (Exchange Server
2010), 548–550

ReportTransportLogging.ps1 script, 555
requires statement, 246
Reset cmdlet, 585
Reset-ComputerMachinePassword cmdlet, 576
Reset method, 187, 362
Resolve cmdlet, 584
Resolve-Path cmdlet, 576
Resolve-ZipCode function, 190
Resolve-ZipCode.ps1 script, 190
“Resource not available” run-time error, 462
resources, unavailable, 462
Restart cmdlet, 584
Restart-Computer cmdlet, 449, 454, 456, 458, 576
-restart parameter, 448
Restart-PrintJob cmdlet, 576
Restart-Service cmdlet, 576
Restore cmdlet, 585
Restore-Computer cmdlet, 576
Restricted execution policy, 134, 136, 513
resultclassname parameter, 377
Resume cmdlet, 584
Resume-PrintJob cmdlet, 576
Resume-Service cmdlet, 576
RetrieveAndSortServiceState.ps1 script, 139
ReturnValue, 304
returnvalue property, 363
reusability of functions, 198
rich types, 627
rights, missing. See missing rights, handling
root/cimv2 WMI namespace, 369, 370
route print command, 6
RPC (remote procedure call), 338
rsat-ad-tools feature, 421
RSAT (Remote Server Administration Tools), 419, 420
Run as different user command, 110–111
Run As Different User dialog box, 111
Run button, 252
Run dialog box, 138
Run ISE As Administrator option, 251
run method, 51
RunningMultipleCommands.txt file, 6
Run Script button, 255
run-time errors, 462–465
rwmi alias, 68

 ServerCore module

 Index 655

S
sal alias, 67
sAMAccountName attribute, 393, 394
Save cmdlet, 584
sbp alias, 67
sc alias, 67
scheduled tasks, 132
ScheduledTasks module, 580
SchemaMaster role, 425
ScreenSaverExecutable property, 297
ScreenSaverSecure property, 297
ScreenSaverTimeout property, 297
Screen* wildcard pattern, 297
script block, 148
-scriptblock parameter, 128
script execution policies

overview, 57, 134
required for using profiles, 268
required for using snippets, 259
required to install modules, 232
retrieving current, 135–136
setting, 135–136

script-level tracing
enabling, 467
trace level 1, 468–469
trace level 2, 470–471

script pane
in Windows PowerShell ISE, 254–255
opening new, 254
running commands in, 255
using Commands add-on with, 255

-script parameter, 485, 486, 489
ScriptPath attribute, 404
scripts. See also constants; error handling; variables

advantages of using, 131–133
using arrays to run commands multiple

times, 138
creating multiple folders using, 168–169
debugging using breakpoints

deleting breakpoints, 494
enabling and disabling breakpoints, 494
exercise, 496–498
listing breakpoints, 492–493
responding to breakpoints, 490–492
setting on commands, 489–490
setting on line number, 483–484
setting on variables, 485–489

deleting multiple folders using, 169–170
dot-sourcing, 178, 179–180, 180–181

enabling support for, 134–135
execution policies for

overview, 134, 513
retrieving current, 135–136
setting, 135–136

functions in, 197–198, 625
using to hold profile information, 276–277
need for modification of, 196
overview, 133
using -passthru parameter, 137–138
readability of, 627–628
running, 133

as scheduled tasks, 132
inside PowerShell, 140
outside PowerShell, 140–141
overview, 138–140

sharing, 132
writing, 136–138

SDDL (Security Descriptor Definition Language), 362
SDDLToBinarySD method, 363
SDDLToWin32SD method, 363
Search-ADAccount cmdlet, 436, 437, 438
Search-AdminAuditLog cmdlet, 558
- SearchBase parameter, 440
searching

certificates, 74–75
for cmdlets using wildcards, 36–39, 43

secret commands, 132
SecureBoot module, 580
security

confirming execution of cmdlets, 8
controlling cmdlet execution, 7
overview, 6–7
suspending execution of cmdlets, 9

Security Descriptor Definition Language (SDDL), 362
SecurityDescriptor property, 517
select alias, 293, 296, 340
Select Case statement (VBScript), 164–165
Select cmdlet, 584
Select Columns dialog box, 35
Select-Object cmdlet, 225, 286, 293, 296, 309, 313,

340, 381, 564, 576
Select statement, 316
Select-String cmdlet, 294, 576
Select-Xml cmdlet, 576
Send cmdlet, 584
Send-MailMessage cmdlet, 576
SendTo folder shortcut, 141
-serveraddresses parameter, 453
ServerCore module, 581

ServerManager module

656 Index

ServerManager module, 448, 580
ServerManagerTasks module, 580
-server parameter, 551
__SERVER property, 518
servers, maximum number of connections to, 316–

317
service accounts

identifying, 322–323
logging, 323–324

ServiceAccounts.txt file, 324
ServiceDependencies.ps1 script, 631
Service Pack (SP) 1, 3
sessions

creating remote, 115–118
saving remote, 116–117

Set-ADAccountPassword cmdlet, 435, 444
Set-AdminAuditLog cmdlet, 558
Set-AdminAuditLogConfig cmdlet, 558
Set-ADOObject cmdlet, 432
Set-ADUser cmdlet, 443
set alias, 67
Set-Alias cmdlet, 67, 576
Set cmdlet, 583
Set-Content cmdlet, 67, 576
Set-Date cmdlet, 576
Set-DNSClientServerAddress cmdlet, 453
Set-EventLogLevel cmdlet, 554
Set-ExecutionPolicy cmdlet, 134, 232, 259, 513
SetInfo() method, 389, 393, 396, 414, 416
Set-Item cmdlet, 67, 95, 576
Set-ItemProperty cmdlet, 67, 96, 576
Set-Location cmdlet, 93, 331, 576

alias for, 67
switching PS drive using, 68
working with aliases using, 66

Set-MailboxServer cmdlet, 569
SetPowerState method, 187, 362
Set-PrintConfiguration cmdlet, 576
Set-Printer cmdlet, 576
Set-PrinterProperty cmdlet, 576
Set-Profile function, 279, 280
Set-PropertyItem cmdlet, 95
Set-PSBreakPoint cmdlet, 67, 483, 496, 576
Set-PSDebug cmdlet, 624

overview, 467
script-level tracing using

enabling, 467
trace level 1, 468–469
trace level 2, 470–471

-step parameter, 472–478

stepping through script, 471–479
strict mode, enabling, 479–480

Set-Service cmdlet, 576
Set-StrictMode cmdlet, 481–482
Set-StrictMode -Version 2 command, 481
Set-TraceSource cmdlet, 576
Set-Variable cmdlet, 67, 101, 146, 576
Set-WmiInstance cmdlet, 67, 68, 576
Set-WSManInstance cmdlet, 576
Set-WSManQuickConfig cmdlet, 576
shared folders, 237–239
ShareNoQuery.ps1 script, 321
shares, retrieving information about, 315
ShellId variable, 100
shortcut dot (.), 320
shortcuts, adding to SendTo folder, 141
Show cmdlet, 584
Show-Command cmdlet, 52, 576
Show Commands Add-On option, 256
Show-ControlPanelItem cmdlet, 576
Show-EventLog cmdlet, 576
Show MOF button, 361
si alias, 67
signature of functions, 195
SilentlyContinue parameter, 392
simple typing errors, 479–480
[single] alias, 146, 190
single quote (') character, 92, 320
Single-Threaded Apartment model (STA), 273
SIN method, 363
Size property, 188
sl alias, 67, 70, 115, 331
SmallBios.ps1 script, 309
SmbShare module, 580
SmbWitness module, 581
snap-ins

defined, 66, 222, 234
uninstalling, 66

snippets
creating code with, 257–259
creating user-defined, 259–260
defined, 257
removing user-defined, 261–262
script execution policy required for, 259

software, installed
finding using WMI, 327–330
searching for in registry, 92

Software Update Services (SUS), 4
sort alias, 78, 299
Sort cmdlet, 584

 System.Environment .NET Framework class

 Index 657

sorting
alphabetical listings, 77
list of processes, 35

Sort-Object cmdlet, 139, 298, 302, 322, 576
space, in path of script, 588
sp alias, 67
special variables, 142
spelling, 621
Split cmdlet, 567, 584
split method, 229, 232
Split-Path cmdlet, 576
SP (Service Pack) 1, 3
squiggly lines, 462
Start cmdlet, 583
-startdate parameter, 560
Start-Job cmdlet, 120, 123, 125
Start-Process cmdlet, 577
Start-Service cmdlet, 300, 577
StartService method, 305
Start-Sleep cmdlet, 577
Start Snippets option, 257
Start-Transaction cmdlet, 577
Start-Transcript cmdlet, 58, 115, 273, 591
STA (Single-Threaded Apartment model), 273
state property, 302
static methods, 361–363, 365–366
st attribute, 401
StatusInfo property, 188
status of jobs, checking, 124–127
Status property, 188, 298, 301, 315
Step-Into command, 491
Step-Out command, 491
Step-Over command, 491
-step parameter, 472–478
Stop cmdlet, 491, 584
Stop-Computer cmdlet, 577
Stop-Job cmdlet, 125
StopNotepadSilentlyContinuePassThru.ps1

script, 138
Stop-Process cmdlet, 8–10, 137, 214, 263, 577
Stop-Service cmdlet, 214, 300, 577
Storage module, 579
storage settings (Exchange Server 2010)

mailbox database
examining, 550–551
managing, 551–552

overview, 550–551
streetAddress attribute, 401
Street attribute, 388

strict mode, enabling
overview, 479
using Set-PSDebug -Strict, 479–480
using Set-StrictMode cmdlet, 481–482

-Strict parameter, 480
[string] alias, 146, 190
String Attribute Editor, ADSI Edit, 388
String class, 232
strings

expanding, 148, 157
literal, 149

subject property, 74
subroutines in VBScript, 171
__SUPERCLASS property, 518
supervariable, 79
SupportsDiskQuotas property, 188
SupportsExplicitShutdown property, 517
SupportsExtendedStatus property, 517
SupportsFileBasedCompression property, 188
SupportsQuotas property, 517
SupportsSendStatus property, 517
SupportsShouldProcess attribute, 214, 215
SupportsShutdown property, 517
SupportsThrottling property, 517
suspend argument, 7
Suspend cmdlet, 584
suspending execution of cmdlets, 9
Suspend-PrintJob cmdlet, 577
Suspend-Service cmdlet, 577
SUS (Software Update Services), 4
sv alias, 67
Switch cmdlet, 584
Switch_DebugRemoteWMISession.ps1 script, 465
switched parameters, 193
Switch statement

compared with VBScript's Select Case
statement, 164–165

Defining default condition, 165–166
evaluating arrays, 166–167
handling multiple parameters using, 219
matching behavior, controlling, 167
matching with, 166

swmi alias, 67
-syntax argument, 43
syntax errors, 461–462
SystemCreationClassName property, 188
System.Diagnostics.Process .NET Framework

object, 122
System.DirectoryServices.DirectoryEntry object, 384
System.Environment .NET Framework class, 272

System.Exception Catch block

658 Index

System.Exception Catch block, 534
System.Exception error, 529, 531
System.IO.DirectoryInfo object, 82
System.IO.FileInfo class, 82, 230
System.Management.Automation.LineBreak .NET

Framework class, 483, 485
System.Management.Automation.

PSArgumentException object, 532
System.Management.ManagementClass class, 523
System.Math class, 363
SystemName property, 188
SystemSecurity class, 290
System.String class, 229
System.SystemException class, 191
System.Xml.XmlDocument type, 563
-SysVolpath parameter, 459

T
`t command, 588
tab completion, 24, 51, 104, 140
tab expansion, 256, 358, 367, 381, 462–463
TargetObject property, 390
taskbar, adding shortcuts to, 10–11
Tasks menu, 251
TechNet Script Center Script Repository, 445
TechNet Script Repository, 80
TechNet wiki, 257
Tee cmdlet, 584
Tee-Object cmdlet, 577
telephone settings, modifying, 405–407
Telephones tab, Active Directory Users and

Computers, 405
template files, 630
terminate method, 355, 357–358, 360
terminating errors, 512
testB object, 391
Test cmdlet, 583
Test-ComputerPath.ps1 script, 506
Test-ComputerSecureChannel cmdlet, 577
Test-Connection cmdlet, 464, 504, 506, 577
Test-Mandatory function, 218
Test-ModulePath function, 228, 231
Test-ParameterSet function, 219
Test-Path cmdlet, 93, 94, 97, 228, 270, 278, 467, 469,

519, 520, 577, 623
Test-PipedValueByPropertyName function, 220
Test-ValueFromRemainingArguments function, 220
Test-WSMan cmdlet, 113, 577

TextFunctions.ps1 script, 180, 183
Text parameter, 260
TextStreamObject, 150
Then keyword, 161
thumbprint attribute, 71
Title parameter, 260
Today parameter, 193
totalSeconds property, 329
Trace cmdlet, 584
Trace-Command cmdlet, 577
-trace parameter, 470
tracing, script-level. See script-level tracing
Transcript command, 58
transcript tool, 115–116
transport-logging levels (Exchange Server 2010)

configuring, 554–557
reporting, 554–555

Trap statement, 191, 513
triple-arrow prompt, 9
troubleshooting, 621–624
TroubleshootingPack module, 581
TrustedPlatformModule module, 580
Try…Catch…Finally, error handling using

Catch block, 529
catching multiple errors, 532–533
exercise, 536–537
Finally block, 529–530
overview, 529

Tshoot.txt file, 6
-type argument, 170
type constraints in functions, 190–191
typename property, 378
Type property, 315
Types.ps1xml file, 294
typing errors, 479–480

U
UAC (User Account Control), 512
UID attribute, 388
unavailable resources, 462
Unblock cmdlet, 584
Unblock-File cmdlet, 577
UNC (Universal Naming Convention), 237, 404, 462
Undefined execution policy, 134
UnderstandingTheRegistryProvider.txt file, 90
UnderstandingTheVariableProvider.txt file, 97
Undo cmdlet, 584
Undo-Transaction cmdlet, 577

 -verbose parameter

 Index 659

unfocused variables, 631
unhandled parameters, 213–214
-unique parameter, 381
Universal Naming Convention (UNC), 237, 404
UnloadTimeout property, 517
Unlock-ADAccount cmdlet, 437, 438
unlocking locked-out users, 436–437
unnamed parameters, 628
Unregister cmdlet, 584
Unregister-Event cmdlet, 577
Unrestricted execution policy, 134
unwanted execution, preventing, 155–156
Update cmdlet, 584
Update-FormatData cmdlet, 577
Update-Help cmdlet, 13–15, 98
UpdateHelpTrackErrors.ps1 script, 14–15
Update-List cmdlet, 577
Update-TypeData cmdlet, 577
UPN (user principal name), 544
url attribute, 399
usage patterns for profiles, 272
UseADCmdletsToCreateOuComputerAndUser.ps1

script, 433
use-case scenario, 501
Use cmdlet, 584
UserAccessLogging module, 580
UserAccountControl attribute, 396
User Account Control (UAC), 512
user accounts, creating (Exchange Server 2010)

exercise, 565–568
multiple, 546–547
when creating mailbox, 544–546

User class, 394
user-defined snippets, 260
UserDomain property, 62
UserGroupTest group, 434
UserNames.txt file, 565
UserName variable, 331
user principal name (UPN), 544
users

Active Directory and
computer account, 395–396
deleting users, 411–412
exposing address information, 400–401
general user information, 398–399
groups, 394–395
modifying user profile settings, 403–405
modifying user properties, 397–398
multiple users, creating, 408–409
multivalued users, creating, 414–417

organizational settings, modifying, 409–411
overview, 393–394
telephone settings, modifying, 405–407
user account control, 396–397

soliciting input from, 594
Use-Transaction cmdlet, 577
UsingWhatif.txt file, 7–8
uspendConfirmationOfCmdlets.txt file, 9

V
ValidateRange parameter attribute, 528
-value argument, 79
ValueFromPipelineByPropertyName property, 217,

220
ValueFromPipeline parameter property, 217,

220–221, 246
ValueFromRemainingArguments property, 217, 220
-value parameter, 324, 468
values

passing to functions, 175
retrieving from registry, 89–90

-variable parameter, 485, 486
variables

constants compared with, 146
creating, 100–101, 170
deleting, 101
grouping, 631
improperly initialized, 479, 481, 488
indicating can only contain integers, 145
initializing properly, 623
naming, 631
nonexistent, 479
provider for, 97–98
putting property selection into, 373
recycled, 631
retrieving, 98–100
scope of, 631
setting breakpoints on, 485–489
special, 142
storing CIM instance in, 374
storing remote session as, 116–117
unfocused, 631
using, 141–146
Windows environment variables, 330–335

VariableValue variable, 331
-verb argument, 39
-verbose parameter, 12, 15, 94, 210–211, 227, 516,

519

verbs

660 Index

verbs, 172, 175
distribution of, 55–56
grouping of, 54–55

-version parameter, 482
version property, 174, 517
video classes, WMI, 380–381
<view> configuration, 294
VolumeDirty property, 188
VolumeName property, 188
VolumeSerialNumber property, 188
VpnClient module, 580

W
Wait cmdlet, 584
Wait-Event cmdlet, 577
Wait-Job cmdlet, 68, 124, 451
Wait-Process cmdlet, 577
WbemTest (Windows Management Instrumentation

Tester), 361, 513
Wdac module, 580
Web Services Description Language (WSDL), 190
Web Services Management (WSMAN), 108
-whatif parameter, 12, 261, 629

adding support for to function, 214–215
controlling execution with, 7
using before altering system state, 74

Whea module, 581
whenCreated property, 441
where alias, 68, 70, 82
Where clause, 325
Where cmdlet, 585
Where-Object cmdlet, 59, 67, 70, 108, 204, 261, 299,

493, 559
alias for, 68
compounding, 76
searching for aliases using, 66

WhileDoesNotRun.ps1 script, 156
While...Not ...Wend loop, 147
WhileReadLine.ps1 script, 150
WhileReadLineWend.vbs script, 147
While statement

constructing, 148–149
example of, 150
looping with, 150
preventing unwanted execution using, 155–156

While...Wend loop, 147
whoami command, 128
-Width parameter, 52

wildcards
asterisk (*) character, 7, 17, 21, 68, 293, 309, 442
in Commands add-on, 252
in Windows PowerShell 2.0, 226
loading modules using, 226
searching for cmdlets using, 36–39
searching job names, 121

Win32_1394Controller class, 598
Win32_1394ControllerDevice class, 598
Win32_Account class, 614
Win32_AccountSID class, 610
Win32_ACE class, 610
Win32_ActiveRoute class, 607
Win32_AllocatedResource class, 598
Win32_AssociatedBattery class, 601
Win32_AssociatedProcessorMemory class, 598
Win32_AutochkSetting class, 598
Win32_BaseBoard class, 598
Win32_BaseService class, 612
Win32_Battery class, 601
Win32_Bios WMI class, 292, 309, 343, 371, 501, 512,

514, 598
Win32_BootConfiguration class, 608
Win32_Bus class, 598
Win32_CacheMemory class, 598
Win32_CDROMDrive class, 598
Win32_CIMLogicalDeviceCIMDataFile class, 604
Win32_ClassicCOMApplicationClasses class, 603
Win32_ClassicCOMClass class, 603
Win32_ClassicCOMClassSettings class, 603
Win32_ClientApplicationSetting class, 603
Win32_CodecFile class, 607
Win32_CollectionStatistics class, 605
Win32_COMApplication class, 603
Win32_COMApplicationClasses class, 603
Win32_COMApplicationSettings class, 603
Win32_COMClassAutoEmulator class, 603
Win32_COMClass class, 603
Win32_COMClassEmulator class, 603
Win32_ComponentCategory class, 603
Win32_ComputerShutdownEvent class, 607
Win32_ComputerSystem class, 309, 319, 608
Win32_ComputerSystemEvent class, 607
Win32_ComputerSystemProcessor class, 608
Win32_ComputerSystemProduct class, 608
Win32_ComputerSystemWindows

ProductActivationSetting class, 615
Win32_COMSetting class, 603
Win32_ConnectionShare class, 612
Win32_ControllerHasHub class, 598

 Win32_NTDomain class

 Index 661

Win32_CurrentProbe class, 601
Win32_CurrentTime WMI class, 294
Win32_DCOMApplicationAccessAllowedSetting

class, 603
Win32_DCOMApplication class, 603
Win32_DCOMApplicationLaunchAllowedSetting

class, 604
Win32_DCOMApplicationSetting class, 604
Win32_DependentService class, 608
Win32_Desktop class, 296–298, 604
Win32_DesktopMonitor class, 294, 602
Win32_DeviceBus class, 598
Win32_DeviceChangeEvent class, 607
Win32_DeviceMemoryAddress class, 598
Win32_DeviceSettings class, 598
Win32_DFSNode class, 612
Win32_DFSNodeTarget class, 612
Win32_DFSTarget class, 612
Win32_Directory class, 604
Win32_DirectorySpecification class, 604
Win32_DiskDrive class, 598
Win32_DiskDriveToDiskPartition class, 604
Win32_DiskPartition class, 604
Win32_DiskQuota class, 604
Win32_DisplayConfiguration class, 370, 602
Win32_DisplayControllerConfiguration class, 602
Win32_DMAChannel class, 598
Win32_DriverForDevice class, 601
Win32_DriverVXD class, 604
Win32_Environment class, 330, 604
Win32_Fan class, 597
Win32_FloppyController class, 598
Win32_FloppyDrive class, 598
Win32_Group class, 614
Win32_GroupInDomain class, 614
Win32_GroupUser class, 614
Win32_HeatPipe class, 597
Win32_IDEController class, 599
Win32_IDEControllerDevice class, 599
Win32_ImplementedCategory class, 604
Win32_InfraredDevice class, 599
Win32_IP4PersistedRouteTable class, 607
Win32_IP4RouteTable class, 607
Win32_IP4RouteTableEvent class, 607
Win32_IRQResource class, 599
Win32_Keyboard class, 597
Win32_LoadOrderGroup class, 608
Win32_LoadOrderGroupServiceDependencies

class, 608
Win32_LoadOrderGroupServiceMembers class, 608

Win32_LocalTime class, 610
WIN32_loggedonuser WMI class, 341
Win32_LogicalDisk class, 146, 187, 189, 318, 605
Win32_LogicalDiskRootDirectory class, 605
Win32_LogicalDiskToPartition class, 605
WIN32_LogicalDisk WMI class, 312, 314
Win32_LogicalFileAccess class, 611
Win32_LogicalFileAuditing class, 611
Win32_LogicalFileGroup class, 611
Win32_LogicalFileOwner class, 611
Win32_LogicalFileSecuritySetting class, 611
Win32_LogicalMemoryConfiguration class, 606
Win32_LogicalProgramGroup class, 612
Win32_LogicalProgramGroupDirectory class, 612
Win32_LogicalProgramGroupItem class, 613
Win32_LogicalProgramGroupItemDataFile class, 613
Win32_LogicalShareAccess class, 611
Win32_LogicalShareAuditing class, 611
Win32_LogicalShareSecuritySetting class, 611
Win32_LogonSession class, 614
Win32_LogonSessionMappedDisk class, 614
Win32_LogonSession WMI class, 374
Win32_LUIDandAttributes class, 605
Win32_LUID class, 605
Win32_MappedLogicalDisk class, 605
Win32_MemoryArray class, 599
Win32_MemoryArrayLocation class, 599
Win32_MemoryDeviceArray class, 599
Win32_MemoryDevice class, 599
Win32_MemoryDeviceLocation class, 599
Win32_ModuleLoadTrace class, 607
Win32_ModuleTrace class, 607
Win32_MotherboardDevice class, 599
Win32_NamedJobObjectActgInfo class, 606
Win32_NamedJobObject class, 605
Win32_NamedJobObjectLimit class, 606
Win32_NamedJobObjectLimitSetting class, 606
Win32_NamedJobObjectProcess class, 606
Win32_NamedJobObjectSecLimit class, 606
Win32_NamedJobObjectSecLimitSetting class, 606
Win32_NamedJobObjectStatistics class, 606
Win32_NetworkAdapter class, 601
Win32_NetworkAdapterConfiguration class, 196,

601
Win32_NetworkAdapterSetting class, 601
Win32_NetworkClient class, 607
Win32_NetworkConnection class, 607
Win32_NetworkLoginProfile class, 614
Win32_NetworkProtocol class, 607
Win32_NTDomain class, 607

Win32_NTEventlogFile class

662 Index

Win32_NTEventlogFile class, 614
Win32_NTLogEvent class, 614
Win32_NTLogEventComputer class, 614
Win32_NTLogEventLog class, 614
Win32_NTLogEventUser class, 614
Win32_OnBoardDevice class, 599
Win32_OperatingSystemAutochkSetting class, 605
Win32_OperatingSystem class, 174, 319, 608
Win32_OperatingSystemQFE class, 608
Win32_OSRecoveryConfiguration class, 609
Win32_PageFile class, 606
Win32_PageFileElementSetting class, 606
Win32_PageFileSetting class, 606
Win32_PageFileUsage class, 606
Win32_ParallelPort class, 599
Win32_PCMCIAController class, 599
Win32_PerfFormattedData_ASP_ActiveServerPages

class, 615
Win32_PerfFormattedData class, 615
Win32_PerfFormattedData_ContentFilter_

IndexingServiceFilter class, 615
Win32_PerfFormattedData_ContentIndex_

IndexingService class, 615
Win32_PerfFormattedData_InetInfo_

InternetInformationServicesGlobal
class, 615

Win32_PerfFormattedData_ISAPISearch_
HttpIndexingService class, 615

Win32_PerfFormattedData_MSDTC_
DistributedTransactionCoordinator
class, 615

Win32_PerfFormattedData_NTFSDRV_
SMTPNTFSStoreDriver class, 615

Win32_PerfFormattedData_PerfDisk_LogicalDisk
class, 615

Win32_PerfFormattedData_PerfDisk_PhysicalDisk
class, 615

Win32_PerfFormattedData_PerfNet_Browser
class, 615

Win32_PerfFormattedData_PerfNet_Redirector
class, 615

Win32_PerfFormattedData_PerfNet_Server
class, 616

Win32_PerfFormattedData_PerfNet_
ServerWorkQueues class, 616

Win32_PerfFormattedData_PerfOS_Cache class, 616
Win32_PerfFormattedData_PerfOS_Memory

class, 616
Win32_PerfFormattedData_PerfOS_Objects

class, 616

Win32_PerfFormattedData_PerfOS_PagingFile
class, 616

Win32_PerfFormattedData_PerfOS_Processor
class, 616

Win32_PerfFormattedData_PerfOS_System
class, 616

Win32_PerfFormattedData_PerfProc_FullImage_
Costly class, 616

Win32_PerfFormattedData_PerfProc_Image_Costly
class, 616

Win32_PerfFormattedData_PerfProc_JobObject
class, 616

Win32_PerfFormattedData_PerfProc_
JobObjectDetails class, 616

Win32_PerfFormattedData_PerfProc_
ProcessAddressSpace_Costly class, 616

Win32_PerfFormattedData_PerfProc_Process
class, 616

Win32_PerfFormattedData_PerfProc_Thread
class, 617

Win32_PerfFormattedData_PerfProc_ThreadDetails_
Costly class, 617

Win32_PerfFormattedData_PSched_PSchedFlow
class, 617

Win32_PerfFormattedData_PSched_PSchedPipe
class, 617

Win32_PerfFormattedData_RemoteAccess_RASPort
class, 617

Win32_PerfFormattedData_RemoteAccess_RASTotal
class, 617

Win32_PerfFormattedData_RSVP_ACSRSVPInterfaces
class, 617

Win32_PerfFormattedData_RSVP_ACSRSVPService
class, 617

Win32_PerfFormattedData_SMTPSVC_SMTPServer
class, 617

Win32_PerfFormattedData_Spooler_PrintQueue
class, 617

Win32_PerfFormattedData_TapiSrv_Telephony
class, 617

Win32_PerfFormattedData_Tcpip_ICMP class, 617
Win32_PerfFormattedData_Tcpip_IP class, 617
Win32_PerfFormattedData_Tcpip_NBTConnection

class, 617
Win32_PerfFormattedData_Tcpip_NetworkInterface

class, 617
Win32_PerfFormattedData_Tcpip_TCP class, 617
Win32_PerfFormattedData_Tcpip_UDP class, 618
Win32_PerfFormattedData_TermService_

TerminalServices class, 618

 Win32_Processor class

 Index 663

Win32_PerfFormattedData_W3SVC_WebService
class, 618

Win32_PerfRawData_ASP_ActiveServerPages
class, 618

Win32_PerfRawData class, 618
Win32_PerfRawData_ContentFilter_

IndexingServiceFilter class, 618
Win32_PerfRawData_ContentIndex_IndexingService

class, 618
Win32_PerfRawData_InetInfo_

InternetInformationServicesGlobal
class, 618

Win32_PerfRawData_ISAPISearch_
HttpIndexingService class, 618

Win32_PerfRawData_MSDTC_
DistributedTransactionCoordinator
class, 618

Win32_PerfRawData_NTFSDRV_
SMTPNTFSStoreDriver class, 618

Win32_PerfRawData_PerfDisk_LogicalDisk class, 618
Win32_PerfRawData_PerfDisk_PhysicalDisk

class, 618
Win32_PerfRawData_PerfNet_Browser class, 618
Win32_PerfRawData_PerfNet_Redirector class, 618
Win32_PerfRawData_PerfNet_Server class, 619
Win32_PerfRawData_PerfNet_ServerWorkQueues

class, 619
Win32_PerfRawData_PerfOS_Cache class, 619
Win32_PerfRawData_PerfOS_Memory class, 619
Win32_PerfRawData_PerfOS_Objects class, 619
Win32_PerfRawData_PerfOS_PagingFile class, 619
Win32_PerfRawData_PerfOS_Processor class, 619
Win32_PerfRawData_PerfOS_System class, 619
Win32_PerfRawData_PerfProc_FullImage_Costly

class, 619
Win32_PerfRawData_PerfProc_Image_Costly

class, 619
Win32_PerfRawData_PerfProc_JobObject class, 619
Win32_PerfRawData_PerfProc_JobObjectDetails

class, 619
Win32_PerfRawData_PerfProc_

ProcessAddressSpace_Costly class, 619
Win32_PerfRawData_PerfProc_Process class, 619
Win32_PerfRawData_PerfProc_Thread class, 619
Win32_PerfRawData_PerfProc_ThreadDetails_Costly

class, 619
Win32_PerfRawData_PSched_PSchedFlow class, 620
Win32_PerfRawData_PSched_PSchedPipe class, 620
Win32_PerfRawData_RemoteAccess_RASPort

class, 620

Win32_PerfRawData_RemoteAccess_RASTotal
class, 620

Win32_PerfRawData_RSVP_ACSRSVPInterfaces
class, 620

Win32_PerfRawData_RSVP_ACSRSVPService
class, 620

Win32_PerfRawData_SMTPSVC_SMTPServer
class, 620

Win32_PerfRawData_Spooler_PrintQueue class, 620
Win32_PerfRawData_TapiSrv_Telephony class, 620
Win32_PerfRawData_Tcpip_ICMP class, 620
Win32_PerfRawData_Tcpip_IP class, 620
Win32_PerfRawData_Tcpip_NBTConnection

class, 620
Win32_PerfRawData_Tcpip_NetworkInterface

class, 620
Win32_PerfRawData_Tcpip_TCP class, 620
Win32_PerfRawData_Tcpip_UDP class, 620
Win32_PerfRawData_TermService_TerminalServices

class, 620
Win32_PerfRawData_TermService_

TerminalServicesSession class, 620
Win32_PerfRawData_W3SVC_WebService class, 620
Win32_PhysicalMedia class, 598
Win32_PhysicalMemoryArray class, 599
Win32_PhysicalMemory class, 599
Win32_PhysicalMemoryLocation class, 599
Win32_PingStatus class, 506, 607
Win32_PNPAllocatedResource class, 599
Win32_PNPDevice class, 599
Win32_PNPEntity class, 382, 599
Win32_PointingDevice class, 597
Win32_PortableBattery class, 601
Win32_PortConnector class, 599
Win32_PortResource class, 600
Win32_POTSModem class, 602
Win32_POTSModemToSerialPort class, 602
Win32_PowerManagementEvent class, 601
Win32_Printer class, 601
Win32_PrinterConfiguration class, 601
Win32_PrinterController class, 601
Win32_PrinterDriver class, 601
Win32_PrinterDriverDll class, 601
Win32_PrinterSetting class, 602
Win32_PrinterShare class, 612
Win32_PrintJob class, 602
Win32_PrivilegesStatus class, 611
Win32_Process class, 262, 294, 326, 355, 360, 374,

610
Win32_Processor class, 294, 600

Win32_ProcessStartTrace class

664 Index

Win32_ProcessStartTrace class, 607
Win32_ProcessStartup class, 610
Win32_ProcessStopTrace class, 607
Win32_ProcessTrace class, 607
Win32_Product class, 126, 516, 518
Win32_ProgramGroup class, 613
Win32_ProgramGroupContents class, 613
Win32_ProgramGroupOrItem class, 613
Win32_ProtocolBinding class, 607
Win32_Proxy class, 615
Win32_QuickFixEngineering class, 609
Win32_QuotaSetting class, 605
Win32_Refrigeration class, 597
Win32_Registry class, 610
Win32_ScheduledJob class, 132, 610
Win32_SCSIController class, 600
Win32_SCSIControllerDevice class, 600
Win32_SecurityDescriptor class, 363, 611
Win32_SecurityDescriptorHelper class, 361, 362
Win32_SecuritySettingAccess class, 611
Win32_SecuritySettingAuditing class, 611
Win32_SecuritySetting class, 611
Win32_SecuritySettingGroup class, 611
Win32_SecuritySettingOfLogicalFile class, 611
Win32_SecuritySettingOfLogicalShare class, 611
Win32_SecuritySettingOfObject class, 611
Win32_SecuritySettingOwner class, 611
Win32_SerialPort class, 600
Win32_SerialPortConfiguration class, 600
Win32_SerialPortSetting class, 600
Win32_ServerConnection class, 612
Win32_ServerSession class, 612
Win32_Service class, 294, 301, 373, 612
Win32_SessionConnection class, 612
Win32_SessionProcess class, 612
Win32_ShadowBy class, 613
Win32_ShadowContext class, 613
Win32_ShadowCopy class, 613
Win32_ShadowDiffVolumeSupport class, 613
Win32_ShadowFor class, 613
Win32_ShadowOn class, 613
Win32_ShadowProvider class, 613
Win32_ShadowStorage class, 613
Win32_ShadowVolumeSupport class, 614
Win32_Share class, 315, 612
Win32_ShareToDirectory class, 612
Win32_ShortcutFile class, 605
Win32_SIDandAttributes class, 606
Win32_SID class, 611
Win32_SMBIOSMemory class, 600

Win32_SoundDevice class, 600
Win32_StartupCommand class, 609
Win32_SubDirectory class, 605
Win32_SystemAccount class, 614
Win32_SystemBIOS class, 600
Win32_SystemBootConfiguration class, 609
Win32_SystemConfigurationChangeEvent class, 608
Win32_SystemDesktop class, 609
Win32_SystemDevices class, 609
Win32_SystemDriver class, 604
Win32_SystemDriverPNPEntity class, 600
Win32_SystemEnclosure class, 600
Win32_SystemLoadOrderGroups class, 609
Win32_SystemLogicalMemoryConfiguration

class, 606
Win32_SystemMemoryResource class, 600
Win32_SystemNetworkConnections class, 609
Win32_SystemOperatingSystem class, 609
Win32_SystemPartitions class, 605
Win32_SystemProcesses class, 609
Win32_SystemProgramGroups class, 609
Win32_SystemResources class, 609
Win32_SystemServices class, 609
Win32_SystemSetting class, 609
Win32_SystemSlot class, 600
Win32_SystemSystemDriver class, 610
Win32_SystemTimeZone class, 610
Win32_SystemTrace class, 608
Win32_SystemUsers class, 610
Win32_TapeDrive class, 598
Win32_TCPIPPrinterPort class, 602
Win32_TemperatureProbe class, 597
Win32_Thread class, 610
Win32_ThreadStartTrace class, 608
Win32_ThreadStopTrace class, 608
Win32_ThreadTrace class, 608
Win32_TimeZone class, 604
Win32_TokenGroups class, 606
Win32_TokenPrivileges class, 606
Win32_Trustee class, 611
Win32_UninterruptiblePowerSupply class, 601
Win32_USBController class, 600
Win32_USBControllerDevice class, 600
Win32_USBHub class, 600
Win32_UserAccount class, 132, 376, 614
Win32_UserDesktop class, 604
Win32_UserInDomain class, 614
Win32_VideoConfiguration class, 602
Win32_VideoController class, 602

 finding installed software

 Index 665

Win32_VideoSettings class, 602
Win32_VoltageProbe class, 601
Win32_VolumeChangeEvent class, 608
Win32_Volume class, 605, 614
Win32_VolumeQuota class, 605
Win32_VolumeQuotaSetting class, 605
Win32_VolumeUserQuota class, 605, 614
Win32_WindowsProductActivation class, 615
windir variable, 77
Windows 7, taskbar shortcuts in, 10–11
Windows 8

firewall exceptions for, 114
using -force parameter, 81, 82
prompts displayed prior to stopping certain

processes, 216
WinRM in PowerShell Client, 112

WindowsDeveloperLicense module, 581
Windows environment variables, 330–335
WindowsErrorReporting module, 581
Windows flag key, 10
Windows Management Framework 3.0 package, 3
Windows Management Instrumentation. See WMI
Windows Management Instrumentation Tester

(WbemTest), 361
Windows PowerShell. See PowerShell
Windows PowerShell 2.0, 226
Windows PowerShell console, 53
Windows PowerShell ISE

creating modules in, 238–239
IntelliSense in, 256
navigating in, 252–254
running, 251
running commands in, 255
script pane in, 254–255
snippets in

creating code with, 257–259
creating user-defined, 259–260
defined, 257
removing user-defined, 261–262

Tab expansion in, 256
Windows PowerShell remoting

discovering information about forest and
domain, 428–431

obtaining FSMO information using, 428
Windows Remote Management (WinRM), 3
Windows Server 2003, 227
Windows Server 2012, 112
Windows XP, 227
WinNT provider, 385

WinRM (Windows Remote Management), 3
configuring, 112–114
firewall exceptions, 114
overview, 112
testing configuration, 113–114

wjb alias, 68
WMI classes

abstract, 370
association classes, 373–378
description of, 597–620
dynamic, 370
list of, 597–620
properties of, 597–620
retrieving WMI instances

cleaning up output from command, 373
overview, 371–372
reducing returned properties and

instances, 372–373
using CIM cmdlets to explore

filtering classes by qualifier, 369–371
finding WMI class methods, 368–369
overview, 367
retrieving associated WMI classes, 381–382
using -classname parameter, 367–368
WMI video classes, 380–381

[wmiclass] type accelerator, 523, 524
WMI cmdlets

Invoke-WmiMethod cmdlet, 358–360
overview, 355–357
using terminate method directly, 357–358
[wmi] type accelerator, 360–361

WMI Query argument, 320
WMI Tester (WbemTest), 513, 518
[wmi] type accelerator, 189, 360–361
WMI (Windows Management

Instrumentation), 1. See also WMI classes;
WMI cmdlets

classes in, 289–293
connecting to, default values for, 307–308
importance of, 283–284
missing providers, handling, 513–523
model for, 284
namespaces in, 284–288
obtaining operating system version using, 174
obtaining specific data from, 189
providers in, 289
queries from bogus users, 463
querying

eliminating WMI query argument, 320–321
finding installed software, 327–330

identifying service accounts

666 Index

identifying service accounts, 322–323
logging service accounts, 323–324
obtaining BIOS information, 308–311
using operators, 321–322
overview, 293
retrieving data from specific instances of

class, 319–320
retrieving default WMI settings, 308
retrieving every property from every instance

of class, 314
retrieving information about all shares on

local machine, 315
retrieving list of running processes, 317–318
retrieving specific properties from class, 316
shortening syntax, 325–326
specific class, 293–296
specifying maximum number of connections

to server, 316–317
substituting Where clause with variable, 325
viewing Windows environment

variables, 330–335
Win32_Desktop class, 296–298
working with disk drives, 312–314

remoting
using CIM classes to query WMI classes, 343–

344
disadvantages of, 341
using group policy to configure WMI, 337–

338
remote results, 344–348
supplying alternate credentials for remote

connection, 338–341
using to work with static methods, 361–363,

365–366

WorkingWithVariables.txt file, 97
-Wrap switch, 255
write alias, 68
Write cmdlet, 583
Write-Debug cmdlet, 174, 463, 464, 464–465, 577
Write-Error cmdlet, 174, 577
Write-EventLog cmdlet, 577
Write-Host cmdlet, 178, 328, 488, 577, 592
Write mode, 485
Write-Output cmdlet, 68, 577
Write-Path function, 176
Write-Progress cmdlet, 577, 629
Write-Verbose cmdlet, 209, 519, 520, 577
Write-Warning cmdlet, 577
Wscript.Echo command, 133
Wscript.Quit statement, 161
WSDL (Web Services Description Language), 190
wshNetwork object, 61
wshShell object, 50–52
WS-Management protocol, 112
WSMAN (Web Services Management), 108

X
[xml] alias, 146, 190

about the author

ED WILSON is a well-known scripting expert who delivers popu-
lar scripting workshops to Microsoft customers and employees
worldwide. He's written several books on Windows scripting,
including Windows PowerShell™ 2.0 Best Practices, Microsoft®
Windows PowerShell™ Step By Step, and Microsoft® VBScript
Step by Step. Ed is a senior consultant at Microsoft Corporation
and writes Hey, Scripting Guy!, one of the most popular TechNet
blogs.

How To
Download
Your eBook

Please note: This access code is non-transferable and is void if altered or revised in any way. It may not be
sold or redeemed for cash, credit, or refund.

QWJQDHL

Your access code:

Windows PowerShell™ 3.0 Step by Step

 To download your eBook, go to

http://go.microsoft.com/FWLink/?Linkid=224345
 and follow the instructions.

Thank you for purchasing this Microsoft Press® title. Your companion PDF eBook is ready to
download from O’Reilly Media, official distributor of Microsoft Press titles.

Your PDF eBook allows you to:

• Search the full text
• Print
• Copy and paste

Best yet, you will be notified about
free updates to your eBook.

If you ever lose your eBook file, you
can download it again just by logging
in to your account.

Need help? Please contact:
mspbooksupport@oreilly.com
or call 800-889-8969.

Please note: You will be asked to create a
free online account and enter the access
code below.

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

	Contents at a Glance
	Contents
	Foreword
	Introduction
	Chapter 1: Overview of Windows PowerShell 3.0
	Understanding Windows PowerShell
	Using cmdlets
	Installing Windows PowerShell
	Deploying Windows PowerShell to
down-level operating systems

	Using command-line utilities
	Security issues with Windows PowerShell
	Controlling execution of PowerShell cmdlets
	Confirming actions
	Suspending confirmation of cmdlets

	Working with Windows PowerShell
	Accessing Windows PowerShell
	Configuring the Windows PowerShell console

	Supplying options for cmdlets
	Working with the help options
	Exploring commands: step-by-step exercises
	Chapter 1 quick reference

	Chapter 2: Using Windows PowerShell Cmdlets
	Understanding the basics of cmdlets
	Using the Get-ChildItem cmdlet
	Obtaining a directory listing
	Formatting a directory listing using the Format-List cmdlet
	Using the Format-Wide cmdlet
	Formatting a directory listing using Format-Table

	Formatting output with Out-GridView
	Leveraging the power of Get-Command
	Searching for cmdlets using wildcard characters

	Using the Get-Member cmdlet
	Using the Get-Member cmdlet to
examine properties and methods

	Using the New-Object cmdlet
	Creating and Using the wshShell Object

	Using the Show-Command cmdlet
	Windows PowerShell cmdlet naming helps you learn
	Windows PowerShell verb grouping
	Windows PowerShell verb distribution

	Creating a Windows PowerShell profile
	Finding all aliases for a particular object

	Working with cmdlets: step-by-step exercises
	Chapter 2 quick reference

	Chapter 3: Understanding and Using PowerShell Providers
	Understanding PowerShell providers
	Understanding the alias provider
	Understanding the certificate provider
	Understanding the environment provider
	Understanding the filesystem provider
	Understanding the function provider

	Using the registry provider to manage the Windows registry
	The two registry drives

	Understanding the variable provider
	Exploring PowerShell providers: step-by-step exercises
	Chapter 3 quick reference

	Chapter 4: Using PowerShell Remoting and Jobs
	Understanding Windows PowerShell remoting
	Classic remoting
	WinRM

	Using Windows PowerShell jobs
	Using Windows PowerShell remoting: step-by-step exercises
	Chapter 4 quick reference

	Chapter 5: Using PowerShell Scripts
	Why write Windows PowerShell scripts?
	Scripting fundamentals
	Running Windows PowerShell scripts
	Enabling Windows PowerShell scripting support
	Transitioning from command line to script
	Running Windows PowerShell scripts
	Understanding variables and constants
	Use of constants

	Using the While statement
	Constructing the While statement in PowerShell
	A practical example of using the While statement
	Using special features of Windows PowerShell

	Using the Do...While statement
	Using the range operator
	Operating over an array
	Casting to ASCII values

	Using the Do...Until statement
	Comparing the PowerShell Do...Until statement with VBScript
	Using the Windows PowerShell Do statement

	The For statement
	Using the For statement
	Using the Foreach statement
	Exiting the Foreach statement early

	The If statement
	Using assignment and comparison operators
	Evaluating multiple conditions

	The Switch statement
	Using the Switch statement
	Controlling matching behavior

	Creating multiple folders: step-by-step exercises
	Chapter 5 quick reference

	Chapter 6: Working with Functions
	Understanding functions
	Using functions to provide ease of code reuse
	Including functions in the Windows PowerShell environment
	Using dot-sourcing
	Using dot-sourced functions

	Adding help for functions
	Using a here-string object for help
	Using two input parameters
	Using a type constraint in a function

	Using more than two input parameters
	Use of functions to encapsulate business logic
	Use of functions to provide ease of modification
	Understanding filters
	Creating a function: step-by-step exercises
	Chapter 6 quick reference

	Chapter 7: Creating Advanced Functions and Modules
	The [cmdletbinding] attribute
	Easy verbose messages
	Automatic parameter checks
	Adding support for the -whatif parameter
	Adding support for the -confirm parameter
	Specifying the default parameter set

	The parameter attribute
	The mandatory parameter property
	The position parameter property
	The ParameterSetName parameter property
	The ValueFromPipeline property
	The HelpMessage property

	Understanding modules
	Locating and loading modules
	Listing available modules
	Loading modules

	Installing modules
	Creating a per-user Modules folder
	Working with the $modulePath variable
	Creating a module drive
	Checking for module dependencies
	Using a module from a share

	Creating a module
	Creating an advanced function: step-by-step exercises
	Chapter 7 quick reference

	Chapter 8: Using the Windows PowerShell ISE
	Running the Windows PowerShell ISE
	Navigating the Windows PowerShell ISE
	Working with the script pane
	Tab expansion and IntelliSense

	Working with Windows PowerShell ISE snippets
	Using Windows PowerShell ISE snippets to create code
	Creating new Windows PowerShell ISE snippets
	Removing user-defined Windows PowerShell ISE snippets

	Using the Commands add-on: step-by-step exercises
	Chapter 8 quick reference

	Chapter 9: Working with Windows PowerShell Profiles
	Six Different PowerShell profiles
	Understanding the six different Windows PowerShell profiles
	Examining the $profile variable
	Determining whether a specific profile exists
	Creating a new profile

	Design considerations for profiles
	Using one or more profiles
	Using the All Users, All Hosts profile
	Using your own file

	Grouping similar functionality into a module
	Where to store the profile module

	Creating a profile: step-by-step exercises
	Chapter 9 quick reference

	Chapter 10: Using WMI
	Understanding the WMI model
	Working with objects and namespaces
	Listing WMI providers
	Working with WMI classes
	Querying WMI
	Obtaining service information: step-by-step exercises
	Chapter 10 quick reference

	Chapter 11: Querying WMI
	Alternate ways to connect to WMI
	Selective data from all instances
	Selecting multiple properties
	Choosing specific instances
	Utilizing an operator
	Where is the where?
	Shortening the syntax

	Working with software: step-by-step exercises
	Chapter 11 quick reference

	Chapter 12: Remoting WMI
	Using WMI against remote systems
	Supplying alternate credentials for the remote connection
	Using Windows PowerShell remoting to run WMI
	Using CIM classes to query WMI classes

	Working with remote results
	Reducing data via Windows PowerShell parameters

	Running WMI jobs
	Using Windows PowerShell remoting and WMI:
Step-by-step exercises
	Chapter 12 quick reference

	Chapter 13: Calling WMI Methods on WMI Classes
	Using WMI cmdlets to execute instance methods
	Using the terminate method directly
	Using the Invoke-WmiMethod cmdlet
	Using the [wmi] type accelerator

	Using WMI to work with static methods
	Executing instance methods: step-by-step exercises
	Chapter 13 quick reference

	Chapter 14: Using the CIM Cmdlets
	Using the CIM cmdlets to explore WMI classes
	Using the -classname parameter
	Finding WMI class methods
	Filtering classes by qualifier

	Retrieving WMI instances
	Reducing returned properties and instances
	Cleaning up output from the command

	Working with associations
	Retrieving WMI instances: step-by-step exercises
	Chapter 14 quick reference

	Chapter 15: Working with Active Directory
	Creating objects in Active Directory
	Creating an OU
	ADSI providers
	LDAP names

	Creating users
	What is user account control?
	Working with users

	Creating multiple organizational units: step-by-step exercises
	Chapter 15 quick reference

	Chapter 16: Working with the AD DS Module
	Understanding the Active Directory module
	Installing the Active Directory module
	Getting started with the Active Directory module

	Using the Active Directory module
	Finding the FSMO role holders
	Discovering Active Directory
	Renaming Active Directory sites
	Managing users
	Creating a user
	Finding and unlocking Active Directory user accounts
	Finding disabled users
	Finding unused user accounts

	Updating Active Directory objects: step-by-step exercises
	Chapter 16 quick reference

	Chapter 17: Deploying Active Directory with Windows Server 2012
	Using the Active Directory module to deploy a new forest
	Adding a new domain controller to an existing domain
	Adding a read-only domain controller
	Domain controller prerequisites: step-by-step exercises
	Chapter 17 quick reference

	Chapter 18: Debugging Scripts
	Understanding debugging in Windows PowerShell
	Understanding three different types of errors

	Using the Set-PSDebug cmdlet
	Tracing the script
	Stepping through the script

	Enabling strict mode
	Using Set-PSDebug -Strict
	Using the Set-StrictMode cmdlet

	Debugging the script
	Setting breakpoints
	Setting a breakpoint on a line number
	Setting a breakpoint on a variable
	Setting a breakpoint on a command
	Responding to breakpoints
	Listing breakpoints
	Enabling and disabling breakpoints
	Deleting breakpoints

	Debugging a function: step-by-step exercises
	Chapter 18 quick reference

	Chapter 19: Handling Errors
	Handling missing parameters
	Creating a default value for a parameter
	Making the parameter mandatory

	Limiting choices
	Using PromptForChoice to limit selections
	Using Test-Connection to identify computer connectivity
	Using the -contains operator to examine contents of an array
	Using the -contains operator to test for properties

	Handling missing rights
	Attempt and fail
	Checking for rights and exiting gracefully

	Handling missing WMI providers
	Incorrect data types
	Out-of-bounds errors
	Using a boundary-checking function
	Placing limits on the parameter

	Using Try...Catch...Finally
	Catching multiple errors

	Using PromptForChoice to limit selections:
Step-by-step exercises
	Chapter 19 quick reference

	Chapter 20: Managing Exchange Server
	Exploring the Exchange 2010 cmdlets
	Working with remote Exchange servers
	Configuring recipient settings
	Creating the user and the mailbox
	Reporting user settings

	Managing storage settings
	Examining the mailbox database
	Managing the mailbox database

	Managing Exchange logging
	Managing auditing
	Parsing the audit XML file
	Creating user accounts: step-by-step exercises
	Chapter 20 quick reference

	Appendix A: Windows PowerShell Core Cmdlets
	Appendix B: Windows PowerShell Module Coverage
	Appendix C: Windows PowerShell Cmdlet Naming
	Appendix D: Windows PowerShell FAQ
	Appendix E: Useful WMI Classes
	Appendix F: Basic Troubleshooting Tips
	Appendix G: General PowerShell Scripting Guidelines
	Index
	About the Author

