crets of
werShell
Remoting

Secrets of PowerShell Remoting

Table of Contents

ReadMe

About this Book

Remoting Basics

Accessing Remote Computers

Working with Endpoints, AKA Session Configurations
Diagnostics and Troubleshooting

Session Management

PowerShell Remoting and Security

Configuring Remoting via GPO

0o N o o b~ W N

Introduced in Windows PowerShell 2.0, Remoting is one of PowerShell's most useful, and
most important, core technologies. It enables you to run almost any command that exists on
a remote computer, opening up a universe of possibilities for bulk and remote administration.
Remoting underpins other technologies, including Workflow, Desired State Configuration,
certain types of background jobs, and much more. This guide isn't intended to be a complete
document of what Remoting is and does, although it does provide a good introduction.
Instead, this guide is designed to document all the little configuration details that don't

appear to be documented elsewhere.

Secrets of PowerShell Remoting

Principle author: Don Jones Contributing author: Dr. Tobias Weltner With contributions by
Dave Wyatt and Aleksandar Nikolik Cover design by Nathan Vonnahme

Introduced in Windows PowerShell 2.0, Remoting is one of PowerShell's most useful, and
most important, core technologies. It enables you to run almost any command that exists on
a remote computer, opening up a universe of possibilities for bulk and remote administration.
Remoting underpins other technologies, including Workflow, Desired State Configuration,
certain types of background jobs, and much more. This guide isn't intended to be a complete
document of what Remoting is and does, although it does provide a good introduction.
Instead, this guide is designed to document all the little configuration details that don't
appear to be documented elsewhere.

This guide is released under the Creative Commons Attribution-NoDerivs 3.0 Unported
License. The authors encourage you to redistribute this file as widely as possible, but ask
that you do not modify the document.

Was this book helpful? The author(s) kindly ask(s) that you make a tax-deductible (in the
US; check your laws if you live elsewhere) donation of any amount to The DevOps
Collective to support their ongoing work.

Check for Updates! Our ebooks are often updated with new and corrected content. We
make them available in three ways:

e QOur main, authoritative GitHub organization, with a repo for each book. Visit
https://github.com/devops-collective-inc/

e QOur GitBook page, where you can browse books online, or download as PDF, EPUB, or
MOBI. Using the online reader, you can link to specific chapters. Visit
https://www.gitbook.com/@devopscollective

e On LeanPub, where you can download as PDF, EPUB, or MOBI (login required), and
"purchase" the books to make a donation to DevOps Collective. You can also choose to
be notified of updates. Visit https://leanpub.com/u/devopscollective

GitBook and LeanPub have slightly different PDF formatting output, so you can choose the
one you prefer. LeanPub can also notify you when we push updates. Our main GitHub repo
is authoritative; repositories on other sites are usually just mirrors used for the publishing

https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://github.com/devops-collective-inc/
https://www.gitbook.com/@devopscollective
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://leanpub.com/u/devopscollective

process. GitBook will usually contain our latest version, including not-yet-finished bits;
LeanPub always contains the most recent "public release" of any book.

Remoting Basics

Windows PowerShell 2.0 introduced a powerful new technology, Remoting, which was
refined and expanded upon for PowerShell 3.0. Based primarily upon standardized protocols
and techniques, Remoting is possibly one of the most important aspects of PowerShell:
future Microsoft products will rely upon it almost entirely for administrative communications
across a network.

Unfortunately, Remoting is also a complex set of components, and while Microsoft has
attempted to provide solid guidance for using it in a variety of scenarios, many
administrators still struggle with it. This "mini e-book" is designed to help you better
understand what Remoting is, how it works, and-most importantly-how to use it in a variety
of different situations.

Note This guide isn't meant to replace the myriad of existing books that cover Remoting
basics, such as Don's own Learn Windows PowerShell in a Month of Lunches (
http://MoreLunches.com) or PowerShell in Depth. Instead, this guide supplements those by
providing step-by-step instructions for many of the "edge" cases in Remoting, and by
explaining some of the more unusual Remoting behaviors and requirements.

What is Remoting?

In essence, Remoting enables you to access remote machines across a network and
retrieve data from or execute code on one or many remote computers. This is not a new
idea, and in the past a number of different remoting technologies have evolved. Some
cmdlets have traditionally provided their own limited remoting capabilities while the majority
of cmdlets do not support remoting on their own.

With PowerShell remoting there is finally a generic remoting environment that allows remote
execution for literally any command that can run in a local PowerShell. So instead of adding
remoting capabilities to every single cmdlet and application, you simply leave it to
PowerShell to transfer your PowerShell code to the target computer(s), execute it there, and
then marshal back the results to you.

Throughout this eBook, we will focus on PowerShell remoting and not cover non-standard
private remoting capabilities built into selected cmdlets.

Examining Remoting Architecture

http://MoreLunches.com

As shown in figure 1.1, PowerShell's generic Remoting architecture consists of numerous
different, interrelated components and elements.

(REMOTE COMPUTER 3
PowerShell.exe PowerShell.exe Whatever.exe
- AN
Endpoint: Endpoint: Endpoint:
PowerShell PowerShell Something
64-bit 32-bit else
N
"
(Windows Remote Management (WinRM) Service

WS-MAN
(HTTP)
4 R
PowerShell.exe
L YOUR COMPUTER)

Figure 1.1: The elements and components of PowerShell Remoting
Here is the complete list:

m At the bottom of the figure is your computer, or more properly your client. This is where
you physically sit, and it's where you'll initiate most of your Remoting activities.

m Your computer will communicate via the WS-MAN, or Web Services for Management,
protocol. This is an HTTP(S)-based protocol that can encapsulate a variety of different
communications. We've illustrated this as using HTTP, which is Remoting's default
configuration, but it could just as easily be HTTPS.

m On the remote computer, in the proper terminology the server (which does not refer to the
operating system), the Windows Remote Management (WinRM) service runs. This service is
configured to have one or more listeners. Each listener waits for incoming WS-MAN traffic
on a specific port, each bound to a specific protocol (HTTP or HTTPS), and on specific IP
addresses (or all local addresses).

m When a listener receives traffic, the WinRM service looks to see which endpoint the traffic
is meant for. For our purposes, an endpoint will usually be launching an instance of Windows
PowerShell. In PowerShell terms, an endpoint is also called a session configuration. This is
because, in addition to launching PowerShell, it can auto-load scripts and modules, place
restrictions upon what can be done by the connecting user, and apply additional session
specific settings not mentioned here.

Note Although we show PowerShell.exe in our diagram, that's for illustration purposes.
PowerShell.exe is the PowerShell console application, and it would not make sense to have
this running as a background process on a remote computer. The actual process is called
Wsmprovhost.exe, which hosts PowerShell in the background for Remoting connections.

As you can see, a single remote computer can easily have dozens or even hundreds of
endpoints, each with a different configuration. PowerShell 3.0 sets up three such endpoints
by default: One for 32-bit PowerShell (on 64-bit systems), the default PowerShell endpoint
(which is 64-bit on x64 systems), and one for PowerShell Workflow. Beginning with Windows
Server 2008 R2, there is a fourth default endpoint for Server Manager Workflow tasks.

Enabling Remoting

Most client versions of Windows, beginning with Windows Vista, do not enable incoming
Remoting connections by default. Newer Windows Server versions do, but older versions
may not. So your first step with Remoting will usually be to enable it on those computers
which you want to receive incoming connections. There are three ways to enable Remoting,
and table 1.1 compares what is achievable with each of them.

Table 1.1 Comparing the ways of enabling remoting

Enable-

PSRemoting Group Policy Manually Step-by-Step
Set WinRM to
auto-start and Yes Yes Yes - use Set-Service
start the and Start-Service.
service
You can configure Yes - use WSMAN
Configure Yes auto-registration of command-line utility and
HTTP listener listeners, not create WSMAN: drive in
custom listeners PowerShell
Yes - use WSMAN
Configure No No command-line utility and
HTTPS listener WSMAN: drive in
PowerShell
Elosc Yes - use
p. Yes No PSSessionConfiguration
session
. . cmdlets
configurations
\(/Jvci)rr:;lg\llJvre Yes* - use Firewall
. ows Yes* Yes* cmdlets or Windows
Firewall)
. Firewall GUI
exception

Note Existing client versions of Windows, such as Windows Vista, do not permit firewall
exceptions on any network identified as "Public". Networks must either be "Home" or
"Work/Domain" in order to permit exceptions. In PowerShell 3.0, you can run Enable-
PSRemoting with the -SkipNetworkProfileCheck switch to avoid this problem.

We'll be enabling Remoting in our test environment by running Enable-PSRemoting. It's
quick, easy, and comprehensive; you'll also see most of the manual tasks performed in the
upcoming sections.

Test Environment

We'll be using a consistent test environment throughout the following sections; this was
created on six virtual machines at CloudShare.com, and is configured as shown in figure
1.2.

DA
S 1160.35.145/16
WirdDOER2

CRISETEE0Y
|aligs: CLIENTA)
10L160.92. 120016
Win?

2-Way
Forest Trust

COMPANY loc Domain/

Forest
Dol
-7 10.160.2001.3/1&
Win2002R2

CICEI61ZET

.| #ias CLIENT]
1016060247716
Win2008R2

AD2008R2.loc Domamy.

C2UI0BI 33953
Forest

"+ alias: MEMBERL
10.160.185.108/16
Win20oaRz

Figure 1.2: Test environment configuration
Some important notes:

m .NET Framework v4 and PowerShell 3.0 is installed on all computers. Most of what we'll
cover also applies to PowerShell 2.0.

m As shown, most computers have a numeric computer name (C2108222963, and so on);
the domain controller for each domain (which is also a DNS server) has CNAME records
with easier-to-remember names.

m Each domain controller has a conditional forwarder set up for the other domain, so that
machines in either domain can resolve computer names in the other domain.

m We performed all tasks as a member of the Domain Admins group, unless noted
otherwise.

m We created a sixth, completely standalone server that isn't in any domain at all. This will
be useful for covering some of the non-domain situations you can find yourself in with
Remoting.

Caution When opening PowerShell on a computer that has User Account Control (UAC)
enabled, make sure you right-click the PowerShell icon and select Run as Administrator. If
the resulting PowerShell window's title bar doesn't begin with Administrator: then you do

not have administrative privileges. You can check permissions programmatically with this
(whoami /all | select-string S-1-16-12288) -ne $null from the PowerShell console. In an
elevated shell True is returned, otherwise False is.

Enabling Remoting

We began by running Enable-PSRemoting on all six computers. We took care to ensure that
the command ran without error; any errors at this point are a signal that you must stop and
resolve the error before attempting to proceed. Figure 1.3 shows the expected output.

Q.Administraton Windows PowerShell (3)

Windows PowerShell
Copyright <C> 2012 Microsoft Corporation. All rights reserved.

PS C:sUserssAdministrator> enable-psremoting

WinRM Quick Configuration

Running command “Set-WSManQuickConfig" to enable remote management of this computer by using the Windows Remote
Management (WinRM> service.
This includes:

1. Starting or restarting (if already started? the WinRM service

2. Setting the WinRM service startup type to Automatic

3. Creating a listener to accept reguests on any IP address

4. Enabling Windows Firewall inbound rule exceptions for WS-—Management traffic (for http onlyd>.

Do you want to continue?

[¥] Yes [A]l Yes to All [H]1 Ho [L]1 Mo to A1l [S51 Suspend [7]1 Help {default is "Y¥">: a
WinRM has been updated to receive requests.

WinRM service started.

WinRM has been updated for remote management.
Created a WinRBM listener on HITP://* to accept WS—Man reguests to any IP on this machine.

Conf irm

Are you sure you want to perform this action?

Performing operation "Set—PS8SessionConfiguration' on Target '"Mame: microsoft.powershell SDDL:
O:NSG:BAD:PCA;;GA;;;BAXS :PCAUSFASGAS 5 ;WD CAUBASGRGH; 55WD> . This will allow selected users to remotely run Windows
Powerfhell commands on this computer'.

[¥]1 Yes [A]l Yes to All [H]1 Ho [L]1 Ho to A1l [S51 Suspend [7] Help {default is "“Y¥">:

PS8 C:sUserssAdministrator>

Figure 1.3: Expected output from Enable-PSRemoting

Note: You'll notice profligate use of screen shots throughout this guide. It helps ensure that |
don't make any typos or copy/paste errors - you're seeing exactly what we typed and ran.

Running Get-PSSessionConfiguration should reveal the three or four endpoints created by
Enable-PSRemoting. Figure 1.4 shows the expected output on a server.

Q.Administraton Windows PowerShell (3)

1. Starting or restarting (if already started> the WinRM service

2. Setting the M service startup type to Automatic

3. Creating a listener to accept regquests on any IP address

4. Enabling Windows Firewall inbound rule exceptions for WS-Management traffic (for http onlyd.

Do you want to continue?

[¥]1 Yes [A]l Yes to All [HM]1 Ho [L] Mo to A1l [S51 Suspend [7]1 Help {default is "¥">: a
WinRM has been updated to receive requests.

WinRM service started.

WinRM has been updated for remote management.
Created a WinRBM listener on HITP://* to accept WS—Man regquests to any IP on this machine.

Conf irm

Are you sure you want to perform this action?

Performing operation "Set—PS8SessionConfiguration' on Target '"Mame: microsoft.powershell SDDL:
O:NSG:BAD:PCA;;GA;; BADS :PCAUSFASGA S 5 ;WD CAUBASGRGH; 55WD> . This will allow selected users to remotely run Windows
Powerfhell commands on this computer'.

[¥]1 Yes [A]l Yes to All [H]1 Ho [L]1 Mo to A1l [S51 Suspend [7]1 Help {default is "¥">: a

PS C:sUserssAdministrator?> Get—PSSessionConfiguration

MName : microsoft.powershell
PSUersion : 3.8

StartupScript =

Runfslser H

Permission : BUILTIMNNAdministrators AccessAllowed

: microsoft.powershell.workf low
3.8

Runfslser
Permission : BUILTIN“Administrators AccessAllowed

MName : microsoft.powershell32
PSUersion : 3.8

StartupScript :

Runfslser B

Permission : BUILTIMNNAdministrators AccessAllowed

Name : microzoft_ServerManager
PSUersion = 2.8

StartupScript :

Runfslser A

Permission : BUILTIMNNAdministrators AccessAllowed

P8 C:slUserssAdministrator>

Figure 1.4: Expected output from Get-PSSessionConfiguration

Note: Figure 1.4 illustrates that you can expect different endpoints to be configured on
different machines. This example was from a Windows Server 2008 R2 computer, which has
fewer endpoints than a Windows 2012 machine.

It's worth taking a moment to quickly test the Remoting configuration. For computers that are
all part of the same domain, when you're logged on as a Domain Admin from that domain,
Remoting should "just work." Quickly check it by attempting to remote from one computer to
another using Enter-PSSession.

Note: In other environments, a Domain Admin account may not be the only account that can
use Remoting. If your home or work environment has additional accounts in the local
Administrators group as standard across your domain, you will also be able to use these
accounts for Remoting.

Figure 1.5 shows the expected output, in which we also ran a quick Dir command and then
exited the remote session.

= Administrator: Windows PowerShell N

Figure 1.5: Checking remoting connectivity from COMPANY.loc's CLIENTA to the DCA
domain controller.

Caution: If you're following along in your own test environment, don't proceed until you've
confirmed Remoting connectivity between two computers in the same domain. No other
scenario needs to work right now; we'll get to them in the upcoming sections.

Core Remoting Tasks

PowerShell provides for two principal Remoting use cases. The first, 1-to-1 Remoting, is
similar in nature to the SSH secure shell offered on UNIX and Linux systems. With it, you get
a command-line prompt on a single remote computer. The second, 1-to-Many Remoting,
enables you to send a command (or a list of commands) in parallel to a set of remote
computers. There are also a couple of useful secondary techniques we'll look at.

1-to-1 Remoting

The Enter-PSSession command connects to a remote computer and gives you a command-
line prompt on that computer. You can run whatever commands are on that computer,
provided you have permission to perform that task. Note that you are not creating an
interactive logon session; your connection will be audited as a network logon, just as if you

were connecting to the computer's C$ administrative share. PowerShell will not load or
process profile scripts on the remote computer. Any scripts that you choose to run (and this
includes importing script modules) will only work if the remote machine's Execution Policy
permits it.

Enter-PSSession -computerName DCO1

Note: While connected to a remote machine via Enter-PSSession, your prompt changes and
displays the name of the remote system in square brackets. If you have customized your
prompt, all customizations will be lost because the prompt is now created on the remote
system and transferred back to you. All of your interactive keyboard input is sent to the
remote machine, and all results are marshaled back to you. This is important to note
because you cannot use Enter-PSSession in a script. If you did, the script would still run on
your local machine since no code was entered interactively.

1-to-Many Remoting

With this technique, you specify one or more computer names and a command (or a
semicolon-separated list of commands); PowerShell sends the commands, via Remoting, to
the specified computers. Those computers execute the commands, serialize the results into
XML, and transmit the results back to you. Your computer deserializes the XML back into
objects, and places them in the pipeline of your PowerShell session. This is accomplished
via the Invoke-Command cmdlet.

Invoke-Command -computername DCO1,CLIENT1 -scriptBlock { Get-Service }

If you have a script of commands to run, you can have Invoke-Command read it, transmit
the contents to the remote computers, and have them execute those commands.

Invoke-Command -computername DCO1,CLIENT1 -filePath c:\Scripts\Task.psl

Note that Invoke-Command will, by default, communicate with only 32 computers at once. If
you specify more, the extras will queue up, and Invoke-Command will begin processing
them as it finishes the first 32. The -ThrottleLimit parameter can raise this limit; the only cost
is to your computer, which must have sufficient resources to maintain a unique PowerShell
session for each computer you're contacting simultaneously. If you expect to receive large
amounts of data from the remote computers, available network bandwidth can be another
limiting factor.

Sessions

When you run Enter-PSSession or Invoke-Command and use their -ComputerName
parameter, Remoting creates a connection (or session), does whatever you've asked it to,
and then closes the connection (in the case of an interactive session created with Enter-
PSSession, PowerShell knows you're done when you run Exit-PSSession). There's some
overhead involved in that set-up and tear-down, and so PowerShell also offers the option of
creating a persistent connection - called a PSSession. You run New-PSSession to create a
new, persistent session. Then, rather than using -ComputerName with Enter-PSSession or
Invoke-Command, you use their -Session parameter and pass an existing, open PSSession
object. That lets the commands re-use the persistent connection you'd previously created.

When you use the -ComputerName parameter and work with ad-hoc sessions, each time
you send a command to a remote machine, there is a significant delay caused by the
overhead it takes to create a new session. Since each call to Enter-PSSession or Invoke-
Command sets up a new session, you also cannot preserve state. In the example below, the
variable $test is lost in the second call:

PS> Invoke-Command -computername CLIENT1 -scriptBlock { $test = 1 }
PS> Invoke-Command -computername CLIENT1 -scriptBlock { $test }
PS>

When you use persistent sessions, on the other hand, re-connections are much faster, and
since you are keeping and reusing sessions, they will preserve state. So here, the second

call to Invoke-Command will still be able to access the variable $test that was set up in the
first call

PS> $Session = New-PSSession -ComputerName CLIENT1

PS> Invoke-Command -Session $Session -scriptBlock { $test = 1 }
PS> Invoke-Command -Session $Session -scriptBlock { $test }

1

PS> Remove-PSSession -Session $Session

Various other commands exist to check the session's status and retrieve sessions (Get-
PSSession), close them (Remove-PSSession), disconnect and reconnect them (Disconnect-
PSSession and Reconnect-PSSession, which are new in PowerShell v3), and so on. In
PowerShell v3, you can also pass an open session to Get-Module and Import-Module,
enabling you to see the modules listed on a remote computer (via the opened PSSession),
or to import a module from a remote computer into your computer for implicit Remoting.
Review the help on those commands to learn more.

Note: Once you use New-PSSession and create your own persistent sessions, it is your
responsibility to do housekeeping and close and dispose the session when you are done
with them. Until you do that, persistent sessions remain active, consume resources and may

prevent others from connecting. By default, only 10 simultaneous connections to a remote
machine are permitted. If you keep too many active sessions, you will easily run into
resource limits. This line demonstrates what happens if you try and set up too many
simultaneous sessions:

PS> 1..10 | Foreach-Object { New-PSSession -ComputerName CLIENT1 }

Remoting Returns Deserialized Data

The results you receive from a remote computer have been serialized into XML, and then
deserialized on your computer. In essence, the objects placed into your shell's pipeline are
static, detached snapshots of what was on the remote computer at the time your command
completed. These deserialized objects lack the methods of the originals objects, and instead
only offer static properties.

If you need to access methods or change properties, or in other words if you must work with
the live objects, simply make sure you do so on the remote side, before the objects get
serialized and travel back to the caller. This example uses object methods on the remote
side to determine process owners which works just fine:

PS> Invoke-Command -ComputerName CLIENT1 -scriptBlock { Get-WmiObject -Class Win32_Proces

| S— >

Once the results travel back to you, you can no longer invoke object methods because now
you work with "rehydrated" objects that are detached from the live objects and do not
contain any methods anymore:

PS> Invoke-Command -ComputerName CLIENT1 -scriptBlock { Get-WmiObject -Class Win32_Proces

j S— o

Serializing and deserializing is relatively expensive. You can optimize speed and resources
by making sure that your remote code emits only the data you really need. You could for
example use Select-Object and carefully pick the properties you want back rather than
serializing and deserializing everything.

Enter-PSSession vs. Invoke-Command

A lot of newcomers will get a bit confused about remoting, in part because of how
PowerShell executes scripts. Consider the following, and assume that SERVER2 contains a
script named C:\RemoteTest.ps1:

Enter-PSSession -ComputerName SERVER2
C:\RemoteTest.psl

If you were to sit and type these commands interactively in the console window on your
client computer, this would work (assuming remoting was set up, you had permissions, and
all that). However, if you pasted these into a script and ran that script, it wouldn't work. The
script would try to run C:\RemoteTest.ps1 on your local computer.

The practical upshot of this is that Enter-PSSession is really meant for interactive use by a
human being, not for batch use by a script. If you wanted to send a command to a remote
computer, from within a script, Invoke-Command is the right way to do it. You can either set
up a session in advance (useful if you plan to send more than one command), or you can
use a computer name if you only want to send a single command. For example:

$session = New-PSSession -ComputerName SERVER2
Invoke-Command -session $session -ScriptBlock { C:\RemoteTest.psl }

Obviously, you'll need to use some caution. If those were the only two lines in the script, then
when the script finished running, $session would cease to exist. That might disconnect you
(in a sense) from the session running on SERVER2. What you do, and even whether you
need to worry about it, depends a lot on what you're doing and how you're doing it. In this
example, everything would probably be okay, because Invoke-Command would "keep" the
local script running until the remote script finished and returned its output (if any).

Accessing Remote Computers

There are really two scenarios for accessing a remote computer. The difference between
those scenarios primarily lies in the answer to one question: Can WinRM identify and
authenticate the remote machine?

Obviously, the remote machine needs to know who you are, because it will be executing
commands on your behalf. But you need to know who it is, as well. This mutual
authentication - e.g., you authenticate each other - is an important security step. It means
that when you type SERVERZ2, you're really connecting to the real SERVER2, and not some
machine pretending to be SERVER2. Lots of folks have posted blog articles on how to
disable the various authentication checks. Doing so makes Remoting "just work" and gets rid
of pesky error messages - but also shuts off security checks and makes it possible for
someone to "hijack" or "spoof" your connection and potentially capture sensitive information
- like your credentials.

Caution: Keep in mind that Remoting involves delegating a credential to the remote
computer. You're doing more than just sending a username and password (which doesn't
actually happen all of the time): you're giving the remote machine the ability to execute tasks
as if you were standing there executing them yourself. An imposter could do a lot of damage
with that power. That is why Remoting focuses on mutual authentication - so that imposters
can't happen.

In the easiest Remoting scenarios, you're connecting to a machine that's in the same AD

domain as yourself, and you're connecting by using its real computer name, as registered
with AD. AD handles the mutual authentication and everything works. Things get harder if
you need to:

e Connect to a machine in another domain

e Connect to machine that isn't in a domain at all

e Connect via a DNS alias, or via an IP address, rather than via the machine's actual
computer name as registered with AD

In these cases, AD can't do mutual authentication, so you have to do it yourself. You have
two choices:

e Set up the remote machine to accept HTTPS (rather than HTTP) connections, and
equip it with an SSL certificate. The SSL certificate must be issued by a Certification
Authority (CA) that your machine trusts; this enables the SSL certificate to provide the
mutual authentication WinRM is after.

¢ Add the remote machine's name (whatever you're specifying, be it a real computer

name, an IP address, or a CNAME alias) to your local computer's WinRM TrustedHosts
list. Note that this basically disables mutual authentication: You're allowing WinRM to
connect to that one identifier (name, IP address, or whatever) without mutual
authentication. This opens the possibility for a machine to pretend to be the one you
want, so use due caution.

In both cases, you also have to specify a -Credential parameter to your Remoting command,
even if you're just specifying the same credential that you're using to run PowerShell. We'll
cover both cases in the next two sections.

Note: Throughout this guide, we'll use "Remoting command" to generically refer to any
command that involves setting up a Remoting connection. Those include (but are not limited
to) New-PSSession, Enter-PSSession, Invoke-Command, and so on.

Setting up an HTTPS Listener

This is one of the more complex things you can do with Remoting, and will involve running a
lot of external utilities. Sorry - that's just the way it's done! Right now there doesn't seem to
be an easy way to do this entirely from within PowerShell, at least not that we've found.
Some things, as you'll see, could be done through PowerShell, but are more easily done
elsewhere - so that's what I've done.

Your first step is to identify the host name that people will use to access your server. This is
very, very important, and it isn't necessarily the same as the server's actual computer name.
For example, folks accessing "www.ad2008r2.loc" might in fact be hitting a server named
"DCO01," but the SSL certificate you'll create must be issued to host name
"www.ad2008r2.loc" because that's what people will be typing. So, the certificate name
needs to match whatever name people will be typing to get to the machine - even if that's
different from its true computer name. Got that?

Note: As the above implies, part of setting up an HTTPS listener is obtaining an SSL
certificate. I'll be using a public Certification Authority (CA) named DigiCert.com. You could
also use an internal PKI, if your organization has one. | don't recommend using
MakeCert.exe, since such a certificate can't be implicitly trusted by the machines attempting
to connect. | realize that every blog in the universe tells you to use MakeCert.exe to make a
local self-signed certificate. Yes, it's easy - but it's wrong. Using it requires you to shut off
most of WinRM's security - so why bother with SSL if you plan to shut off most of its security
features?

You need to make sure you know the full name used to connect to a computer, too. If people
will have to type "dc01.ad2008r2.loc," then that's what goes into the certificate. If they'll
simply need to provide "dca," and know that DNS can resolve that to an IP address, then

"dca" is what goes into the certificate. We're creating a certificate that just says "dca" and
we'll make sure our computers can resolve that to an IP address.

Creating a Certificate Request

Unlike 11S, PowerShell doesn't offer a friendly, graphical way of creating a Certificate
Request (or, in fact, any way at all to do so.) So, go to http://DigiCert.com/util and download
their free certificate utility. Figure 2.1 shows the utility. Note the warning message.

I0) DigiCert Certificate Utility : : = =

Welcome to the DigiCert certificate utility. How to reach support:

] - i
Email tiEdigicert.
0 d I g I ce rt Thiz tool can help you inztall your 550 certificates and fis common T;nliafllee: ?uggnms(i%;e; s

problenz. & description of thiz tool and a download link far the curent i
vergion can be found at hitps: A, digicert. comutil [opens browser). Phane: +1 'BE.” 7013500
Chat: Online [opens browser]

L DigiCert root or intermediate certificates are not installed comectly which may cause problems for zome mohbile Renai
L3 device uzers. Click the Repair button to fix thiz issue. p
our certificates on this server Risfresh

| lssued To Enpire Date Serial Murnber Frigndly Mame | |s3uer |

Version 1.0.0.25 Check a Server Impart | Create C5R | Close |

Figure 2.1: Launching DigiCertUtil.exe

You only need to worry about this warning if you plan to acquire your certificate from the
DigiCert CA,; click the Repair button to install their intermediate certificates on your
computer, enabling their certificate to be trusted and used. Figure 2.2 shows the result of
doing so. Again, if you plan to take the eventual Certificate Request (CSR) to a different CA,
don't worry about the Repair button or the warning message.

http://DigiCert.com/util

) DigiCert Certificate Utility . - =10l x|

@ Welcome ta the DigiCert certificate utility. How to reach support:

- -
Email e digicert.
0 d I g I ce rt Thiz tool can help you inztall your 550 certificates and fix common T;nliaflree: ﬁuggnors(gég;gé;egr st

problems, & description of thiz taol and a download link far the current Phare: +1 801 701 9500

verzion can be found at hitps: /v digicert. comAutil [opens browser]. :
Chat: Online [opens browser)

Foor details about what this program did, wisit https: /Ao digicert com./zsl-supportAwindows-cross-sighed-
chain.htm [opens browser)

“Your certificates on thiz server: Refresh |

;3 Repair succeeded. The DigiCert oot and intermediate certificates are now optimally configured for this zerver.

| lszued To | Expire Date = | Serial Humber | Friendly Mame | |sz1Er |
Export | Test Key | i |
Version 1.0.0.25 Check a Server | Impart | Create C5R | Close |

Figure 2.2: After adding the DigiCert intermediate certificates

Click "Create CSR." As shown in figure 2.3, fill in the information about your organization.
This needs to be exact: The "Common Name" is exactly what people will type to access the
computer on which this SSL certificate will be installed. That might be "dca," in our case, or
"dc01.ad20082.loc" if a fully qualified name is needed, and so on. Your company name also
needs to be accurate: Most CAs will verify this information.

: ; =101 %]
M O DigiCert Certificate Utility - Create CSR : X|ipport:
d I icert.cam
~ Certificate Details ~ Information 473
Key Size =ill]
Common Mame; |dea hz browser)
_ DigiCert recommends 2048 bits.
Hepair su Subject =]
o Far F'Bta": Alternative 1024 and 2048 bit keys are most comman. Key
chain. htre Names: sizes smallerthan 1024 are considered insecure

Your certificates or LI Refresh |
j@ Oiganization: IEDncentrated Technology, LLC |

Departmant; ||T

City: ILas Yegas

Shate: INevada

Lef Lol

Cauntrny: IUSA

Key Size:

Generate I Cancel | e |

Version 1.0.0.25 CFECE 5 SErve | T T ueé[E'ESH_r Cloze |

Figure 2.3: Filling in the CSR

Q) DigiCert Certificate Utility

O I M O DigiCert Certificate Utility - Create CSR

= Repair zu
@ Faor detail:
chain.htre

Your certificates ot

I lzsued To

Common Marme:

Subject
Altermative
M ames:

Organization:

City:
State:
Cotintry:

Kep Size:

 Certificate Details

Department:

dca
[
[|
: IConcentrated Technolagy, LLC
IIT
: ILasVega&
: INevada j
- |Usa =

Generate I

 Information

Key Size

DigiCert recommends 2048 bits.

1024 and 2048 bit keys are most commaon. Key
sizes smaller than 1024 are considered insecure.

=101]

pport:

icert. com
A73

=ill]

nz browser]

Refrezh |
R

Wiew |

Version 1.0.0.23

LFReCk a Jerver I

TG

Cloze |

Figure 2.3: Filling in the CSR

We usually save the CSR in a text file, as shown in figure 2.4. You can also just copy it to the
Clipboard in many cases. When you head to your CA, make sure you're requesting an SSL
("Web Server," in some cases) certificate. An e-mail certificate or other type won't work.

=101 %]

Repair zu
Far detail:
chain htrr

@

our certificates or

I lzzued To

Version 1.0.0.23

MIIBt
ZHQgV
ZZFzM
ROURR
fagSE
FjgVE
RDREBO
knWE+
1BhMIT
LLAME

|
H

Floe 2 e
* | Libraries
= || System Folder
el
Administrator
% System Folder
A L Computer
File: name: |dca Save I

Save as type: IText Files ("ta)

j Cancel |/
%

Copy CSR | Save to File I

Cloze

=101
pport:
icert. cam
H73
=ill]
iz browser)

Refrezh |
R

Wiew

Cloze

1i:

Figure 2.4: Saving the CSR into a text file

Al LI LA AP B L) e

To remain secure, certificates must use 2048-bit keys. Please contact us if yvour server platform can't generate
a 2048-bit key. For more information, see this explanation.

Select Server Software: o Click to upload a CSR or Paste one below:

Metscape Enterprise Server _:_1
Metscape iPlanst

nginx

Mavell Web Server

Oracle

Qmail

Sggine

WebStar

Zeus Web Server

™ 1don't have my CSR ready. My technical contact will submit it after I place the order.

Name(s) to Secure

Common Name: Idca

Figure 2.5: Uploading the CSR to a CA

Caution: Note the warning message in figure 2.5 that my CSR needs to be generated with a
2048-bit key. DigiCert's utility offered me that, or 1024-bit. Many CAs will have a high-bit
requirement; make sure your CSR complies with what they need. Also notice that this is a
Web server certificate we're applying for; as we wrote earlier, it's the only kind of certificate
that will work.

Eventually, the CA will issue your certificate. Figure 2.6 shows where we went to download
it. We chose to download all certificates; we wanted to ensure we had a copy of the CA's
root certificate, in case we needed to configure another machine to trust that root.

Tip: The trick with digital certificates is that the machine using them, and any machines they
will be presented to, need to trust the CA that issued the certificate. That's why you
download the CA root certificate: so you can install it on the machines that need to trust the
CA. In a large environment, this can be done via Group Policy, if desired.

Common dca

CERTIFICATE MName

BUNDLE
Organization Concentrated Technology, LLC
IT
Las Vegas, NV, USA
Download

Order £ 00207342 Requested On 10-APR-2012 9:16 &AM by Don Jones

Server OTHER
Platform
Validity 10-APR-2012 to 15-APR-2013

Serial Number 0GF20D7EB77EG24D45288D800C34021E
Thumbprint 3DDFESDS60DCOED23976B7DEASBYCYS0F3B21CDT

CA. In a large environment, this can be done via Group Policy, if desired.

Common dca

CERTIFICATE
‘ MName

BUNDLE
Organization Concentrated Technology, LLC
IT
Las Vegas, NV, USA
Download

Order £ 00207342 Requested On 10-APR-2012 9:16 &AM by Don Jones

Server OTHER
Platform
Validity 10-APR-2012 to 15-APR-2013

Serial Number 0GF20D7EB77EG24D45288D800C34021E
Thumbprint 3DDFESDS60DCO6D23976B7DOASBYCY80F3B21CD7T

Figure 2.6: Downloading the issued certificate

Make sure you back up the certificate files! Even though most CAs will re-issue them as
needed, it's far easier to have a handy backup, even on a USB flash drive.

Installing the Certificate

Don't try to double-click the certificate file to install it. Doing so will install it into your user
account's certificate store; you need it in your computer's certificate store instead. To install
the certificate, open a new Microsoft Management Console (mmc.exe), select Add/Remove
Snap-ins, and add the Certificates snap-in, as shown in figure 2.7.

=10/ x|

™ My user account
" Service account
¥ Computer account

This snap-in will always manage certificates for:

< Back

Next =

Cancel |

of snap-ins. For

Edit Extensions... |

Remoye |

Mowe Lp |

Mowve Down |

Advanced...

r a computer.

OK | Cancel |

|2 x|

Figure 2.8: Focusing the Certificates snap-in on the Computer account

Next, as shown in figure 2.9, focus on the local computer. Of course, if you're installing a

certificate onto a remote computer, focus on that computer instead. This is a good way to get

a certificate installed onto a GUI-less Server Core installation of Windows, for example.

Note: We wish we could show you a way to do all of this from within PowerShell. But we

couldn't find one that didn't involve a jillion more, and more complex, steps. Since this

hopefully isn't something you'll have to do often, or automate a lot, the GUI is easier and

should suffice.

Figure 2.8: Focusing the Certificates snap-in on the Computer account

Next, as shown in figure 2.9, focus on the local computer. Of course, if you're installing a
certificate onto a remote computer, focus on that computer instead. This is a good way to get
a certificate installed onto a GUI-less Server Core installation of Windows, for example.

Note: We wish we could show you a way to do all of this from within PowerShell. But we
couldn't find one that didn't involve a jillion more, and more complex, steps. Since this
hopefully isn't something you'll have to do often, or automate a lot, the GUI is easier and
should suffice.

=10 %]
x| |15
x|
of snap-ins. For
il
| B Select the computer you want this snap4n to manage.
i
This sniap-n wil al : —
is snap-n will always manage S | ,
¥ |ocal computer: {the computer this console is running on)
Remoye |

™ Another computer: I Browse,., |

[Mlow the selected computerto be changed when launching from the command line. This Mowe Up |
only applies if you save the console.

Maove Down |

Advanced...

[
<Back [Fmsh | Cancel |
r a computer,

OK | Cancel |

Figure 2.9: Focusing the Certificates snap-in on the local computer

With the snap-in loaded, as shown in figure 2.10, right-click the "Personal" store and select
"Import."

Figure 2.10: Beginning the import process into the Personal store

As shown in figure 2.11, browse to the certificate file that you downloaded from your CA.
Then, click Next.

Caution: If you downloaded multiple certificates - perhaps the CA's root certificates along
with the one issued to you - make sure you're importing the SSL certificate that was issued
to you. If there's any confusion, STOP. Go back to your CA and download just YOUR
certificate, so that you'll know which one to import. Don't experiment, here - you need to get
this right the first time.

te Import Wizard x| | |8 x|

a
<; File to Import

Spedfy the file you want to import.

File name: Mare Actions »

C:\Wsers\Administrator \Downloads\AllCerts\certs\dea. ot Browse... I

Mote: Mare than one certificate can be stored in a single file in the following formats:
Personal Information Exchange- PKCS #12 ((PFX,.P12)
Cryptographic Message Syntax Standard- PKCS #7 Certificates (.P7E)

Microsoft Serialized Certificate Store ((55T)

Learn more about certificate file formats

< Back Mext = Cancel |

|4| | Kl | | &

Figure 2.11: Selecting the newly-issued SSL certificate file

As shown in figure 2.12, ensure that the certificate will be placed into the Personal store.

File to Import

File name:

Personal Information Exchange- PKCS #12 (PFX,.P12)
Cryptographic Message Syntax Standard- PKCS #7 Certificates (.P7E)

Microsoft Serialized Certificate Store ((55T)

Learn more about certificate file formats

C:\Wsers\Administrator \Downloads\AllCerts\certs\dea. ot Browse... I

Mote: Mare than one certificate can be stored in a single file in the following formats:

< Back Mext =

Cancel |

=10/ x|

| =181

| Actions

1] | MKl

More Actions »

Figure 2.11: Selecting the newly-issued SSL certificate file

As shown in figure 2.12, ensure that the certificate will be placed into the Personal store.

Certificate Store

Certificate stores are system areas where certificates are kept.

the certificate.
" Automatically select the certificate store based on the type of certificate
%' place all certificates in the following store

Certificate store:

Learn more about certificate stores

Windows can automatically select a certificate store, or you can specify a location for

Personal Browse... |

< Back I Mext = I

Cancel |

=10l |

=181

| Actions

More Actions »

= Consolel - [Console Root\Certificates (Local Computer)\Personal\Certificates] i |E||5|

ﬁ File Acton View Favorites Window Help |_|_|- =1
e | nE 45 XE = | HI
| Console Root Issued To =~ Actions
= E Certificates (Local Com | b e
= | Personal Open
| Certificates _— More Actions »
| Trusted Root Certi Al Tasks +
| Enterprise Trust cut —
__ Intermediate Certil Copy More Actions »
| Trusted Publishers Delete
_| Untrusted Certifica e
| Third-Party Root C Properties %
| Trusted People e ——
| Remote Desktop Help
| Certificate Enrollme
~| Smart Card Trustet
| Trusted Devices
KN I | Kl | I

|O|:lens the properties dialog box for the current selection. |

Figure 2.13: Double-click the certificate, or right-click and select Open

Finally, as shown in figure 2.14, select the certificate's thumbprint. You'll need to either write
this down, or copy it to your Clipboard. This is how WinRM will identify the certificate you
want to use.

Note: It's possible to list your certificate in PowerShell's CERT: drive, which will make the
thumbprint a bit easier to copy to the Clipboard. In PowerShell, run Dir
CERT:\LocalMachine\My and read carefully to make sure you select the right certificate. If
the entire thumbprint isn't displayed, run Dir CERT:\LocalMachine\My | FL * instead.

=10/ x|

=
4 ‘General Details | Certification Path I
Show: |<:A||:> j I Expiraf | Actions
h Assurance CA-3 4{15/2 Hficates
,Trld | e e |:I More Actions »
(%il|Enhanced Key Usage Server Authentication (1.3.6....
E CRL Distribution Points [1]CRL Distribution Paoint: Distr... _
E Certificate Policies [1]Certificate Policy:Policy Ide...
=l 3 . : More Actions »
(& Authority Information Access [1]Authority Info Access: Acc...
.: Key Usage Digital Signature, Key Encipher. ..
I: Basic Constraints Subject Type=End Entity, Pat...
EThumbprint algorithm shal

|5 Thumbprint 3ddfesdseddcosd2 39 76...

3d df =5 d5 60 de= 96 d2 29 76 bY d6 ab b?
c? 80 £3 b2 1= d7

Edit Properties. .. | Copy to File... |

Learn more about certificate details

= o
QK
[|

Figure 2.14: Obtaining the certificate's thumbprint

Setting up the HTTPS Listener

These next steps will be accomplished in the Cmd.exe shell, not in PowerShell. The

command-line utility's syntax requires significant tweaking and escaping in PowerShell, and
it's a lot easier to type and understand in the older Cmd.exe shell (which is where the utility
has to run anyway; running it in PowerShell would just launch Cmd.exe behind the scenes).

As shown in figure 2.15, run the following command:

[+, Addministrator: Command Prompt

C:vuwinkm create winemsconfigsLlistener?Address=*+Tranzport=HTTPS E{Hustname="dca=
"iCertificateThumbprint=""3DDFESDS6HADCI6D2I2 76 B7?DEASBY?CYEBF3IB21CDY"> .
RezourceCreated
Address = http:-/schemas.xmlsoap.orgs/us 2004088 /addressing-rolesanonymous
ReferenceParameters
ResourcelRI = http:-/-schemas .microsoft.con/ubemswzmansl config-listener
SelectorSet
Selector: Addressz = *. Transport = HTITPS

Figure 2.15: Setting up the HTTPS WinRM listener

Winrm create winrm/config/Listener?Address=*+Transport=HTTPS @{Hostname="xxx";Certificat

| S— >

There are two or three pieces of information you'll need to place into this command:

¢ In place of *, you can put an individual IP address. Using * will have the listener listen to
all local IP addresses.

¢ |n place of xxx, put the exact computer name that the certificate was issued to. If that
includes a domain name (such as dc01.ad2008r2.loc), put that. Whatever's in the
certificate must go here, or you'll get a CN mismatch error. Our certificate was issued to
"dca," so | put "dca."

¢ |n place of yyy, put the exact certificate thumbprint that you copied earlier. It's okay if
this contains spaces.

That's all you should need to do in order to get the listener working.

Note: We had the Windows Firewall disabled on this server, so we didn't need to create an
exception. The exception isn't created automatically, so if you have any firewall enabled on
your computer, you'll need to manually create the exception for port 5986.

You can also run an equivalent PowerShell command to accomplish this task:

New-WSManInstance winrm/config/Listener -SelectorSet @{Address='*';
Transport="HTTPS'} -ValueSet @{HostName='xxx';CertificateThumbprint='yyy'}

In that example, "xxx" and "yyy" get replaced just as they did in the previous example.

Testing the HTTPS Listener

| tested this from the standalone C3925954503 computer, attempting to reach the DCA
domain controller in COMPANY.loc. | configured C3925954503 with a HOSTS file, so that it
could resolve the hosthname DCA to the correct IP address without needing DNS. | was sure
to run:

Ipconfig /flushdns

This ensured that the HOSTS file was read into the DNS name cache. The results are in
figure 2.16. Note that | can't access DCA by using its IP address directly, because the SSL
certificate doesn't contain an IP address. The SSL certificate was issued to "dca," so we
need to be able to access the computer by typing "dca" as the computer name. Using the
HOSTS file will let Windows resolve that to an IP address.

Note: Remember, there are two things going on here: Windows needs to be able to resolve
the name to an IP address, which is what the HOSTS file accomplishes, in order to make a
physical connection. But WinRM needs mutual authentication, which means whatever we
typed into the -ComputerName parameter needs to match what's in the SSL certificate.
That's why we couldn't just provide an IP address to the command - it would have worked for
the connection, but not the authentication.

inistrator: Windows Powershell
5 C:\» Enter-PS55ession -ComputerMame DCA

5 C:\> Enter-P5Session -ComputerMame DCA -Credential COMPANY'Administrator

ion -ComputerName DCA -Credential COMPANY\Administrator -UseS5L
dministrator’Documents=

Figure 2.16: Testing the HTTPS listener

We started with this:

Enter-PSSession -computerName DCA

It didn't work - which | expected. Then we tried this:

Enter-PSSession -computerName DCA -credential COMPANY\Administrator

We provided a valid password for the Administrator account, but as expected the command
didn't work. Finally:

Enter-PSSession -computerName DCA -credential COMPANY\Administrator -UseSSL

Again providing a valid password, we were rewarded with the remote prompt we expected. It
worked! This fulfills the two conditions we specified earlier: We're using an HTTPS-secured
connection and providing a credential. Both conditions are required because the computer
isn't in my domain (since in this case the source computer isn't even in a domain). As a
refresher, figure 2.17 shows, in green, the connection we created and used.

DCA

10.160.39.145/16
Win2008R2

C8956784402
(alias: CLIENTA)
10.160.92.120/16
Win7
2-Way
Forest Trust
COMPANY.loc Domain/
Forest
DCO1
10.160.201.3/16 | €3925954503
Win2008R2 T 10.160.123.220/16
x = Win2008R2
C3096161287 %"
alias: CLIENT1
10.160.60.247/16
Win7
AD2008R2.loc Domain/
o 2108222963
Forest alias: MEMBER1

10.160.185.109/16
Win2008R2

Figure 2.17: The connection used for the HTTPS listener test

Modifications

There are two modifications you can make to a connection, whether using Invoke-
Command, Enter-PSSession, or some other Remoting command, which relate to HTTPS
listeners. These are created as part of a session option object.

e -SkipCACheck causes WinRM to not worry about whether the SSL certificate was
issued by a trusted CA or not. However, untrusted CAs may in fact be untrustworthy! A
poor CA might issue a certificate to a bogus computer, leading you to believe you're
connecting to the right machine when in fact you're connecting to an imposter. This is
risky, so use it with caution.

e -SkipCNCheck causes WinRM to not worry about whether the SSL certificate on the
remote machine was actually issued for that machine or not. Again, this is a great way

to find yourself connected to an imposter. Half the point of SSL is mutual authentication,
and this parameter disables that half.

Using either or both of these options will still enable SSL encryption on the connection - but
you'll have defeated the other essential purpose of SSL, which is mutual authentication by
means of a trusted intermediate authority.

To create and use a session object that includes both of these parameters:

$option = New-PSSessionOption -SkipCACheck -SkipCNCheck
Enter-PSSession -computerName DCA -sessionOption $option
-credential COMPANY\Administrator -useSSL

Caution: Yes, this is an easy way to make annoying error messages go away. But those
errors are trying to warn you of a potential problem and protect you from potential security
risks that are very real, and which are very much in use by modern attackers.

Certificate Authentication

Once you have an HTTPS listener set up, you have the option of authenticating with
Certificates. This allows you to connect to remote computers, even those in an untrusted
domain or workgroup, without requiring either user input or a saved password. This may
come in handy when scheduling a task to run a PowerShell script, for example.

In Certificate Authentication, the client holds a certificate with a private key, and the remote
computer maps that certificate's public key to a local Windows account. WinRM requires a
certificate which has "Client Authentication (1.3.6.1.5.5.7.3.2)" listed in the Enhanced Key
Usage attribute, and which has a User Principal Name listed in the Subject Alternative Name
attribute. If you're using a Microsoft Enterprise Certification Authority, the "User" certificate
template meets these requirements.

Obtaining a certificate for client authentication

These instructions assume that you have a Microsoft Enterprise CA. If you are using a
different method of certificate enroliment, follow the instructions provided by your vendor or
CA administrator.

On your client computer, perform the following steps:

¢ Run certmgr.msc to open the "Certificates - Current User" console.
¢ Right click on the "Personal" node, and select All Tasks -> Request New Certificate&
¢ |n the Certificate Enrollment dialog, click Next. Highlight "Active Directory Enroliment

Secrets of PowerShell Remoting

Policy", and click Next again. Select the User template, and click Enroll.

Request Certificates

You can request the following types of certificates, Select the certificates you want to request, and then
click Enroll,

Active Directory Enrollment Policy

[] Adrministrater j{J STATUS: Available
[] Basic EFS j{J STATUS: Available
[] EFS Recovery Agent i) STATUS: Available
User j{J STATUS: Available

[] User 2008 j{J STATUS: Available

[]Show all templates
Learn more about certificates

Figure 2.18: Requesting a User certificate.

After the Enrollment process is complete and you're back at the Certificates console, you
should now see the new certificate in the Personal\Certificates folder:

File Action View Help

EE WAEEIEET B

58 Certificates - Current User Issued To Issued By Expiration Date Intended Purposes Friendly Mame Status Certificate Template
4 [3 Personal DaveWyatt testdomain-WIN2012VM-CA 8/25/2014 Encrypting File Syst.. <Nones User
[Certif B rypting File Sy
ertificates

Figure 2.19: The user's installed Client Authentication certificate.

Before closing the Certificates console, right-click on the new certificate, and choose All
Tasks -> Export. In the screens that follow, choose "do not export the private key", and save
the certificate to a file on disk. Copy the exported certificate to the remote computer, for use
in the next steps.

Configuring the remote computer to allow Certificate
Authentication

On the remote computer, run the PowerShell console as Administrator, and enter the
following command to enable Certificate authentication:

Accessing Remote Computers 36

Set-Item -Path WSMan:\localhost\Service\Auth\Certificate -Value $true

Importing the client's certificate on the remote computer

The client's certificate must be added to the machine "Trusted People" certificate store. To
do this, perform the following steps to open the "Certificates (Local Computer)" console:

e Run "mmc".

From the File menu, choose "Add/Remove Snap-in."
Highlight "Certificates", and click the Add button.
Select the "Computer Account" option, and click Next.

Select "Local Computer", and click Finish, then click OK.

Note: This is the same process you followed in the "Installing the Certificate" section under
Setting up and HTTPS Listener. Refer to figures 2.7, 2.8 and 2.9 if needed.

In the Certificates (Local Computer) console, right-click the "Trusted People" store, and
select All Tasks -> Import.

= Consolel - [Conscle Root\Certificates (Local Computer)\Trusted People

E File Action View Favorites Window Help

&= | 2w 8| c= HiE
| Console Root Object Type
=] _P)J Certificates (Local Computer)
| Personal
| Trusted Root Certification Auth
_| Enterprise Trust

| Intermediate Certification Auth
| Trusted Publishers

| Untrusted Certificates

_| Third-Party Root Certification £

i) Trusted Peopl Find Certificates...

| Certificate Enn

~| Smart Card Tr. ECIRE::] Find Certificates...

| Trusted Device

HEHZHHEEHEHEBRK

View k Import...

Mew Window from Here

Mew Taskpad View...

Refresh
Export List...

Help

Figure 2.20: Starting the Certificate Import process.

Click Next, and Browse to the location where you copied the user's certificate file.

Certificate Import Wizard

File to Import
Spedify the file you want to import.

File name:

C:\Users\Administrator\Downloads\DaveWyatt. cer Browse, .. I

Mote: Mare than one certificate can be stored in a single file in the following formats:
Personal Information Exchange- PKCS #12 (PFX,.P12)
Cryptographic Message Syntax Standard- PKCS #7 Certificates (.P7B)

Microsoft Serialized Certificate Store ((55T)

Learn more about certificate file formats

< Back Mext = Cancel

Figure 2.21: Selecting the user's certificate.

Ensure that the certificate is placed into the Trusted People store:

Certificate Import Wizard

Certificate Store
Certificate stores are system areas where certificates are kept.

Windows can automatically select a certificate store, or you can specify a location for
the certificate,

™ automatically select the certificate store based on the type of certificate
{* Place all certificates in the following store

Certificate store:

Trusted People Browse... |

Learn more about certificate stores

< Back I Mext = I Cancel

Figure 2.22: Placing the certificate into the Trusted People store.

Creating a Client Certificate mapping on the remote
computer

Open a PowerShell console as Administrator on the remote computer. For this next step,
you will require the Certificate Thumbprint of the CA that issued the client's certificate. You
should be able to find this by issuing one of the following two commands (depending on
whether the CA's certificate is located in the "Trusted Root Certification Authorities" or the
"Intermediate Certification Authorities" store):

Get-ChildItem -Path cert:\LocalMachine\Root
Get-ChildItem -Path cert:\LocalMachine\CA

= Administrator: Windows PowerShell il

PS C::»> Get—ChildItem —Path cert:\LocalMachine“Root ! Yhere—0Ohject { $_.Subject —1like *=Win2812UM=’ >

Directory: Microsoft.PowerShell.SecuritysCertificate::LocalMachine~Root

Subject
1828EECCBCFADCAECDAY4CAZEY? YFE84377AZBABE CN=testdomain-WIN2@812UM-ChA,. DC=testdomain. DC=local

Figure 2.23: Obtaining the CA certificate thumbprint.

Once you have the thumbprint, issue the following command to create the certificate
mapping:

New-Item -Path WSMan:\localhost\ClientCertificate -Credential (Get-Credential) -Subject <

J E— o

When prompted for credentials, enter the username and password of a local account with
Administrator rights.

Note: It is not possible to specify the credentials of a domain account for certificate mapping,
even if the remote computer is a member of a domain. You must use a local account, and
the account must be a member of the Administrators group.

PS Cin> New— Item —Path '.JSI"Ian “localhostsClientCertificate —Credential (Get—Credential> —Subject dlwyattBtestdomain. localu
—URI = —Issuer 1B2B8EECCBCFADCAECDA?4CAYE?7?F884377A2ZBABE —Force

cmdlet Get—Credential at command pipeline position 1
Supply values for the following parameters:
Credential —

Windows PowerShell Credential Re

‘:;1': \

Enter your credentials.

User name: [€ winzoosvadministrator 7] |

Password:

Cancel |

Figure 2.24: Setting up the client certificate mapping.

Connecting to the remote computer using Certificate
Authentication

Now, you should be all set to authenticate to the remote computer using your certificate. For
this step, you will need the thumbprint of the client authentication certificate. To obtain this,
you can run the following command on the client computer:

Get-ChildItem -Path Cert:\CurrentUser\My

Once you have this thumbprint, you can authenticate to the remote computer by using either
the Invoke-Command or New-PSSession cmdlets with the -CertificateThumbprint parameter,
as shown in figure 2.25.

Note: The Enter-PSSession cmdlet does not appear to work with the -Certificate Thumbprint
parameter. If you want to enter an interactive remoting session with certificate
authentication, use New-PSSession first, and then Enter-PSSession.

Note: The -UseSSL switch is implied when you use -CertificateThumbprint in either of these
commands. Even if you don't type -UseSSL, you're still connecting to the remote computer
over HTTPS (port 5986, by default, on Windows 7 / 2008 R2 or later). Figure 2.26
demonstrates this.

Windows PowerShell

Subject

348423C7A61215662B6AAEGABE42821 E=dlwyattllS@gmail. com, CN=Dave Wyatt, OU=UserAccounts, DC=testdomain, DC=...

ce—Command -ComputerName win2008vm -5criptBlock { whoami } -CertificateThumbprint 6CBCZ202E4348423C7A61215B62

Figure 2.26: Demonstrating that the connection is over SSL port 5986, even without the -
UseSSL switch.

Modifying the TrustedHosts List

As | mentioned earlier, using SSL is only one option for connecting to a computer for which
mutual authentication isn't possible. The other option is to selectively disable the need for
mutual authentication by providing your computer with a list of "trusted hosts." In other
words, you're telling your computer, "If | try to access SERVER1 [for example], don't bother
mutually authenticating. | know that SERVER1 can't possibly be spoofed or impersonated,
so I'm taking that burden off of your shoulders."

Figure 2.27 illustrates the connection we'll be attempting.

DCA

10.160.39.145/16
Win2008R2

C8956784402
(alias: CLIENTA)
10.160.92.120/16
Win7

2-Way
Forest Trust

COMPANY.loc Domain::
Forest

DCOo1

10.160.201.3/16 . €3925954503
Win2008R2 A 10.160.123.220/16

Win2008R2

(a4

C3096161287
alias: CLIENT1
10.160.60.247/16
Win7

| I

AD2008R2.loc Domain/ _
Forest | alias: MEMBER1

10.160.185.109/16
Win2008R2

€2108222963

Figure 2.27: The TrustedHosts connection test

Beginning on CLIENTA, with a completely default Remoting configuration, we'll attempt to
connect to C3925954503, which also has a completely default Remoting configuration.
Figure 2.28 shows the result. Note that I'm connecting via IP address, rather than hostname;
our client has no way of resolving the computer's name to an IP address, and for this test
we'd rather not modify my local HOSTS file.

Administrator: Windows PowerShell =10l x|

PS C:\> enter-pssession -ComputerName 10.160.123.220 -Credential C3925954503\AdmE&
inistrator =

Figure 2.28: Attempting to connect to the remote computer

This is what we expected: The error message is clear that we can't use an IP address (or a
host name for a non-domain computer, although the error doesn't say so) unless we either
use HTTPS and a credential, or add the computer to my TrustedHosts list and use a
credential. We'll choose the latter this time; figure 2.29 shows the command we need to run.
If we'd wanted to connect via the computer's name (C3925954503) instead of its IP address,
we'd have added that computer name to the TrustedHosts list (I1t'd be our responsibility to
ensure my computer could somehow resolve that computer name to an IP address to make
the physical connection).

o/
PS C:\> Set-Item -Path WsSMan:\localhost\Client\TrustedHosts -Value ‘10.160.123.%_
20' :

WinRM Security Configuration. _ _ _
This command modifies the TrustedHosts Tist for the WinRM client. The computers
{ in the TrustedHosts 1list might not be authenticated. The client might send
icredential information to these computers. Are you sure that you want to modify
this 1list?

[N] No [S] Suspend [?] Help (default 1is "Y"): y

Figure 2.29: Adding the remote machine to our TrustedHosts list

This is another case where many blogs will advise just putting "*" in the TrustedHosts list.
Really? There's no chance any computer, ever, anywhere, could be impersonated or
spoofed? We prefer adding a limited, controlled set of host names or IP addresses. Use a
comma-separated list; it's okay to use wildcards along with some other characters (like a
domain name, such as *.COMPANY.loc), to allow a wide, but not unlimited, range of hosts.
Figure 2.30 shows the successful connection.

Tip: Use the -Concatenate parameter of Set-ltem to add your new value to any existing
ones, rather than overwriting them.

o/
PS C:\> Set-Item -Path WsSMan:\localhost\Client\TrustedHosts -Value ‘10.160.123.%_
20' :

WinRM Security Configuration.

This command modifies the TrustedHosts 1list for the WinRM client. The computers
{ in the TrustedHosts Tist might not be authenticated. The client might send
Icrgden%ja] information to these computers. Are you sure that you want to modify
this 1ist?

[¥Y] Yes [N] No [S] Suspend [?] Help (default 1is "Y"): y

PS C:\> enter-pssession -ComputerName 10.160.123.220 -Credential €3925954503\Adm
inistrator

[10.160.123.220]: PS C:\Users\Administrator\Documents:>

Figure 2.30: Connecting to the remote computer

Managing the TrustedHosts list is probably the easiest way to connect to a computer that
can't offer mutual authentication, provided you're absolutely certain that spoofing or
impersonation isn't a possibility. On an intranet, for example, where you already exercise
good security practices, impersonation may be a remote chance, and you can add an IP
address range or host name range using wildcards.

Connecting Across Domains

Figure 2.31 illustrates the next connection we'll try to make, which is between two computers
in different, trusted and trusting, forests.

DCA

10.160.39.145/16
Win2008R2

C8956784402
(alias: CLIENTA)
10.160.92.120/16

Win?7
2-Way
Forest Trust
COMPANY.loc Domain/
Forest
DCO1 .
10.160.201.345 _ 3925954503
Win200990 R 10.160.123.220/16
? Win2008R2
C3096161287
alias: CLIENT1
10.160.60.247/16
Win7
AD2008R2.loc Domain/
SRR 2108222963
Forest

alias: MEMBER1
10.160.185.109/16
Win2008R2

Figure 2.31: Connection for the cross-domain test

Ouir first test is in figure 2.32. Notice that we're creating a reusable credential in the variable

$cred, so that we don't keep having to re-type the password as we try this. However, the
results of the Remoting test still aren't successful.

. B Administrator: Windows PowerShell r
PS C:\> $cred = Get-Credential -Credential AD2008R2\Administrator
PS C:\> Enter-PSSession -ComputerName memberl -Credential $cred

PS C:\> Enter-PSSession -ComputerName memberl.ad2008r2.loc -Credential $cred

Figure 2.32: Attempting to connect to the remote computer

The problem? We're using a CNAME alias (MEMBER1), not the computer's real host name
(C2108222963). While WinRM can use a CNAME to resolve a name to an IP address for the

physical connection, it can't use the CNAME alias to look the computer up in AD, because
AD doesn't use the CNAME record (even in an AD-integrated DNS zone). As shown in
figure 2.33, the solution is to use the computer's real host name.

. & Administrator: Windows PowerShell P =10l x|
PS C:\> Enter-PSSession -ComputerName C2108222963.AD2008R2.Toc -Credential Scredg

[€2108222963.AD2008R2.10oc]: PS C:\Users\Administrator.AD2008R2\Documents>

Figure 2.33: Successfully connecting across domains

What if you need to use an IP address or CNAME alias to connect? Then you'll have to fall
back to the TrustedHosts list or an HTTPS listener, exactly as if you were connecting to a
non-domain computer. Essentially, if you can't use the computer's real host name, as listed
in AD, then you can't rely on the domain to shortcut the whole authentication process.

Administrators from Other Domains

There's a quirk in Windows that tends to strip the Administrator account token for
administrator accounts coming in from other domains, meaning they end up running under
standard user privileges - which often isn't sufficient. In the target domain, you need to
change that behavior.

To do so, run this on the target computer (type this all in one line and then hit Enter):

New-ItemProperty -Name LocalAccountTokenFilterPolicy
-Path HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\
Policies\System -PropertyType Dword -Value 1

That should fix the problem. Note that this does disable User Account Control (UAC) on the
machine where you ran it, so make sure that's okay with you before doing so.

The Second Hop

One default limitation with Remoting is often referred to as the second hop. Figure 2.25
illustrates the basic problem: You can make a Remoting connection from one host to another
(the green line), but going from that second host to a third (the red line) is simply disallowed.
This "second hop" doesn't work because, by default, Remoting can't delegate your
credential a second time. This is even a problem if you make the first hop and subsequently
try to access any network resource that requires authentication. For example, if you remote
into another computer, and then ask that computer to access something on an authenticated
file share, the operation fails.

The following configuration changes are needed to enable the second hop:

Note: This only works on Windows Vista, Windows Server 2008, and later versions of
Windows. It won't work on Windows XP or Windows Server 2003 or earlier versions.

e CredSSP must be enabled on your originating computer and the intermediate server
you connect to. In PowerShell, on your originating computer, run:

Set-Item WSMAN:\localhost\client\auth\credssp -value $true

¢ On your intermediate server(s), you make a similar change to the above, but in a
different section of the configuration:

Set-Item WSMAN:\localhost\servicelauth\credssp -value $true

¢ Your domain policy must permit delegation of fresh credentials. In a Group Policy object
(GPO), this is found in Computer Configuration > Policies > Administrative Templates >
System > Credential Delegation > Allow Delegation of Fresh Credentials. You must
provide the names of the machines to which credentials may be delegated, or specify a
wildcard like "*.ad2008r2.loc" to allow an entire domain. Be sure to allow time for the
updated GPO to apply, or run Gpupdate on the originating computer (or reboot it).

Note: Once again, the name you provide here is important. Whatever you'll actually be
typing for the -computerName parameter is what must appear here. This makes it really

nikn

tough to delegate credentials to, say, IP addresses, without just adding "*" as an allowed
delegate. Adding "*," of course, means you can delegate to ANY computer, which is
potentially dangerous, as it makes it easier for an attacker to impersonate a machine and get

hold of your super-privileged Domain Admin account!

e When running a Remoting command, you must specify the "-Authentication CredSSP"
parameter. You must also use the -Credential parameter and supply a valid
DOMAIN\Username (you'll be prompted for the password) - even if it's the same
username that you used to open PowerShell in the first place.

After setting the above, we were able to use Enter-PSSession to go from our domain
controller to my member server, and then use Invoke-Command to run a command on a
client computer - the connection illustrated in figure 2.34.

DCA

10.160.39.145/16
Win2008R2

C8956784402
(alias: CLIENTA)
10.160.92.120/16

Win?7
2-Way
Forest Trust
COMPANY.loc Domain/
Forest
DCO1
10.160.201.3/16 €3925954503
Win2008R2 10.160.123.220/16
Win2008R2
C3096161287
alias: CLIENT1
10.160.60.247/16
Win7
2108222963

alias: MEMBER1
10.160.185.109/16
Win2008R2

Figure 2.34: The connections for the second-hop test

Seem tedious and time-consuming to make all of those changes? There's a faster way. On
the originating computer, run this:

Enable-WSManCredSSP -Role Client -Delegate name

Where "name" is the name of the computers that you plan to remote to next. This can be a
wildcard, like *, or a partial wildcard, like *. AD2008R2.loc. Then, on the intermediate
computer (the one to which you will delegate your credentials), run this:

Enable-WSManCredSSP -Role Server

Between them, these two commands will accomplish almost all of the configuration points
we listed earlier. The only exception is that they will modify your local policy to permit fresh
credential delegation, rather than modifying domain policy via a GPO. You can choose to
modify the domain policy yourself, using the GPMC, to make that particular setting more
universal.

Working with Endpoints (aka Session
Configurations)

As you learned at the beginning of this guide, Remoting is designed to work with multiple
different endpoints on a computer. In PowerShell terminology, each endpoint is a session
configuration, or just a configuration. Each can be configured to offer specific services and
capabilities, as well as having specific restrictions and limitations.

Connecting to a Different Endpoint

When you use a command like Invoke-Command or Enter-PSSession, you normally connect
to a remote computer's default endpoint. That's what we've done up to now. But you can see
the other enabled endpoints by running Get-PSSessionConfiguration, as shown in figure 3.1.

Name
PSVersion

RunAsUser
Permission

Name
PSVersion

RunAsUser
Permission

Name
PSVersion

RunAsUser
Permission

Name
PSVersion

RunAsUser
Permission

: microsoft.powershell
3.8
StartupScript :

- BUILTIN\Administrators AccessAllowed
: microsoft.powershell.workflow

: 3.0
StartupScript :

: BUILTIN\Administrators AccessAllowed

: microsoft.powershell32
3.8
StartupScript :

: BUILTIN\Administrators AccessAllowed
: microsoft.ServerManager
: 2.0

StartupScript :

: BUILTIN\Administrators AccessAllowed

Figure 3.1: Listing the installed endpoints

Note: As we pointed out in an earlier chapter, every computer will show different defaults
endpoints. Our output was from a Windows Server 2008 R2 computer, which has fewer
default endpoints than, say, a Windows 2012 computer.

Each endpoint has a name, such as "Microsoft.PowerShell" or "Microsoft.PowerShell32." To
connect to a specific endpoint, add the -ConfigurationName parameter to your Remoting
command, as shown in Figure 3.2.

QAdministratm: Windows PowerShell (3)

PS C:\> Enter-PSSession -ComputerName DC@1 -ConfigurationName 'microsoft.powershell32®
[DCO1]: PS C:\Users\Administrator\Documents>

Figure 3.2: Connecting to a specific configuration (endpoint) by name

Creating a Custom Endpoint

There are a number of reasons to create a custom endpoint (or configuration):

¢ You can have scripts and modules auto-load whenever someone connects.

¢ You can specify a security descriptor (SDDL) that determines who is allowed to connect.

® You can specify an alternate account that will be used to run all commands within the
endpoint - as opposed to using the credentials of the connected users.

¢ You can limit the commands that are available to connected users, thus restricting their
capabilities.

There are two steps in setting up an endpoint: Creating a session configuration file which will
define the endpoints capabilities, and then registering that file, which enables the endpoint
and defines its configurations. Figure 3.3 shows the help for the New-
PSSessionConfigurationFile command, which accomplishes the first of these two steps.

sionConfigurationFile

SYNOPSIS
Creates a file that defines a session configuration

SYNTAX
New-PSSessionConfigurationFile [-Path] «String> [-AliasDefinitions <Hashtable[]>]
[-AssembliesToload <String[]>] [-Author <String>] [-CompanyName <String>] [-Copyright
<String>] [-Description <String>] [-EnvironmentVariables <Object>] [-ExecutionPolicy
<ExecutionPolicy>] [-FormatsToProcess <String[]>] [-FunctionDefinitions <Hashtable[]>] [-Guid
<Guid>] [-LanguageMode <PSLanguageMode>] [-ModulesToImport <Object[]>»] [-PowerShellVersion

<Version>] [-SchemaVersion <Version>] [-ScriptsToProcess <String[]>] [-SessionType
<SessionType>] [-TypesToProcess <String[]>] [-VariableDefinitions <Object>] [-VisibleAliases
<String[]>] [-VisibleCmdlets <String[]>] [-VisibleFunctions <String[]>] [-VisibleProviders
<String[]>] [<CommonParameters>]

DESCRIPTION
The New-PSSessionConfigurationFile cmdlet creates a file of settings that define a session
configuration and the environment of sessions that are created by using the session
configuration. To use the file in a session configuration, use the Path parameters of the
Register-P5SessionConfiguration or Set-PS5SessionConfiguration cmdlets.

The session configuration file that New-PSSessionConfigurationFile creates is a human-readable
text file that contains a hash table of the session configuration properties and values. The
= Mope= =

Figure 3.3: The New-PSSessionConfigurationFile command

Here's some of what the command allows you to specify (review the help file yourself for the
other parameters):

e -Path: The only mandatory parameter, this is the path and filename for the configuration
file you'll create. Name it whatever you like, and use a .PSSC filename extension.

e -AliasDefinitions: This is a hash table of aliases and their definitions. For example,
@{Name='d";Definition="Get-Childltem';Options='ReadOnly'} would define the alias d.
Use a comma-separated list of these hash tables to define multiple aliases.

e -EnvironmentVariables: A single hash table of environment variables to load into the
endpoint: @{'MyVar'=\SERVER\Share';'MyOtherVar'="SomethingElse'}

e -ExecutionPolicy: Defaults to Restricted if you don't specify something else; use
Unrestricted, AllSigned, or RemoteSigned. This sets the script execution policy for the
endpoint.

e -FormatsToProcess and -TypesToProcess: Each of these is a comma-separated list of
path and filenames to load. The first specifies .format.ps1xml files that contain view
definitions, while the second specifies a .ps1xml file for PowerShell's Extensible Type
System (ETS).

e -FunctionDefinitions: A comma-separated list of hash tables, each of which defines a
function to appear within the endpoint. For example,
@{Name="MoreDir';Options='"ReadOnly';Value={ Dir | more }}

e -LanguageMode: The mode for PowerShell's script language. "FullLanguage" and

"NoLanguage" are options; the latter permits only functions and cmdlets to run. There's
also "RestrictedLanguage" which allows a very small subset of the scripting language to
work - see the help for details.

e -ModulesTolmport: A comma-separated list of module names to load into the endpoint.
You can also use hash tables to specify specific module versions; read the command's
full help for details.

e -PowerShellVersion: '2.0' or '3.0," specifying the version of PowerShell you want the
endpoint to use. 2.0 can only be specified if PowerShell v2 is independently installed on
the computer hosting the endpoint (installing v3 "on top of" v2 allows v2 to continue to
exist).

e -ScriptsToProcess: A comma-separated list of path and file names of scripts to run when
a user connects to the endpoint. You can use this to customize the endpoint's runspace,
define functions, load modules, or do anything else a script can do. However, in order to
run, the script execution policy must permit the script.

e -SessionType: "Empty" loads nothing by default, leaving it up to you to load whatever
you like via script or the parameters of this command. "Default" loads the normal
PowerShell core extensions, plus whatever else you've specified via parameter.
"RestrictedRemoteServer" adds a fixed list of seven commands, plus whatever you've
specified; see the help for details on what's loaded.

Caution: Some commands are important - like Exit-PSSession, which enables someone to
cleanly exit an interactive Remoting session. RestrictedRemoteServer loads these, but
Empty does not.

e -VisibleAliases, -VisibleCmdlets, -VisibleFunctions, and -VisibleProviders: These
comma-separated lists define which of the aliases, cmdlets, functions, and PSProviders
you've loaded will actually be visible to the endpoint user. These enable you to load an
entire module, but then only expose one or two commands, if desired.

Note: You can't use a custom endpoint alone to control which parameters a user will have
access to. If you need that level of control, one option is to dive into .NET Framework
programming, which does allow you to create a more fine-grained remote configuration.
That's beyond the scope of this guide. You could also create a custom endpoint that only
included proxy functions, another way of "wrapping" built-in commands and adding or
removing parameters - but that's also beyond the scope of this guide.

Once you've created the configuration file, you're ready to register it. This is done with the
Register-PSSessionConfiguration command, as shown in figure 3.4.

sionConfiguration

SYNOPSIS
Creates and registers a new session configuration.

r-PSSessionConfiguration [-Name] <String> [-AccessMode
< ssionConfigurationAccessMode>] [-ApplicationBase <S5tring>] [-Force [<SwitchParameter>]]
[- MaxlmumRPcplvpdDatahl ePerCommandMB <Double>] [-MaximumReceivedObjectSizeMB <Double>]
[-ModulesToImport <String[]>] [-NoServiceRestart [<SwitchParameter>]] [-ProcessorArchitecture
<String>] [-PSVersion <Version>] [-RunAsCredential <PSCredential>] [-SecurityDescriptorSddl

<String>] [-SessionType <PSSessionType>] [-SessionTypeOption <PSSessionTypeOption>]
[-ShowSecurityDescriptorUI [<SwitchParameter>]] [-StartupScript <String>]
[-ThreadApartmentState <ApartmentState>] [-ThreadOptions <PSThreadOptions>] [-TransportOption
<PSTransportOption>] [-UseSharedProcess [<SwitchParameter>]] [-Confirm [<SwitchParameter:>]]
[-WhatIf [<SwitchParameter>]] [<CommonParameters>]

Register-PSSessionConfiguration [-Name] <Str semblyName] <String>
[-ConfigurationTypeName] <String> [-Acc (sionConfigurationAccessMode>]
[-ApplicationBase <String>] [-Force [<Sw1tchPatan er>]] [-MaximumReceivedDataSizePerCommandMB
<Double>] [-MaximumReceivedObjectSizeMB <Double>] [-ModulesToImport <String[]>]
[-NoServiceRestart [<SwitchParameter>]] [-ProcessorArchitecture <String>] [-PSVersion
\VPI510H>] [-RunAsCredential <PSCredential>] [-SecurityDescriptorSddl <String>]
ssionTypeOption <PSSessionTypeOption>] [-ShowSecurityDescriptorUI [<SwitchParameter>]]
artupScript <String>] [-ThreadApartmentState <ApartmentState>] [-ThreadOptions

Figure 3.4: The Register-PSSessionConfiguration command

As you can see, there's a lot going on with this command. Some of the more interesting
parameters include:

¢ -RunAsCredential: This lets you specify a credential that will be used to run all
commands within the endpoint. Providing this credential enables users to connect and
run commands that they normally wouldn't have permission to run; by limiting the
available commands (via the session configuration file), you can restrict what users can
do with this elevated privilege.

e -SecurityDescriptorSddl: This lets you specify who can connect to the endpoint. The
specifier language is complex; consider using -ShowSecurityDescriptorUl instead,
which shows a graphical dialog box to set the endpoint permissions.

e -StartupScript: This specifies a script to run each time the endpoint starts.

You can explore the other options on your own in the help file. Let's take a look at actually

creating and using one of these custom endpoints. As shown in figure 3.5, we've created a
new AD user account for SallyS of the Sales department. Sally, for some reason, needs to
be able to list the users in our AD domain - but that's all she must be able to do. As-is, her

account doesn't actually have permission to do so.

Q.Ad ministrator: Windows PowerShell (3)
ew-aduser -Name SallyS -SamAccountName SallyS -Department Sal

Figure 3.5: Creating a new AD user account to test

Figure 3.6 shows the creation of the new session configuration file, and the registration of
the session. Notice that the session will auto-import the ActiveDirectory module, but only
make the Get-ADUser cmdlet visible to Sally. We've specified a restricted remote session
type, which will provide a few other key commands to Sally. We also disabled PowerShell's
scripting language. When registering the configuration, we specified a "Run As" credential
(we were prompted for the password), which is the account all commands will actually
execute as.

= Administrator: Windows PowerShell (3) = =1al =

New-PSSessionConfigurationFile -ModulesToImport ActiveDirectory -VisibleCmdlets ‘Get-ADUser' -lLanguageMode 'NoLaE

-SessionType RestrictedRemoteServer -Path c:\S%allysSession.pssc

Register-PSSessionConfiguration -Name Sally -RunAsCredential AD28@8R2\Administrator -ShowSecurityDescriptorUI -P|

C:\S5allysSession.pssc
Runfs is enabled for a W
boundary between diffe sers r dpoint. Ensure that
i stri s and capabilities.

Confirm

Are you sure you want to perform this action?

Performing operation "Register-PSSessionConfiguration”™ on Target "Name: Sally. This will allow administrators to
remotely run Windows PowerShell commands on this computer”.

[¥] Yes [A] Yes to A1l [N] No [L] Mo to A1l [S] Suspend [?] Help (default is

WSManConfig: crosoft.WSMan.Management\WSMan: : localhost\Plugin

Type Keys Name

Container {Name=5ally} Sally

Confirm

Are you sure you want to perform this action?

Performing operation ""Restart-Service"" on Target "Name: WinRM".

[Y] Yes [A] Yes to A1l [N] No [L] No to A1l [S] Suspend [?] Help (default is

Confirm

Are you sure you want to perform this action?

Performing operation "Restart-Service” on Target "Windows Remote Management (WS-Management) (winrm)". -

Figure 3.6: Creating and registering the new endpoint

Because we used the -ShowSecurityDescriptorUl, we got a dialog box like the one shown in
figure 3.7. This is an easier way of setting the permissions for who can use this new
endpoint. Keep in mind that the endpoint will be running commands under a Domain Admin
account, so we want to be very careful who we actually let in! Sally needs, at minimum,
Execute and Read permission, which we've given her.

=10 x|

http://schemas microsoft com/powershell /Sally |

Group or user names:

the Win
WA G 52, Administrators (AD2008R2"Administrators)
i, INTERACTIVE ssion urations C
3 SalyS (AD2008R2\SallyS) essionConfiguration cmdle

Perform on Target "Name: Sally. This will allow administrators to
remotel uter”.

RARCY| Dermissionsfor SalyS uspend [?] Help (default is "Y"):

Full Control{All Operations)
Read|Get, Enumerate, Subscribe)
WSMa Write(Put Delete Create) - alhost\Plugin
Execute(lnvoke)
Type Special pemmissions

2 2 For special pemmissions or advanced settings,
Contain click Advanced. idenced
Confirm Leam about access control and pemmissions h&

Are you (———————1
Perform s ame: WinRM"

[¥] Yes |A] Yes to ALl |[N] No |L] Mo to A1l |[S] Suspend [?] Help (default is

Confirm

Are you sure you want to perform this action?

Performing operation “"Restart-Service" on Target "Windows Remote Management (WS-Management) (winrm)™.
[¥] Yes [A] Yes to A1l [N] No [L] Mo to A1l [S] Suspend [?] Help (default is "Y"): y

Figure 3.7: Setting the permissions on the endpoint

We then set a password for Sally and enabled her user account. Everything up to this point
has been done on the DC01.AD2008R2.loc computer; figure 3.8 moves to that domain's
Windows 7 client computer, where we logged in using Sally's account. As you can see, she
was unable to enter the default session on the domain controller. But when she attempted to
enter the special new session we set up just for her, she was successful. She was able to
run Get-ADUser as well.

Windows PowerShell
Copyright (C) 2012 Microsoft Corporation. All rights reserved.

PS C:\Users\SallyS> Enter-PSSession -ComputerName dc@l

PS C:\Users\SallyS> Enter-PSSession -ComputerName dc@l -ConfigurationName Sally
g &

[dc@l]: PS>get-aduser -filter

DistinguishedName : CN=Administrator,CN=Users,DC=AD20@8R2,DC=loc
Enabled : True

GivenName

Name : Administrator

ObjectClass > user

ObjectGUID : 7b848c36-1865-4167-aab61-27b2eeB880177
SamAccountName : Administrator

SID : 5-1-5-21-715778254-1746166839-2828871067-500
Surname =

UserPrincipalName :

DistinguishedName : CN=Guest,CN=Users,DC=AD2808R2,DC=loc
Enabled : False

Figure 3.8: Testing the new endpoint by logging in as Sally

Figure 3.9 confirms that Sally has a very limited number of commands to play with. Some of
these commands - like Get-Help and Exit-PSSession - are pretty crucial for using the
endpoint. Others, like Select-Object, give Sally a minimal amount of non-destructive
convenience for getting her command output to look like she needs. This command list
(aside from Get-ADUser) is automatically set when you specify the "restricted remote"
session type in the session configuration file.

X windows PowerShell

UserPrincipalName :

DistinguishedName : CN=SallyS,CN=Users,DC=AD208088R2,DC=loc

Enabled : True

GivenName :

Name : Sallys

ObjectClass > user

ObjectGUID : 99e45ctb-5c19-4106-9cB8-88bd327626e8
SamAccounthame y

SID : 5-1-5-21-715778254-1746166839-2828871067-1108

Surname :
UserPrincipalName :

Name ModuleName
Cmdlet, ri Exit-PSSession
Cmdlet, =il Get-Command

ol Get-FormatData

Get-Help

Measure-Object

Out-Default

Select-Object

Get-ADUser ActiveDirectory

[dcB1]: PS>

Figure 3.9: Only eight commands, including the Get-ADUser one we added, are available
within the endpoint.

In reality, it's unlikely that a Sales user like Sally would be running commands in the
PowerShell console. More likely, she'd use some GUI-based application that ran the
commands "behind the scenes." Either way, we've ensured that she has exactly the
functionality she needs to do her job, and nothing more.

Security Precautions with Custom Endpoints

When you create a custom session configuration file, as you've seen, you can set its
language mode. The language mode determines what elements of the PowerShell scripting
language are available in the endpoint - and the language mode can be a bit of a loophole.
With the "Full" language mode, you get the entire scripting language, including script blocks.
A script block is any executable hunk of PowerShell code contained within {curly brackets}.
They're the loophole. Anytime you allow the use of script blocks, they can run any legal
command - even if your endpoint used -VisibleCmdlets or -VisibleFunctions or another
parameter to limit the commands in the endpoint.

In other words, if you register an endpoint that uses -VisibleCmdlets to only expose Get-
Childitem, but you create the endpoint's session configuration file to have the full language
mode, then any script blocks inside the endpoint can use any command. Someone could

run:

PS C:\> & { Import-Module ActiveDirectory; Get-ADUser -filter * | Remove-ADObject }

Eek! This can be especially dangerous if you configured the endpoint to use a RunAs
credential to run commands under elevated privileges. It's also somewhat easy to let this
happen by mistake, because you set the language mode when you create the new session
configuration file (New-PSSessionConfigurationFile), not when you register the session
(Register-PSSessionConfiguration). So if you're using a session configuration file created by
someone else, pop it open and confirm its language mode before you use it!

You can avoid this problem by setting the language mode to NoLanguage, which shuts off
script blocks and the rest of the scripting language. Or, go for RestrictedLanguage, which
blocks script blocks while still allowing some basic operators if you want users of the
endpoint to be able to do basic filtering and comparisons.

Understand that this isn't a bug - the behavior we're describing here is by design. It can just
be a problem if you don't know about it and understand what it's doing.

Note: Much thanks to fellow MVP Aleksandar Nikolic for helping me understand the logic of
this loophole!

Diagnostics and Troubleshooting

Troubleshooting and diagnosing Remoting can be one of the most difficult tasks an
administrator has to deal with. When Remoting works, it works; when it doesn't, it's often
hard to tell why. Fortunately, PowerShell v3 and its accompanying implementation of
Remoting have much clearer and more prescriptive error messages than prior versions did.
However, even v2 included an undocumented and little-appreciated module named
PSDiagnostics, which is designed specifically to facilitate Remoting troubleshooting.
Essentially, the module lets you turn on detailed trace log information before you attempt to
initiate a Remoting connection. You can then utilize that detailed log information to get a
better idea of where Remoting is failing.

Diagnostics Examples

For the following scenarios, we started by importing the PSDiagnostics module (note that
this is implemented as a script module, and requires an execution policy that permits it to
run, such as RemoteSigned or Unrestricted). Figure 4.1 also shows that we ran the Enable-
PSWSManCombinedTrace command, which starts the extended diagnostics logging.

PS C:\> import-module PSDiagnostics
PS C:\> Enable-PSWSManCombinedTrace
The command completed successfully.
PS C:\>

Figure 4.1: Loading the diagnostics module and starting a trace

For each scenario, we then ran one or more commands that involved Remoting, as
demonstrated in figure 4.2. We then disabled the trace by running Disable-
PSWSManCombinedTrace, so that the log would only contain the details from that particular
attempt (we cleared the log between attempts, so that each scenario provided a fresh
diagnostics log).

[0 pdminstrator windows powershel
PS C:\> Enable-PSWSManCombinedTrace
The command completed successfully.
PS C:\> Enter-PSSession dc@l
: PS C:\Users\Administrator\Documents> dir
PS C:\Users\Administrator\Documents> cd ..
: PS C:\Users\Administrator> dir

Directory: C:\Users\Administrator

LastWriteTime Length Name

Contacts
Desktop
Documents
Downloads
Favorites
Links
Music
Pictures
Saved Games
Searches
Videos

5
0y
5
52
5
53
5
0y
5o
52
5

[dcB1]: PS C:\Users\Administrator> exit
PS C:\> Disable-PSWSManCombinedTrace
The command completed successfully.

The command completed successfully.

Figure 4.2: Entering a session and running a command

Finally, as shown in figure 4.3, we retrieved the messages from the log. In the scenarios that
follow, we'll provide an annotated version of these. Note that we'll typically truncate much of
this output so that we can focus on the most meaningful pieces. Also note that there's a bit
of a difference in reading the information from the event log architecture, as we're doing in
figure 4.3, and reading the .EVT trace file directly, as we'll do in some of our scenarios. The
latter will provide combined information from different logs, which can sometimes be more
useful.

B Administrator: Windows PowerShell .

PS C:\> get-winevent microsoft-windows-winrm/operational

ProviderName: Microsoft-Windows-WinRM

WSMan operation SignalShell failed, error co...

Information Activity Transfer
5 Information Closing WSMan shell
5 Information Closing WSMan command

Information Running WSMan command with CommandId: 383
5 Information Closing WSMan command

Information Running WSMan command with CommandId:
5 Information Closing WSMan command

Information Running WSMan command with CommandId:
5 Information Closing WSMan command

Information Running WSMan command with CommandId: 8813C6. ..
5 Information Closing WSMan command

Information Running WSMan command with CommandId: F34270...
5 Information Closing WSMan command

Information Running WSMan command with CommandId: 61FC69...
5 Information Closing WSMan command

Information Running WSMan command with CommandId: AA7365...
5 Information Closing WSMan command

Information Running WSMan command with CommandId: @A29F2...
5 Information Closing WSMan command
3 Information Running WSMan command with CommandId: 297DAF. ..

R N N e

(R

7/
7
7
i
7
s
7/
7
7
T
7
7
7
7
7
7
7
7
7
7
7

1
1
1
2dLe
=]:
i |
=
=H]:
21
4
=:
24l

LW W W W W W«

2®]

4/1411ﬂ11

Figure 4.3: Examining the logged diagnostic information

We're also going to be making use of the Microsoft-Windows-WinRM/analytic log, which
does not normally contain human-readable information. In order to utilize the log's contents,
we'll use an internal Microsoft utility (which we've been given permission to distribute; you'll
find it on the Downloads page at htip://ConcentratedTech.com) to translate the log's contents
into something we can read.

Trace information is stored in PowerShell's installation folder (run cd $pshome to get there,
then change to the Traces folder). The filename extension is .ETL, and you can use Get-
WinEvent -path filename.etl to read a particular file. The Construct-PSRemoteDataObject
command, included in the ZIP file we referenced, can translate portions of the Analytic log's
Message property into human-readable text. A demo script included in the ZIP file shows
how to use it. As shown in figure 4.4, we dot-sourced the Construct-
PSRemoteDataObject.ps1 file into our shell in order to gain access to the commands it
contains.

http://ConcentratedTech.com

_ioix
PS C:\Users\Administrator.AD2008R2\desktop\PSDiagnostics> . .\Construct-PSRemoteDataObject.psl E
PS C:\Users\Administrator.AD2008R2\desktop\PSDiagnostics>

Figure 4.4 Dot-sourcing the Construct-PSRemoteDataObject.ps1 script

We also deleted the contents of C:\Windows\System32\WindowsPowerShell\v1.0\Traces
prior to starting each of the following examples.

A Perfect Remoting Connection

For this connection, we went from the Windows 7 client computer in the AD2008R2 domain
to the DCO1 domain controller. On the DC, we changed to the C:\ folder, ran a directory, and
then ended the session. Figure 4.5 shows the entire scenario.

PS C:\> Enable-PSWSManCombinedTrace

The command completed successfully.

PS C:\> Enter-PSSession -ComputerName dcel
[dc@1]: PS C:\Users\Administrator\Documents> cd \
[dc@1]: PS C:\> dir

Directory: C:\

LastWriteTime Length Name

8/25/2010 =11 AN IT Structures
pR9 11:20 Ph Perflogs
1/24/2011 2 \ Program Files
1/24/2011 J \ Program Files (x86)
8/25/2010 11: ! Python26
1/23/2011 = Users
A/8/2012 11:40 Ap Windows
4/14/2012 11: 4082 SallysSession.ps

[dc@1]: PS C:\> exit

PS C:\> Disable-PSWSManCombinedTrace
The command completed successfully.
The command completed successfully.
PSS

Figure 4.5: The example for this scenario

We then read the log in chronological order. You need to be a bit careful; running Enable-
PSWSManCombinedTrace and Disable-PSWSManCombined trace actually create log
events themselves. We'll often run the Enable command, and then wait a few minutes to
actually do anything with Remoting. That way, we can tell by the timestamp in the log when
the "real" traffic began. We'll wait a few more minutes before running the Disable command,
again so that we can easily tell when the "real" log traffic ended. Also note that we'll be
getting information from two logs, WinRM and PowerShell, although reading the .ETL file
with Get-WinEvent will grab everything in sequence.

Note: We've experienced problems using Get-WinEvent in PowerShell v3 on non-US
English machines. If you run into problems, consider running the command from PowerShell
v2, or use the GUI Event Viewer application to view the event log.

The connection begins with (in this example) Enter-PSSession and name resolution, as
shown in figure 4.6.

4/14/2812 3:83:39 PM Commond Enter-P3Sezsion is Started.

Context:
Severity = Informational
Host Mome = ConsoleHost
Host Yersion = 3.8
Host ID = Bdooddbe-Sc9d-4eed-abd4-facy?4esdchit
Engine Yerzion = 3.8
Runzpace ID = f47485ct -bd95-4ced-aced-a799421d646h
Pipeline ID = 294
Command Maome = Enter-PSSesszion
Command Twpe = Cmdlet
Script Mame =
Command Path =
Sequence Number = 89
Uzer = ADZBASEZ\Adminisztrotor
Shell ID = Microsoft.PowerShell

Uzer Data:

4/14/2012 3:83:39 PM ComputerMame rezolwved to localhost
4/14/2812 3:83:39 PM ComputerMame resolved to dcAl
4/14/2812 3:83:39 PM ComputerMame resolved to dcAl
4/14/2012 3:83:39 PM ComputerMame resolved to dcAl

Figure 4.6: Starting the Remoting connection

WinRM has to spin up a runspace (essentially, a PowerShell process) on the remote
computer. That includes setting several options for locale, timing, and so on, as shown in
figure 4.7.

4/14/2812 3:83:39 PM Creating Runspace object
Inztance Id: cd3212Bb-A290-4537-3909-91Ac0224b3f 7
4/14/2812 3:83:39 PM Creating RunspacePool object
Inztaonceld 4355d585-Aeab-47ef -0let—4b95e71f 34ab
MinRunspaces 1
MaxRunspaces 1

4/14/2812 3:83:39 PM Creating WSMan Sesszion. The connection string is: doBl/wsman?PSVersion=3.8
4/14/2012 3:83:39 PM WSMan Create Sezsion operation completed successfuly

4/14/2012 3:83:39 PM Getting WSMan Session Option (297 - INVALID_SESSION_OPTION.

4/14/2012 3:83:39 PM Getting WSMan Session Option (117 - WSMAN_OPTION_MAX_RETRY_TIME.

4/14/2012 3:83:39 PM Setting WSMan Session Option (267 - WSMAN_OPTION_UI_LANGUAGE with walue

ren-Ush completed successfully.

4/14/2012 3:83:39 PM Setting WSMan Session Option (28% - WSMAM_OPTION_LOCALE with walue {en-US)
comp leted successfully.

4/14/2012 3:83:39 PM Setting WSMan Session Option (173 - WSMAN_OPTION_DEFAULT_OPERATION_TIMEOUTMS
with walue {188888% completed successfully.

4/14/2012 3:83:39 PM Setting WSMan Session Option (127 - WSMAN_OPTION_TIMEOUTMS_CREATE_SHELL with
volue (18888E% completed successfully.

4/14/2012 3:83:39 PM Setting WSMan Session Option (173 - WSMAN_OPTION_TIMEOUTMS_CLOSE_SHELL with
wilue (GEAAAY completed successfully.

4/14/2012 3:83:39 PM Setting WSMan Session Option (167 — WSMAN_OPTION_TIMEOUTMS_SIGMAL_SHELL with
wilue (GEAAAY completed successfully.

4/14/2812 3:83:39 PM Opening RunspacePool

4/14/2812 3:83:39 PM Runspace state chonged to Opening

Figure 4.7: Starting the remote runspace

This will go on for a while. Eventually, you'll see WinRM beginning to send "chunks," which
are packetized communications. These are sent via the Simple Object Access Protocol, so
expect to see "SOAP" referenced a lot (WS-MAN is a Web service, remember, and SOAP is

the communications language of Web services). Figure 4.8 shows a couple of these 1500-
byte chunks. Notice that the actual payload is pretty much gibberish.

4/14/2012 3:83:39 PM S04P [client sending index 1 of & total chunks (1588 bytes)] <=:Envelope
xmlnzis="http i/ Awww w3 0rg 2083 /05 z0ap—enve lope"
xmlnzia="http:/zchemas .xmlsoap .orgsws/ 2804 /65 /addressing”

*mlnz sw="http:/zchemnas .dntf .org wbenswamans 1l weman .xzd" xmlns ip="http://=chem
az.microsof t.comwbhenwanans L wsmnan . xsd" === tHeader =0 i Tozht tp o A doBl (5955 wama
n?PSVerszion=3.8</0:To—m :ResourcelR] =s:imustUnderstand="true"=http:/s=chemas . mi
crozoft .comfpowershel | /Hicrosoft .PowerShel L= w:ResourcelR [=—mxn :Rep lvToxz-m:Addre
zz zimustUnderstond="true"=http:/=chemas . xmlzoap ..org/ws/ 2804 ,/65 /addressing/ro
lefanonymous=/a Address>—=~a:ReplyToz-m:dction simustUnderstond="true"=-http://=
chemas . xmlzoap ..org/ws/ 2084 /89 A ransf er /Create</atAction=—mw :MaxEnve lopeSize s:im
uztUnderstand="true" 512808 w :MaxEnve lopesize=—m :Meszage ID=uuid :S6AACABE-4F 66
—4249-AZ67-8C287AARL1EL </ 0 :MessageID—w:Locale xml: lang="en-U5"
zimustUnderstand="false" /=—p:Datalocale xml:lang="en-U5"
zimuztUnderstand="false" /=—pidctivityId s:imuztUnderstand="false"-81911C4A-F3A
B-ABAR-GEEA-ALFCODIECDEL = piActivityId=—p Seszion]d simusztUnderstand="falze"=u
uid :BEEAE4AD-CP9E-4114-985E-SAACTEETEC4 2= p s Seszion]de—p i0perat ionID = :mustUnd
erstand="false"=uuid 807635607592 -4CAA-9F 7C-Z1 98B6ACDAF 2 p :0perat ion I Dx—p 1 5e
quenceld =:imustUnderstond="false"=1-/p:iSequenceld=—w::0ptionsSet
mlnzixsi="http:/Awew w3 0rg /2801 /sHLSchena-instance”
zimuztUnderstand="true">==w:0ption Name="protocolversion" MustComplw="true"=2.2
<Awilptionz— w:0ptionSet=—w:OperationT imeout=PT1568 8085w :0Operat ionT imeout —1r
| zpiCompressionType s:imustUnderstond="true" xzmlnz
4/14/2012 3:83:39 PM S04P [client sedding index 2 of & total chunks (1588 bytes)] rsp="http:/fsche
| mas ..microsoft .comswbenswasnansl windows/she l 1" =xpress=rsp:CompressionType=—/ s :
Header === :Bodv=—tr=zp:Shell
xmlnzirsp="http:/=chemas .microsoft .com wbhen wemnan L windows sshel 1"
Mame="SeszionlA"
Shel |l Id="43580R35-BEAE—47EF -ABEE—4B95ETIF 34AR" =T sp : InputStreams=stdin pre/rsp
tInputStreamss—<rsp 0utputStreans=stdout < rep :0utputStreams=—creatiohzml xmlns=
"http:/S=chemas .microsoft.con/powershel [=AAAAAAAAACOAAALAAALLAAMALAL WAGQAAAATA
| AQCFAMRDgw?wRE0MSE jnHz ST AdAAALAAAALAAAALAAAAL DL PvzcPYmogUnMmSWOAT 14 1P j xNUZz48Wm
| VvoZ [vbiBOPSIwcm98b2HvbHE LenNpbz4 1P j TuM jwemiycZ Lvb j488mive2 [vb iBOPSJIQULZE LenMp

[b24 1P IuMDwyYmiyc2 Lvb 4 My e 2 Lvb i BOPSITZ X IpWepenF BaWauimtt e vbi T+MS4=L JAUNT

| wibtmtveZ Lvb j480kEQT §81VG L £ 2Ypvbml i Pk FBRUFEQUCY Ly 3L BF ROUFEQUF BOUF BRUFROUFBORKU

[ZVhOMFpsMHYEMLZEY ZAWdWRGT 3V jMLIsY L 25cGI=MmF 1M Vs 0k FEOUF CZHRYMESaWT JobF pF Umnh L3

bl JoMFEwyaGh ibWR =Y ScxdF gzUnBZMnReYDJabWMyY JEELTFmY zNSaG It Unb M IPWY e bEREMYZ

REY 1Yk dsbmF IUKLSZYzF sxdB0kF SeFR LWE4wh L cwdVYEwOaNiR1Z2qZEdsdmIuT Y TREZEY UK SaF LEeb
| *DUWEDQUFBQUF Z3EG0W IvLy54SANnUUNEOUF BSEZONWMzUn: iUzVYEY j J4c1psT jBRVz L1¥3R1SY LY
| T3k RAZpYkdYSEFBOUFDa3h2WWdSRA LT jEiMA L TV miWeMybHZ 1 Z2hEY § Lxdl 1% Smx jaEJIWWhibl
| EvwObtalk.JEY jHacFpHYn LDRWhoY zJoWGF Y eGx CRERs ZVHNRLZ L RNk VL Z60UFBREF 30UZCUXNISEZD

NWMzUm: iUzVEY j14cipaT jBhYz 1Y 3k15 L EvOAR jREZEY LhdallzbHpk RLZETGE OdmIHeGx ZM 1wy

I1ekxrbE | ZWESUTIBalpWn | iM1pwhkdWelNPeF JPROHEBOUFEIUNNBAREBOUFEQLFNOUFEIURCOUFE

QUJBREFEOUFBOUFEOUIBRUFBOUFBOUFBOUF zP TwyOkE+PCONUZ43LEY 1 0] 4AdA4A AL ALK OAALS A AL
| AbAWAADT ECAAAABAAEA T SVWEDr DUSHOOZLMOCT NE S Adddd

Figure 4.8: Data begins to transfer over the connection

This gibberish is what the Construct-PSRemoteDataObject command can translate. For
example, those "sending" messages have an event ID of 32868; by looking for just those
events we can see what's being sent, as shown in figure 4.9.

PS C:\> get-winevent -path $pshome\traces\pstrace.etl -oldest | ? { $.id -eq '32868" } |
$_.message.indexof ("Payload Data: $str = $_.message.substring($idx + ("Payload Data: @
th));Construct-PSRemoteDatalObject $str }

destination : !
messageType :
pipelineld
runspaceld
data : <0bj f \ -olversion”>2.2</Version><Version
VPr510n> VPrbion N=" belldllLatloﬂVPlblon'} 1.ﬂ 1< fVPIbiOﬂ3 BA N="

tXGNhYzhlLERhewprththhbmd1cw1tX3Rpth TszczVGDmlfc3thmRhcmRDYNlleleGFJbGlnaHRD
YW11AwABARxTeXNOZWOuQ29sbGYidGlvbnMuSGFzaHRhYmx1CQkCAAAAAPEpFIb/ / /8KCeQCAAAAHFNSc3R1b
S5Db2xs ZWN@alducy5TYXNodGF ibGUHAAAACkxvYWRGYWN®b 3 THVmVyc21vbghDb21wYXJ1chBIYXNoQ29kZV
Byb3ZpZGVyCEhhc2hTaXplBEt1eXMGVmFsdWVzAAADAWAFBQs IHFNSc3R1bS5Db2xs ZWN@aW9ucy53Q29tcGF
yZXIkU31zdGVELkNvbGx1Y3Rpb25zLk1IYXNoQ29kZVByb3ZpZGVyCOxRODEAAAAACEODAAAACOMAAAATBAAA
ABADAAAAAAAAABAEAAAAAAAAAAS=</BA></MS></0b] > Q

destination : Server
messageType : GetCommandMetadata
pipelineld : ©3460806-3011-42a6-9843-c54f39eebfbs
runspaceld : 4358d585-0 F 6-4b98e71f34ab
data : <0bj RefId Dbj N="Mame" Refld= \ F tem.String[]</T>-
tem.Array</T><T>System.Object</T></T [2 </S><S>Exit-PSSession</S><
>< ‘ommandType"” RefI 1" ><T>System.Management . Automation

CommanﬂTvppb < /T><T>System. Enum<,/T>< am . 3 </ ste b'IPCt JT></TN><T
oString>Alias, Function, Filter, Cmdlet i
N="Namespace"” /><Nil N="Argumentlist"™ /></

Figure 4.9: Translating the data that was sent

In this case, the client was asking the server (which is listed as the destination) about its
capabilities, and for some metadata on the Exit-PSSession command (that's the second
message). This is how the client figures out what kind of server it's talking to, and other
important, preliminary information. Now, the client knows what version of the serialization
protocol will be used to send data back and forth, what time zone the server is in, and other
details.

Note: Event ID 32868 is client-to-server traffic; ID 32867 represents server-to-client traffic.
Using those two IDs along with Construct-PSRemoteDataObject can reveal the majority of
the session transcript once the connection is established.

Moving on. As shown in figure 4.10, you'll then see some authentication back-and-forth,
during which some errors can be expected. The system will eventually get over it and, as
shown, start receiving chunks of data from the server.

4/14/2012 3:83:39 PM An error was encountered while processzing an operation.
Error Code: 11881

4/14/2012 3:83:39 PM The chosen quthentication mechaniszm is Kerberos

4/14/2812 3:83:39 PM Sending the request for operation CreateShell to destination machine and port
dchl :5985

4/14/2012 3:83:39 PM An error was encountered while processzing an operation.
Error Code: 11881

4/14/2012 3:83:39 PM The chosen quthentication mechanizm is Kerberos

4/14/2012 3:83:39 PM Received the response from Metwork lover; status: 288 (HTTP_STATUS_OK
4/14/2012 3:83:39 PM Received the response from Metwork lover; status: 288 (HTTP_STATUS_OK
4/14/2012 3:83:39 PM Activity Transfer

4/14/2012 3:83:39 PM Activity Transfer

4/14/2012 3:83:39 PM S04P [client receiving index 1 of 2 total chunks (3888 bytes)] ==s:Envelope

*ml:lang="en-Us3" zmlhs:iz="http:/Awww . w3.0rg/ 280365 z00p-enve lope"

¥mlhg io="http:/ schemas . xmlsoop .orgws, 2084,/85 /address ing"

¥mlhg ii="http:/ schemas . xmlsoop .orgsws, 2084,/89 transfer”

*mlnz sw="http:/zchemas .dntf .org wbenwanans 1 weman cxsd"”

xmlhg irsp="http://zchenas .microzoft .comwhenwsmnan/l v indowsshel 1Y xmlns ip="h
ttp:/dzchemas .microzoft .comswben waman/l wanan . x2d" === tHeader = tAct ion=http:/
Aschemnas xml soap .orgws/2804,/89/transf er /CreateResponse«/a tAct ioh=—-0 tMezzage ID
=uid i6TEZGCE3-FCD7-41EA-9B26-636BBE961 791 < 0 iMeszage [D=—p :Operat ionID =:imustU
nderstand="false"-uuid 1587653550 -7892-4CAA-9F 7C-2195B6BCDAF 2= p iOperat ionID=—p:

Figure 4.10: Getting authentication taken care of

A rather surprising amount of back-and-forth can ensue as the two computers exchange
pleasantries, share information about each other and how they work, and so on. We're going
to switch our event log output, now, to include event ID numbers, because those can be
pretty useful when trying to grab specific pieces of data. At this point, the log will mainly
consist of the client sending commands and the server sending back the results. This is
more readable when you use Construct-PSRemoteDataObject, so here's the complete back-
and-forth from that perspective: First up is the client's statement of its session capabilities:

destination : Server

messageType : SessionCapability

pipelineId : 0OOOOOOO-00OO-0OEO-0000-000000000000

runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab

data : <0bj RefId="0"><MS><Version
N="protocolversion">2.2</Version><Version
N="PSVersion">2.0</Version><Version
N="SerializationVersion">1.1.0.1</Version><BA N="TimeZon
e">AAEAAAD/////AQAAAAAAAAAEAQAAABXTEeXNOZWOUQ3VycmVudFN5c
3R1bVRpbWVab251BAAAABAtXONhY2h1ZERheWxpZ2h0Q2hhbmdlcwltX
3RpY2tzT2Zmc2VODm1fc3RhbmRhcmROYW11Dm1fZGF5bG1lnaHROYW11A
WABARXTeXNOZWOuUQ29sbGVjdGlvbnMuSGFzaHRhYmx1CQkCAAAAAPgpF
9b///8KCgQCAAAAHFN5Cc3R1bS5Db2xsZWNOaw9ucy5IYXNodGFibGUHA
AAACKXVYWRGYWNOb3IHVmMVyc21lvbghDb21wYXJ1chBIYXN0oQ29kZVByb
3ZpZGVyCEhhc2hTaXplBEt1leXMGVmFsdwWVzAAADAWAFBQSIHFN5Cc3R1b
S5Db2xsZWNOaw9ucy53Q29tcGFyZXIkU31zdGVtLKNVbGX1Y3Rpb25zL
k1IYXN0oQ29kZVByb3ZpZGVyCOXRODS8AAAAACgODAAAACQMAAAAIBAAAA
BADAAAAAAAAABAEAAAAAAAAAAS=</BA></MS></0bj>

Then the server's:

destination : Client

messageType : SessionCapability

pipelineId : 00OOEOOO-0000-0OOO-0000-OOOEOOEOOEEO

runspaceld : 00000000-0OOO-0000-COOO-0000OEOOEOO0O

data : <Obj RefId="0@"><MS><Version
N="protocolversion">2.2</Version><Version
N="PSVersion">2.0</Version><Version
N="SerializationVersion">1.1.0.1</Version></MS></0bj>

Next is the server's $PSVersionTable object, which lists various versioning information:

destination : Client

messageType : ApplicationPrivateData

pipelineId : 00OEOOOOO-0OO0-COOO-O00CO-000COOOOOEOO

runspaceId : 4358d585-0eab-47ef-abe6-4b98e71f34ab

data : <Obj RefId="0"><MS><0bj N="ApplicationPrivateData"
RefId="1"><TN RefId="0"><T>System.Management.Automation.
PSPrimitiveDictionary</T><T>System.Collections.Hashtable
</T><T>System.Object</T></TN><DCT><En><S
N="Key">PSVersionTable</S><0bj N="Value"
RefId="2"><TNRef RefId="0" /><DCT><En><S
N="Key">PSVersion</S><Version
N="Value">2.,0</Version></En><En><S
N="Key">PSCompatibleVersions</S><0bj N="Value"
RefId="3"><TN RefId="1"><T>System.Version[]</T><T>System
.Array</T><T>System.Object</T></TN><LST><Version>1.0</Ve
rsion><Version>2.0</Version><Version>3.0</Version></LST>
</0bj></En><En><S N="Key">BuildVersion</S><Version
N="Value">6.2.8314.0</Version></En><En><S
N="Key">PSRemotingProtocolVersion</S><Version
N="Value">2.2</Version></En><En><S
N="Key">WSManStackVersion</S><Version
N="Value">3.0</Version></En><En><S
N="Key">CLRVersion</S><Version
N="value">4.0.30319.261</Version></En><En><S
N="Key">SerializationVersion</S><Version N="Value">1.1.0
.1</Version></En></DCT></0bj></En></DCT></0bj></MS></0bj

>

Next the server sends information about the runspace that will be used:

destination : Client

messageType : RunspacePoolStateInfo

pipelineId : 00OEOOOOO-0000-COOO-00CO-000C0OOOOOEOO

runspaceld : 4358d585-0eab-47ef-a0e6-4b98e71f34ab

data : <0bj RefId="0"><MS><I32
N="RunspaceState">2</132></MS></0bj>

The client sends information about its Exit-PSSession command:

destination : Server

messageType : GetCommandMetadata

pipelineId : 03460806-3011-42a6-9843-c54f39%ee6fb8

runspaceld : 4358d585-0eab-47ef-a0e6-4b98e71f34ab

data : <0bj RefId="0"><MS><0bj N="Name" RefId="1"><TN RefId="0"
><T>System.String[]</T><T>System.Array</T><T>System.Obje
ct</T></TN><LST><S>0ut-Default</S><S>Exit-PSSession</S><
/LST></0bj><0bj N="CommandType" RefId="2"><TN RefId="1">
<T>System.Management.Automation.CommandTypes</T><T>Syste
m.Enum</T><T>System.ValueType</T><T>System.Object</T></T
N><ToString>Alias, Function, Filter,
Cmdlet</ToString><I32>15</I32></0bj><Nil N="Namespace"
/><Nil N="ArgumentList" /></MS></0bj>

A bit later we'll see the result of the CD C:\ command, which is the new PowerShell prompt
reflecting the new folder location:

destination : Client

messageType : PowerShellOutput

pipelineId : c913b8ae-2802-4454-9d9b-926ca6032018
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data ! <S>PS C:\> </S>

Next we'll look at the output of the Dir command. This first bit is writing the column headers
for Mode, LastWriteTime, Length, Name, and so forth. This is all being sent to our client -
we'll just include the first few lines, each of which comes across in its own block:

destination : Client

messageType : RemoteHostCallUsingPowerShellHost

pipelineld : c259c891-516a-46a7-b287-27c96ff86d5b

runspacelId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab

data : <Obj RefId="0"><MS><I64 N="ci">-100</I64><0bj N="mi"
RefId="1"><TN RefId="0"><T>System.Management.Automation.
Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
em.ValueType</T><T>System.Object</T></TN><ToString>Write
Line2</ToString><I32>16</132></0bj><0bj N="mp"
RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
/T><T>System.Object</T></TN><LST><S>Mode
LastWriteTime Length Name

</S></LST></0bj></MS></0bj>

destination : Client

messageType : RemoteHostCallUsingPowerShellHost

pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b

runspaceld : 4358d585-0eab-47ef-a0e6-4b98e71f34ab

data : <Obj RefId="0"><MS><I64 N="ci">-100</I64><0bj N="mi"
RefId="1"><TN RefId="0"><T>System.Management.Automation.

Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
em.ValueType</T><T>System.Object</T></TN><ToString>Write
Line2</ToString><I32>16</132></0bj><0bj N="mp"
RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
/T><T>System.Object</T></TN><LST><S>-- - -

</S></LST></0bj></MS></0bj>

destination : Client

messageType : RemoteHostCallUsingPowerShellHost

pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b

runspaceld : 4358d585-0eab-47ef-a0e6-4b98e71f34ab

data : <0Obj RefId="0"><MS><I64 N='"ci">-100</I64><0bj N="mi"
RefId="1"><TN RefId="0"><T>System.Management.Automation.
Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
em.ValueType</T><T>System.Object</T></TN><ToString>Write
Line2</ToString><I32>16</132></0bj><0bj N="mp"
RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
/T><T>System.Object</T></TN><LST><S>d- - - -
8/25/2010 8:11 AM IT Structures

</S></LST></0bj></MS></0bj>

destination : Client

messageType : RemoteHostCallUsingPowerShellHost

pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b

runspaceId : 4358d585-0eab-47ef-abe6-4b98e71f34ab

data : <0bj RefId="0"><MS><I64 N="ci">-100</I64><0bj N="mi"
RefId="1"><TN RefId="0"><T>System.Management.Automation.
Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
em.ValueType</T><T>System.Object</T></TN><ToString>Write
Line2</ToString><I32>16</I32></0bj><0bj N="mp"
RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
/T><T>System.0bject</T></TN><LST><S>d----
7/13/2009 11:20 PM PerfLogs

</S></LST></0bj></MS></0bj>

Eventually the command finishes and we get the prompt again:

destination : Client

messageType : PowerShellOutput

pipelineId : f5c8bc7a-ec54-4180-b2d4-86479f9eadb9
runspacelId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data 1 <S>PS C:\> </S>

You'll also see periodic exchanges about the state of the pipeline - this indicates that the
command is done:

destination : Client

messageType : PowerShellStateInfo

pipelineId : f5c8bc7a-ec54-4180-b2d4-86479f9eadb9

runspaceld : 4358d585-0eab-47ef-a0e6-4b98e71f34ab

data : <0bj RefId="0"><MS><I32
N="PipelineState">4</I32></MS></0bj>

There's definitely a lot of data passing back and forth - but it's possible to make sense of it
using these tools. Frankly, most Remoting problems take place during the connection phase,
meaning once that's completed successfully you have no further problems. So in the next
scenarios, we'll focus on specific connection errors.

Note: To clear the log and prepare for a new trace, we usually delete the .ETL files and go
into Event Viewer to clear the Applications and Services Logs > Microsoft > Windows >
Windows Remote Management log. If you're getting errors when running Enable-
PSWSManCombinedTrace, one of those two tasks probably hasn't been completed.

Connection Problem: Blocked Port

Figure 4.11 shows what happens when you try to connect to a computer and the necessary
port - 5985 by default - isn't open all the way through. We're going to look at how this
appears in the log. Note that we're assuming you've already checked the computer name,
made sure it resolves to the proper IP address, and so forth; what you're looking at is
definitely a blocked port (because we set it up that way) in this example.

Enter-P5

1sable-PSWSh
nand complete
nand complete

Figure 4.11: Connection failure due to a firewall or other port-blocking problem.

Figure 4.12 shows that we successfully resolved the computer name. We find that testing
with Enter-PSSession is easiest, because it's really easy to spot that command in the log
and see when the "real" log data begins.

7937 4142812 4:81:11 PH Command Enter-PS35esszion iz Started.

Context:
Severity = Informational
Host Mome = ConsoleHost
Host Yersion = 3.8
Host ID =

8f db3el7-bd16-4560-8c6e-1740chE9cesc
Engine Yerszion = 3.8
Funspace 1D =

f42dobbA-43d6-4f 7d-5129-376113063428
Pipeline ID = 66
Command Mome = Enter-PSSesszion
Command Twpe = Cmdlet
Script Mame =
Command Path
Sequence Number = 286
Uzer = ADZBASEZ\Adminisztrotor
Shell ID = Microsoft.PowerShell

User Data: I
12835 47142012 4:81:11 PM ComputerName rezolwved to localhost
12836 4142012 4:81:11 PM ComputerName resolwved to doBl
12836 47142012 4:81:11 PM ComputerName resolwved to doBl
12836 47142012 4:81:11 PM ComputerName rezolwved to doBl

Figure 4.12: Starting the connection attempt

Note that a lot of the initial log traffic is still WinRM talking to itself, getting set up for the
actual connection attempt. Just keep scrolling through that until you start to see problem
indications. Figure 4.13 shows a timeout - never a good sign - and the error message
generated by WinRM. As you can see, this is exactly what we got on-screen, so PowerShell
isn't hiding anything from us.

135 45142812 4:81:34 PHM The client got a timeout from the network laver
{ERROR_WINHTTP_TIMEQOUT

15848 4/14/2812 4:81:34 PH An error was encountered while proceszing an
operation.
Error Code: 21RB559846
Error String:<f :W3ManFault xmlnz:f="http://schemaz.mi
crosoft .comAwbenwenansl wsnant au LL"
Code="21RA359645"
Machine="C3A961612587 .ADZABERZ . loc" ==f :Message=WinkH
cannot complete the operation. Verify that the
specified computer name iz walid, that the computer
iz accessible over the network, and thot a firewall
exception for the WinkRM service iz enabled and
allows access from thiz computer. By default, the
WinkH firewall exception for public profiles limits
access to remote computers within the zame local
zubnet . =/f :Messagex—/f :W3HanFau [t

15848 4/14/2812 4:81:34 PH An error was encountered while proceszing an
operation.
Error Code: 21RB559846
Error String:<f :WiMonFoult zmlhs:f="http:/ =chemas.mi
crosoft .comswbenwenansl wsnant au LL"
Code="21RA359645"
Machine="C3A961612587 .ADZABERZ . loc" ==f :Message=WinkH
cannot complete the operation. Verify that the
specified computer name iz walid, that the computer
iz accessible over the network, and thot a firewall
exception for the WinkRM service is enabled and I
allows access from thiz computer. By default, the
WinkH firewall exception for public profiles limits
access to remote computers within the szame local
zubnet . =/f :Messagex—/f :W3HanFau [t

Figure 4.13: The timeout error in the diagnostics log

This is actually one of the trickiest bits of Remoting: It can't tell why the server didn't
respond. It doesn't realize that the port isn't open. For all WinRM knows, we could have
specified a computer name that doesn't exist. All it knows is that it sent a message out to the
network, and nobody replied. In the end, nearly all of the possible "low level" problems - bad
IP address, bad computer name, blocked port, and so forth all look the same from WinRM's
point of view. You're on your own to troubleshoot these problems.

We've found that one useful technique can be to use the old command-line Telnet client.
Keep in mind that WS-MAN is just HTTP, and HTTP - like many Internet protocols - is just
sending text back and forth, more or less exactly like Telnet. HTTP has specific text it sends
and looks for, but the actual transmission is old-school Telnet. So we'll run something like
telnet dc01 5985 just to see if we can connect. A blank screen is normal: Hit Ctrl+C to break
out, and you'll see an HTTP "Bad Request" error. That's fine - it means you got through.
That confirms the computer name, the IP address, the port, and everything else "low-level."

Connection Problem: No Permissions

This can be a bit of a tricky problem, because you need to be an Administrator to enable a
diagnostics trace. On the other hand, WinRM is usually quite clear when you can't connect
because your account doesn't have permission to the endpoint: "Access Denied" is the error
message, and that's pretty straightforward.

But you can also log on as an Administrator (or open a shell under Administrator
credentials), enable a trace, and then have the other user (or your other user account) try
whatever it is they're trying. Go back in as Administrator and disable the trace, then examine
the log. Figure 4.14 shows what you're looking for.

1848 4/14/2812 4:15:53 PH An error was encountered while proceszing an
operation.
Error Code: &
Error String:=f :WiMonFoult zmlhs:f="http:/ =chemas.mi
crosoft.comswbenwesnanslwsmanfau Lt Code="5&"
Machine="dcBl"==f :Message=Access iz denied.
/T iMeszage=—/f :W3ManFau Lt
264 45142812 4:18:53 PH Activity Transfer
142 4142812 4:18:53 PM WSMan operation CreateShell failed, error code &
32786 44142812 4:158:53 PM Runspace Id Bd91c618-3c52-4bl15-5855-76d53508153a3 .
Callback received for WSMon Create Shell
1848 4/14/2812 4:15:53 PH An error was encountered while proceszing an
operation.
Error Code: 122
Error String:<f :W3ManFault xmlnz:f="http://schemaz.mi
crosoft.comAwbenwenansl wsnanfau Lt Code="122"
Machine="C3A96161257 .ADZABERZ . loc" ==f :Meszage=The
datao area paszed to a swstem call iz too small.
/T Meszage=—/f :W3ManFau Lt
319 45142812 4:18:53 PH Getting message for error code 5 completed
zuccessful ly. The languageCode parameter wasz: en-US
8196 4/14/2812 4:15:53 PM Modifying activity Id and correlating
12839 4142012 4:15:53 PM Modifwing activity Id and correlating
32754 4/14/2812 4:18:53 PM Runzpace Id: Bd31c6l8-3c82-4b15-5868-T6d533001303
Pipeline Id: BAAEABEE-ABEE-ABEE-ABEE-ABEABEEGABEAE .
W3iMan reported an error with error code: 5.

Error message: Connecting to remote server dcAl
failed with the following error meszage @ Access is
denied. For more information, see the
about_Remote_Troubleshooting Help topic.

StackTrace:

32776 4/14/2812 4:18:53 PM Runzpace Id: Bd31c6l8-3c82-4b15-5868-T6d533001303
Pipeline Id: BAAEABEE-ABEE-ABEE-ABEE-ABEABEEGABEAE .
W3iMan reported an error with error code: 5. I

Error message: Connecting to remote server dcAl
failed with the following error meszage @ Access is
denied. For more information, see the
about_Remote_Troubleshooting Help topic.

Figure 4.14: "Access Denied" in the diagnostics log

The log data just after that will show you the user account that was used to try and create
the connection (AD2008R2\SallyS, in our example, which is why the command failed - she's
not an Administrator). A quick check with Get-PSSessionConfiguration on the remote
machine will confirm the permissions on whatever Remoting endpoint you're attempting to
connect to. Also, as shown in figure 4.15, we've found that running Set-
PSSessionConfiguration can be useful. Provide the -Name of the endpoint you're checking,
and add -ShowSecurityDescriptorUI. That will let you confirm the endpoint's permissions in a
friendlier GUI form - and you can modify it right there if need be.

sionConfiguration -name microsoft.powershell -ShowSecurityDescriptorUI
L ssionConfiguration restarts the WinRM service and all dependent services.
sessions connected to Windows PowerShell session configurations, such as

Microsoft. Rewas s oo o gi are created with the

Register-pq R Permissions for KERE/ISERES_ x|

http://schemas microsoft. com/powershell /microsoft powershell |

Confirm Group or user names:
Are you sur Y

Performing 1 Target "Name: microsoft.powershell”.
[Y] Yes [& Suspend [?] Help (default is "Y"): y

Permissions for Administrators

Full Cortrol{All Operations)
ReadiGet, Enumerate, Subscribe)
White(Put, Delete Create)
Execute(lnvoke)

Special permissions

For special pemmissions or advanced settings, bt |
click Advanced. =
Leam about access control and permissions

0K I Cancel ! Apply I

Figure 4.15: Checking an endpoint's permissions using Set-PSSessionConfiguration

Connection Problem: Untrusted Host

Figure 4-16 shows the connection we're trying to make: From the client in the AD2008R2
domain to a standalone computer that isn't part of a domain.

DCA

10.160.39.145/16
Win2008R2

C8956784402
(alias: CLIENTA)
10.160.92.120/16
Win7

2-Way
Forest Trust

COMPANY.loc Domain/
Forest

DCO1
10.160801.3/16
Wi£008R2

3925954503
10.160.123.220/16
Win2008R2

C3096161287
alias: CLIENT1
10.160.60.247/16
Win7

| I—

AD2008R2.loc Domain/
: 2108222963

Forest | alias: MEMBER1

10.160.185.109/16
Win2008R2

Figure 4.16: Attempted connection for this scenario

As shown in figure 4.17, the error comes quickly, even though we've provided a valid
credential. The problem is that we're in a situation where WinRM can't get the mutual
authentication it wants; part 2 of this guide covers solutions for fixing the problem. But what
does the problem look like in the diagnostics log?

2 Advntrator wndows powerswel

PS C:\> Enable-PSWSManCombinedTrace

The command completed successfully.

PS C:\> Enter-PSSession -ComputerName 10.160.123.220 -Credential €3925954583\Administrator

PS C:\> Disable-PSWSManCombinedTrace
The command completed successfully.
The command completed successfully.
PS5 G:X>

Figure 4.17: The error message gives good clues as to how to solve this problem

Figure 4.18 shows that WinRM still sends its initial salvo of traffic to the server. It's when the
reply comes back that the client realizes it can't authenticate this server, and the error is
generated. What you see in the log is pretty much what shows up in the shell, verbatim.

WINWY D PIE W VTFL2E T INIUHF LA D OREY T F RSN LDUE 2L L AR L
PiMELAKzMi45T2IqIE491 LZhbHY LT iBSZWZIZ0E1MTE P jxNU=480
¥BOPSJUT ETeXNAZNAUTWF W | bW UACEBXRbNF Aok OuL ko3
QuiZSvemRpbmFEZXMELAM+PESiqi BOPSIWI iESZWZIZDE M AP j=
MNUz455TH IE49IngiP jASLAK=M 455 TMv IE49Ink iPjASLAKZM 45
LEATP jurvT2I9P juy TYH+PCOPYmo+PCOF b j45RW4+PELZMiBOPSILE
XkiPJISLAkzMi48T21qIE491 L ZhbHY LT iBSEWZIZDAIMIELFP jxNU=
45UvBOPSIUI jETeXNAZWALTWF LY Wd L bW LdCEBd R vbWF Aol ulkh
v I0ul2 PeemRpbmFEZXMEL1M+PERiaiBOPSIWI iBSZWZJZDAIMG T
PixNUz435TMy IE49TngiP jASLAKzMj455TMy IE49Ink iP jMELAKZM
J4BLALTP jwy T21gP juww TYM+PCOPYmo+PCIFb j43RN4-+PERZM i BOPS
JLZ¥k iPJEALAkzM48T2IqIE49] LihbHY LT iBSZWZIZDEIMIMiP 1=
MUz45UwBOPSJUI §5TexNAZWAU02 Iuc 292 ZUNvBGSYPCATR jxdMzIg
T8N T+ Ty STHYP juv TYM+PCOPYmo+PCOFb 48R W4 +PER ZH iBOP
SILZ=kiPjABLAKZMI48T2IqIE49] LZhbHY L T iBSZWZIZ0AIMI01iP
*NUz48UwBOPSIUT jETexNEZWALN29uc 2 95 ZUNvb Gy PCITP j M= 1
QTN T+NjuwwSTHYP juw TYM
779 471442012 4:33:38 PM OS0AP [client sending index & of & total chunks (289

bytesh] +PCOPYmo+PCIFbj4ELAROVD4ELAS in 48LE1TP jww T2
PixCIE49] | 9pcBhvcIR0dW =T 15m Wz 2 Twe j4501B0PSIf axNIb
3NAVU LOdW::=T §5mY Wz Twe (1450 1BOPSIf axM Tb3NEUF 34U LOdY
23] 1EmYWxzZ Twy Q14801 BOPIIF dil LUnYuc3Bh 2W ThaNA T 15mii::
ZETu48LALTR Ju T2IGP e TYM+PCIPY MO+ creat ionim L
rzpiihel l=—<fs iBody=—/s Enve lope=

1848 4/14/2812 4:33:358 PH An error was encountered while proceszing an
operation.
Error Code: 21RB559195
Error String:=f :WiMonFoult zmlhs:f="http:/ =chemas.mi
crosoft .comswbenwenansl wsnant au LL"
Code="21RA359195"
Machine="C3A96161257 .ADZABERZ . loc" ==f :Meszage=The
WinkH client cannot process the request. Default
authentication may be uzed with an IP address under
the following conditions: the transport is HTTPS or
the destination iz in the TrustedHo list, and
explicit credentials are provided. winrm.cmd to
configure TrustedHoszts. Note thot computers in the
TrustedHosts list might not be outhenticated. For
more information on how to set TrustedHosts run the
following command: winrm help config.
</T iMeszage=—f :W3ManFau Lt

12 41472012 4:33:35 PM WSMan shell creation failed, error code 2158559195

32786 44142812 4:33:38 PM Runspace Id 3a582ed7-bota-4519-gaed-EabboccAbd4a7h.,
Callback received for WSMon Create Shell

1848 4/14/2812 4:33:358 PH An error was encountered while proceszing an

mrarat i

Figure 4.18: The diagnostic log content when attempting to connect to an untrusted host

Figure 4.19 shows a good second step to take: Run Test-WSMan. Provide the same
computer name or IP address, but leave off the -Credential parameter. The cmdlet can at
least tell you that WS-MAN and WinRM are up and running on the remote computer, and
what version they're running. That at least narrows the problem down to one of
authentication: Either your permissions (which would have resulted in an "Access Denied")
or the mutual authentication component of Remoting.

= Administrator: Windows Powershell :

PS C:\> test-wsman -ComputerName 10.160.123.220

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
llprotocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd

ProductVendor : Microsoft Corporation

ProductVersion : 0S: ©.9.0 SP: 0.0 Stack: 3.0

Figure 4.19: Test-WSMan is kind of like a "ping" for Remoting

Note: You'll see substantially the same behavior when you attempt to connect using HTTPS
(the -UseSSL switch on the various Remoting commands), and the remote machine's SSL

certificate name doesn't match the name you used in your command. The error message is
unambiguous both on-screen and in the log, and we discuss solutions in part 2 of the guide.

Standard Troubleshooting Methodology

Troubleshooting can be difficult, especially with Remoting since there are so many layers in
which something can go wrong. Following a straightforward, standardized approach can
help pinpoint problems.

1. Test Remoting with its default configuration. If you've tinkered with that, undo your
changes and start from scratch.

2. Start by attempting to connect from the initiating machine to the target machine by using
something other than Remoting, but which is still security-sensitive. For example, use
Windows Explorer to open the remote machine's C$ shared folder. If that doesn't work,
you have broader security issues. Make a note of whether or not you need to provide
alternate credentials - if you do, Remoting will need them as well.

3. Install a Telnet client on the initiating machine (a simple command-line client, like the
Windows native one, will do). Attempt to connect to the HTTP WinRM listener by

running telnet machine_name:5985. You should get a blank screen, and Ctrl+C will end
the session. If this doesn't work, there's a basic connectivity problem (such as a blocked
port) you need to resolve.

4. Use Test-WSMan as described earlier, using an alternate credential if necessary. Make
sure you're either using the machine's real name as it appears in Active Directory, or
that you've taken one of the other approaches (TrustedHosts plus a credential, or SSL
plus a credential) that we outlined in Section 2 of this guide. If that doesn't work, you
have a problem in the WS-MAN configuration.

Simply walking through these four steps, in this order, can help you pinpoint at least the
general cause of most problems.

Summary

So why did we bother going through the logs when, in most of our examples, the logs simply
echoed what was on the screen? Simple: As PowerShell becomes embedded in more and
more GUI applications, you might not always have a console, with its nice error messages,
to rely upon. What you can do, however, is use the console to start a trace, run whatever
GUI app is failing, and then dig into the log to see if you find some of the signs we've shown
you here.

Session Management

When you create a Remoting connection between two machines, you're creating - in
PowerShell terminology - a session. There are an incredible number of options that can be
applied to these sessions, and in this portion of the guide we'll walk you through them.

Ad-Hoc vs. Persistent Sessions

When you use a Remoting command - primarily Invoke-Command or Enter-PSSession - and
specify a computer name by using their -ComputerName parameter, you're creating an ad-
hoc session. Basically, PowerShell just brings up a session, utilizes it, and then tears it
down, all automatically.

Alternately, you can use New-PSSession to explicitly create a new session, which can then
be utilized by passing the session to the -Session parameter of Invoke-Command, Enter-
PSSession, and numerous other Remoting-aware commands. When you manually create a
session, it's up to you to get rid of it when you're done with it. However, if you have a session
open and close your copy of PowerShell, that session is automatically removed for you - so
you're not leaving anything hanging around that needs to be cleaned up.

Disconnecting and Reconnecting Sessions

In PowerShell v3, you can disconnect and reconnect sessions by using Disconnect-
PSSession and Connect-PSSession. These commands each accept a session object, which
you'd usually create with New-PSSession.

A disconnected session leaves a copy of PowerShell up and running on the remote
computer. This is a good way to get it to run some long-running task, disconnect, and then
reconnect later to check up on it. You can even disconnect a session on one computer,
move to another computer, and reconnect to that session (although you can't connect to
someone else's disconnect session; you're limited to reconnecting to your own).

For example, figure 5.1 shows a session being created from a client to a server. The session
is then given a task to perform as a background job, and then the session is disconnected.
It's important to note that the command, and the background job, are on the server (DCO01),
not the client.

X Administrator: Windows PowerShell i

PS C:\> New-PSSession -ComputerName dc®l
Id Name C erName State ConfigurationName Availability
Opened Microsoft.PowerShell Available
PS C:\> Enter-PSSession -Session (Get-PSSession -ComputerName dc@l1)
[de@1]: PS C:\Users\Administrator\Documents> cd \
[dc@1]: PS C:\> start-job -ScriptBlock { get-eventlog -LogMame security }
Id Name PSJobTypeName State HasMoreData Location

1 Jobl ackgr ob ing rue localhost

[dc@1]: PS C:\> Exi
PS C:\> Disconnect- ic ; ¢ : L sion -ComputerName dc@l1)

Id Name ¥ erName State ConfigurationName Availability

Disconnected Microsoft.PowerShell

Command

Figure 5.1: Creating, using, and disconnecting a session

In figure 5.2, we've moved to a different machine. We're logged on, and running PowerShell,

as the same user that we were on the previous client computer. We retrieve the session

from the remote computer, and then reconnect it. We then enter the newly reconnected

session, display that background job, and receive some results from it. Finally, we exit the

remote session and shut it down via Remove-PSSession.

{2 Administrator: Windows PowerShell (3)
PS C:\> Get-PSSession -ComputerName dc®l | Connect-PS

Id Name ComputerName Ste ConfigurationName Availability
Opened Microsoft.PowerShell Available
PS C:\> Enter-
[dc@1]: PS C:
ETIS State Location Command

Job1 BackgroundJob Completed True

[dc@1]: PS C:\> receive-job -id 1 | select -first 5

Index Time EntryType Sour InstanceID

49156 r 20 Succ ... Microsoft-Windows. ..
49155 g ; 3 ... Microsoft-Windows...
40154 Apr 20 Succ ... Microsoft-Windows. ..
49153 Apr 20 ‘] ... Microsoft-Windows. ..
49152 Apr 20 Succ ... Microsoft-Windows. ..

[dc@1]: PS C:\> Exit-PSSession
PS5 \> Get-PSSession -ComputerName dc@l | Remove-PSSession
PS C:\>

Figure 5.2: Reconnecting to, utilizing, and removing a session

Obviously, disconnected sessions can present something of a management concern,
because you're leaving a copy of PowerShell up and running on a remote machine - and
you're doing so in a way that makes it difficult for someone else to even see you've done it!
That's where session options come into play.

Session Options

Whenever you run a Remoting command that creates a session - whether persistent or ad-
hoc - you have the option of specifying a -SessionOption parameter, which accepts a
PSSessionOption object. The default option object is used if you don't specify one, and that
object can be found in the built-in $PSSessionOption variable. It's shown in figure 5.3.

{2 Administrator: Windows PowerShell (3)
PS C:\> $PSSessionOption

MaximumConnectionRedirectionCount :
MNoCompression

NoMachineProfile

ProxyAccessType

ProxyAuthentication : Negotiate
ProxyCredential :
SkipCACheck : False
SkipCNCheck : False
SkipRevocationCheck]
OperationTimeout 3
MNoEncryption : False
UselUTF16 : False
IncludePortInSPN : False
OutputBufferingMode : None
Culture

MaximumReceivedDataSizePerCommand :
MaximumReceivedObjectSize : 209715200
ApplicationArguments

OpenTimeout

CancelTimeout

IdleTimeout

Figure 5.3: The default PSSessionOption object stored in $PSSessionOption

As you can see, this specifies a number of defaults, including the operation timeout, idle
timeout, and other options. You can change these by simply creating a new session option
object and assigning it to $PSSessionOption; note that you need to do this in a profile script
if you want your changes to become the new default every time you open a new copy of
PowerShell. Figure 5.4 shows an example.

{2 Administrator: Windows PowerShell (3) -
: SSessionOption = New-PSSessionOption -IdleTimeout 2000
PS C:\> %$PSSessionOption

MaximumConnectionRedirectionCount :
MoCompression

MNoMachineProfile

ProxyAccessType
ProxyAuthentication : Negotiate
ProxyCredential s
SkipCACheck : False
SkipCNCheck]
SkipRevocationCheck
OperationTimeout

MoEncryption

UseUTF16

IncludePortInSPN
OutputBufferingMode

Culture

UICulture
MaximumReceivedDataSizePerCommand :
MaximumReceivedObjectSize
ApplicationArguments

OpenTimeout

CancelTimeout

IdleTimeout

Figure 5.4: Creating a new default PSSessionOption object

Of course, a 2-second idle timeout probably isn't very practical (and in fact won't work - you
must specify at least a 60-second timeout in order to use the session object at all), but you'll
note that you only need to specify the option parameters that you want to change -
everything else will go to the built-in defaults. You can also specify a unique session option
for any given session you create. Figure 5.5 shows one way to do so.

{2 Administrator: Windows PowerShell (3)

\> $MyOption = New-PSSessionOption -IdleTimeout 50 -NoCompression
> Enter-PSSession -ComputerName dc@®1 -SessionOption $MyOption
[dc@l]: PS C:\Users\Administrator\Documents>

Figure 5.5: Creating a new PSSessionOption object to use with a 1-to-1 connection

By specifying intelligent values for these various options, you can help ensure that
disconnected sessions don't hang around and run forever and ever. A reasonable idle
timeout, for example, ensures that the session will eventually close itself, even if an
administrator disconnects from it and subsequently forgets about it. Note that, when a
session closes itself, any data within that session - including background job results - will be
lost. It's probably a good idea to get in the practice of having data saved into a file (by using
Export-CliXML, for example), so that an idle session doesn't close itself and lose all of your

work.

PowerShell, Remoting, and Security

Although PowerShell Remoting has been around since roughly 2010, many administrators
and organizations are unable to take advantage of it, due in large part to outdated or
uninformed security and risk avoidance policies. This chapter is designed to help address
some of those by providing some honest technical detail about how these technologies
work. In fact, they present significantly less risk than many of the management and
communications protocols already in widespread use - those older protocols benefit primarily
from being "grandfathered" into policies and never closely examined.

Neither PowerShell nor Remoting are a "Back
Door" for Malware

This is a major misconception. Keep in mind that, by default, PowerShell does not execute
scripts. When it does so, it can only execute commands that the executing user has
permission to run - it does not execute anything under a super-privileged account, and it
bypasses neither existing permissions nor security. In fact, because PowerShell is based
upon .NET, it's unlikely any malware author would even bother to utilize PowerShell. Such
an attacker could simply call on .NET Framework functionality directly, and much more
easily.

By default, PowerShell Remoting enables only Administrators to even connect, and once
connected they can only run commands they have permission to run - with no ability to
bypass permissions or underlying security. Unlike past tools which ran under a highly-
privileged account (such as LocalSystem), PowerShell Remoting executes commands by
impersonating the user who submitted the commands.

Bottom line: Because of the way it works, PowerShell Remoting does not allow any user,
authorized or not, to do anything that they could not do through a dozen other means -
including logging onto the console. Whatever protections you have in place to prevent those
kinds of attacks (such as appropriate authorization and authentication mechanisms) will also
protect PowerShell and Remoting. If you allow Administrators to log on to server consoles -
either physically or via Remote Desktop - you have far greater security exposure than you
do through PowerShell Remoting.

Further, PowerShell offers a better opportunity to restrict even Administrators. A Remoting
endpoint (or session configuration) can be modified to allow only specified users to connect
to it. Once connected, the endpoint can further restrict the commands that those users can

execute. This provides a much better opportunity for delegated administration. Rather than
having Administrators log onto consoles and do whatever they please, you can have them
connect to restricted, secured endpoints and only complete those specific tasks that the
endpoint permits.

PowerShell Remoting is Not Optional

As of Windows Server 2012, PowerShell Remoting is enabled by default and is mandatory
for server management. Even when running a graphical management console locally on a
server, the console still "goes out" and "back in" via Remoting to accomplish its tasks.
Without Remoting, server administration is impossible. Organizations are therefore well-
advised to start immediately finding a way to include Remoting in their permitted protocols.
Otherwise, critical services will not be able to be managed, even through Remote Desktop or
directly on the server console.

This approach actually helps better secure the data center. Because local administration is
exactly the same as remote administration (via Remoting), there's no longer any reason to
physically or remotely access server consoles. The consoles can thus remain more locked
down and secured, and Administrators can stay out of the data center entirely.

Remoting Does Not Transmit or Store
Credentials

By default, Remoting uses Kerberos, an authentication protocol that does not transmit
passwords across the network. Instead, Kerberos relies on passwords as an encryption key,
ensuring that passwords remain safe. Remoting can be configured to use less-secure
authentication protocols (such as Basic), but can also be configured to require certificate-
based encryption for the connection.

Further, Remoting never stores credentials in any persistent storage by default. A Remote
machine never has access to a user's credentials; it has access only to a delegated security
token (a Kerberos "ticket"). That is stored in volatile memory which cannot, by OS design, be
written to disk - even to the OS page file. The server presents that token to the OS when
executing commands, causing the command to be executed with the original invoking user's
authority - and nothing more.

Remoting Uses Encryption

Most Remoting-enabled applications apply their own encryption to their application-level
traffic sent over Remoting. However, Remoting can also be configured to use HTTPS
(certificate-encrypted connections), and can be configured to make HTTPS mandatory. This
encrypts the entire channel using high-level encryption, while also ensuring mutual
authentication of both client and server.

Remoting is Security-Transparent

As stated, Remoting neither adds anything to, nor takes anything away from, your existing
security configuration. Remote commands are executed using the delegated credentials of
whatever user invoked the commands, meaning they can only do what they have permission
to do - and what they could presumably do through a half-dozen other tools anyway.
Whatever auditing you have in place in your environment cannot be bypassed by Remoting.
Unlike many past "remote execution" solutions, Remoting does not operate under a single
"super-privileged" account unless you expressly configure it that way (which requires several
steps and cannot possibly by accomplished accidentally, as it requires the creation of
custom endpoints).

Remember: Anything someone can do via Remoting, they can already do in a half-dozen
other ways. Remoting simply provides a more consistent, controllable, and scalable means
of doing so.

Remoting is Lower Overhead

Unlike Remote Desktop Connection (RDC, which many Administrators currently use to
manage remote servers), Remoting is very low-overhead. It does not require the server to
spin up an entire graphical operating environment, impacting server performance and
memory management. Remoting is also more scalable, enabling authorized users (mainly
Administrators in most cases) to execute commands against multiple servers at once - which
improves consistency and reduces error, while also speeding up response times and
lowering administrative overhead.

Remoting is Microsoft's way forward. To not use Remoting is to deliberately attempt to use
Windows in a way that it was explicitly designed not to do. You will reduce, not improve your
security, while also increasing operational overhead, enabling greater instance of human
error, and reducing server performance. Microsoft Administrators have for decades been
toiling under an operational paradigm that was wrong-headed and short-sighted; Remoting
is finally delivering to Windows the administrative model that every other network operating
system has used for years, if not decades.

Remoting Uses Mutual Authentication

Unlike nearly every other remote management technique out there - including tools like
PSExec and even, under some circumstances, Remote Desktop, PowerShell Remoting by
default requires mutual authentication. The user attempting to connect to a server is
authenticated and known; the system also ensures that the server connected to is the
intended server and not an imposter. This provides far better security than past techniques,
while also helping to reduce error - you can't "accidentally log on to the wrong console" as
you could if you just walked into the data center.

Summary

At this point, denying PowerShell Remoting is like denying Ethernet: It's ridiculous to think
you'll successfully operate your environment without it. For the first time, Microsoft has
provided a supported, official, baked-in technology for remote server administration that
does not use elevated credentials, does not store credentials in any way, that supports
mutual authentication, and that is complete security-transparent. This is the administration
technology we should have had all along; moving to it will only make your environment more
manageable and more secure, not less.

Configuring Remoting via GPO

PowerShell's about_remote_troubleshooting provides a good set of steps for configuring
basic Remoting functionality via Group Policy objects (GPOs). Running Enable-PSRemoting
also reveals some useful details, such as the four main configuration. In this section, we'll
cover these main configuration steps.

Note: None of this is necessary on Windows Server 2012 and later versions of the server
OS. Remoting is enabled by default on those, and shouldn't be turned off, as many of the
native management tools (including GUI consoles like Server Manager) depend upon
Remoting.

GPO Caveats

One thing to keep in mind is that GPOs can only create configuration changes; they can't
necessarily change the active state of the computer. In other words, while a GPO can
configure a service's start mode to "Automatic," it can't start the service. That'll happen
automatically when the computer is restarted. It isn't so much that a restart is needed, just
that the computer only starts services after booting. So in many cases, the changes you
make with a GPO (with regard to Remoting) won't actually take effect until the next time the
affected computers are restarted, because in most cases the computer only looks at the
configuration at boot time. Just be aware of that.

Also, everything in this section assumes that PowerShell is already installed on the target
computers - something that can also be accomplished with a GPO or other software
deployment mechanism, but not something we're going to cover here. Note that most of this
section should apply to either PowerShell v2 or v3; we're going to run through the examples
using v2 on a Windows 7 client computer belonging to a Windows Server 2008 R2 domain.

Note: Some of the GPO settings we'll be reviewing became available in Windows 2008 and
Windows 2008 R2, but you should be able to install the necessary administrative templates
into any domain controller. The Windows 7 (and later versions) Remote Server
Administration Toolkit (RSAT) contains the necessary templates.

We don't know for sure that the GPO configuration steps need to be accomplished in the
order we present them; in most cases, we expect you'll do them all at once in a single GPO,
so it won't matter. We're taking them step-by-step in this order so that we can check the
individual results along the way.

Secrets of PowerShell Remoting

Allowing Automatic Configuration of WinRM
Listeners

As explained earlier in this guide, the WinRM service sets up one or more listeners to accept
incoming traffic. Running Enable-PSRemoting, for example, sets up an HTTP listener, and
we've covered how to set up an HTTPS listener in addition to, or instead of, that default one.

You'll find this setting under: Computer Configuration\Administrative Templates\Windows
Components\Windows Remote Management (WinRM)\WinRM Service. Enable the policy,
and specify the IPv4 and IPv6 filters, which determine which IP addresses listeners will be
configured on. You can use the * wildcard to designate all IP addresses, which is what we've
done in Figure 7.1.

g 23 Allow automatic configuration of listeners
Lecyde Bin

E‘ Allow automatic configuration of listeners

Previous Setting | Mext Setting

» " Mot Configured Comment:
Cloud Folders Enabled

" Disabled

Supported on: [ar eact Windows Vista

Tools Library Options: Help:

1Py filter: I* This policy setting allows you to manage whether the Windows

Remote Management (WinRM) service automatically listens on

IPVE filter: Ise| E"l_le_rnpetw:trk for requests on the HTTP transport over the default
port.

Syntax:
If you enable this policy setting, the WinRM service automatically

to allow messages from any IP address, or listens on the network for requests on the HTTP transport over the
leave the default HTTP port.

field.empty to listen on no IP address, You can If you disable or do not configure this policy setting, then the
specify one WinRM service does not automatically listen on the netwerk and
you must manually create listeners on every computer,

or more ranges of IP addresses,

To allow WinRM service to receive requests over the network,
configure the Windows Firewall policy setting with exceptions for
Example IPv4 filters: Port 5985 (default port for HTTP).

20020020025 00:15220022 The service listens on the addresses specified by the IPwvl and IPvE
* filters. IPwd filter specifies one or more ranges of [Pvd addresses
and IPvi filter specifies one or more ranges of IPvBaddresses, If
specified, the service enumerates the available IP addresses on the

=]

CK I Cancel | Apply |

Figure 7.1: Enabling automatic configuration of WinRM listeners

Setting the WinRM Service to Start
Automatically

Configuring Remoting via GPO 96

This service is set to start automatically on newer server operating systems (Windows
Server 2003 and later), but not on clients. So this step will only be required for client
computers. Again, this won't start the service, but the next time the computer restarts, the
service will start automatically.

Microsoft suggests accomplishing this task by running a PowerShell command - which does
not require that Remoting be enabled in order to work:

Set-Service WinRM -computername $servers -startup Automatic

You can populate $servers any way you like, so long as it contains strings that are computer
names, and so long as you have Administrator credentials on those computers. For
example, to grab every computer in your domain, you'd run the following (this assumes
PowerShell v2 or v3, on a Windows 7 computer with the RSAT installed):

Import-Module ActiveDirectory
$servers = Get-ADComputer -filter * | Select -expand name

Practically speaking, you'll probably want to limit the number of computers you do at once by
either specifying a -Filter other than "*" or by specifying -SearchBase and limiting the search
to a specific OU. Read the help for Get-ADComputer to learn more about those parameters.

Note that Set-Service will return an error for any computers it couldn't contact, or for which
the change didn't work, and then continue on with the next computer.

Alternately, you could configure this with a GPO. Under Computer Configuration\Windows
Settings\Security Settings\System Services, look for "Windows Remote Management."
Right-click it and set a startup mode of Automatic. That's what we did in figure 7.2.

Secrets of PowerShell Re

Recyde Bin

File Action View Help

moting

E Group Policy Management Editor

e | #mH|XE = [

= i Computer Configuration
=l [Policies
| Software Settings
= [Windows Settings
~| Mame Resolution Pc
|| Scripts (Startup/shi
= Deployed Printers
= i Security Settings
_Ea Account Policies
7 Local Policies
l::% Event Log
[Restricted Grou
| System Service

Tools Library

| Windows Firew
|| Network List Mz
_i_jg Wireless Netwo
| Public Key Polici
| Software Restr
| Metwork Acces:
| Application Con
3, 1P Security Polic

=/ Default Domain Policy [DC01.AD2008R2.LOC] Palicy

;I | Service Mame =
L i

| Startup | Permission |

Windows Remote Management (WS-Management) |
Security Policy Setting |

3 Windows Remote Management (WWS-Management)

¥ Define this policy setting
Select service startup mode:
% Automatic
 Manual
" Disabled

Edit Securty .. |

illl Mot Defined

Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined
Mot Defined

o]

Cancel

Mot Defined

Apply Mot Defined

| Advanced Audit Policy Configuration
ol Policy-based Qos

T.F WLAN AutoConng
WML Performance Adapter
. Workstation

ot Defined
Mot Defined
Mot Defined

Mot Defined
Mot Defined
Mot Defined

| Administrative Templates: Policy definitions (AT;LI
7 | »

E*_;} WWAN AutoConfig MNotDefined Mot Defined

Figure 7.2: Setting the WinRM service start mode

Creating a Windows Firewall Exception

This step will be necessary on all computers where the Windows Firewall is enabled. We're
assuming that you only want Remoting enabled in your Domain firewall profile, so that's all
we're doing in our example. Obviously, you can manage whatever other exceptions you
want in whatever profiles are appropriate for your environment.

You'll find one setting under Computer Configuration\Administrative
Templates\Network\Network Connections\Windows Firewall\Domain Profile. Note that the
"Windows Firewall: Allow Local Port Exceptions" policy simply allows local Administrators to
configure Firewall exceptions using the Control Panel; it doesn't actually create any
exceptions. That may be exactly what you want in some cases.

Instead, we went to the "Define inbound port exceptions" policy, and Enabled it, as shown in
figure 7.3.

Configuring Remoting via GPO 98

Secrets of PowerShell Remoting

LA windows Firewalk: Define inbound port exceptions

HGrou Policy Manag

E} Windows Firewall: Define inbound port exceptions Ridieiasaing Next Setting

— 7 Comment:
=[Default Domain Policy RarEniracd

Al Computer Configu
=l [Policies

7] Software: " Disabled

[Windows Supported on: 4t |eact Windows XP Professional with SP2

B[] Administrz

[contre

B[] Netwe

| Bz Options: Help:

Br

or

La

Allows you to view and change the inbound port exceptions list
defined by Greup Policy, Windows Firewall uses two port

Lir . exception lists: one is defined by Group Policy settings and the
mi [Specify the port to open or block. other is defined by the Windows Firewall component in Control

fb{E Synta: Panel.

Define port exceptions: Show...

o
o RODEORG

<Port=: <Transport>: <Scopes: <5Status»: <Name> If you enable this policy setting, you can view and change the
inbound port exceptions list defined by Group Policy. To view this
<Port> is a decimal port number port exceptions list, enable the policy setting and then click the
S 5 Show button. To add a port, enable the policy setting, note the

<Transport> is either "TCP" or "UDP syntax, click the Show bztton. Inthe Sh:w chntentsgdialog box
<Scope> is either "*" (for all networks) or type a definition string that uses the syntax format. To remove a
port, click its definition, and then press the DELETE key. To edit a
a comma-separated list that contains definition, remove the current definition from the list and add a
new one with different parameters. To allow administrators to add
a ports to the local port exceptions list that is defined by the

T] [P aciiraceae cichias 10.0:0 Windows Firewall component in Control Panel, also enable the
|| Syster . o "Windows Firewall: Allow local port exceptions” policy setting.
%] \'_""Ii”d‘? Subnet descriptions, such as 10.2.3.0/24

4 : If you disable this policy setting, the port exceptions list defined
The string "localsubnet” T\ | by Group Policy is deleted, but other policy settings can continue
14 setting(s) | » LI

oK I Cancel | Apply |

P
any number or combination of these:

Figure 7.3: Enabling Firewall exceptions

We then clicked "Show," and added "5985:TCP:*:enabled:WinRM" as a new exception, as
shown in figure 7.4.

Configuring Remoting via GPO 99

Secrets of PowerShell Remoting

i
Show Contents

Define port exceptions: Previcus Setting Mext Setting

Valug

L

ofessional with 5P2

|

s you to view and change the inbound port exceptions list
ed by Group Policy. Windows Firewall uses two port
tion lists: one is defined by Group Policy settings and the

oK I et | is defined by the Windows Firewall component in Control
4}

<Port=: <Transport>: <Scopes: <5Status»: <Name> If you enable this policy setting, you can view and change the
; ' inbound port exceptions list defined by Group Policy. To view this
= Ne <Port> is a decimal port number port exceptions list, enable the policy setting and then click the
= Show button. To add a port, enable the policy setting, note the
syntax, click the Show button. In the Show Contents dialog box
type a definition string that uses the syntax format. To remove a
< g port, click its definition, and then press the DELETE key. To edit 2
S] a comma-separated list that contains definition, remove the current definition from the list and add a
7‘ 1 el new one with different parameters. To allow administrators to add
e w any number or combination of these: ports to the local port exceptions list that is defined by the
[Printet IP 2dd has 10.0.0.1 Windows Firewall component in Control Panel, also enable the
(| Syster N i "Windows Firewall: Allow local port exceptions” policy setting.
J W'n_d° Subnet descriptions, such as 10.2.3.0/24
1
14 setting(s) 4

0] «Transports is either "TCP" or "UDP"
B o
7] sn| <Scope> is either " (for all networks) or

If you disable this policy setting, the port exceptions list defined
The string "localsubnet” | ILI by Group Policy is deleted, but other policy settings can continue
*

=]

Cancel | Apply |

Figure 7.4: Creating the Firewall exception

Give it a Try!

After applying the above GPO changes, we restarted our client computer. When the WinRM
service starts, it checks to see if it has any configured listeners. When it finds that it doesn't,
it should try and automatically configure one - which we've now allowed it to do via GPO.
The Firewall exception should allow the incoming traffic to reach the listener.

As shown in figure 7.5, it seems to work. We've found the newly created listener!

Configuring Remoting via GPO 100

4PS WSMan:\> cd .\localhost\Listener\Listener_ 641567880
PS WSMan:\localhost\Listener\Listener_641507880> ls

WSManConfig: Microsoft.WSMan.Management\WSMan: :localhost\Listener\Listener_64150788

e
WARNING: column "Type" does not fit into the display and was removed.

Name

Transport

Port

Hostname

Enabled

URLPrefix wsman
CertificateThumbprint

ListeningOn_617374577 10.160.60.247
ListeningOn_1770©22257 127.0.0.1
ListeningOn_14145029@3 e
ListeningOn_1820698841 feg0::100:7f: fffe%ll
ListeningOn_1341394794 fe80: :ed46: 84e:f5a:c32e%10

PS WSMan:\localhost\Listener\Listener_641507880>

Figure 7.5: Checking the newly created WinRM listener

Of course, the proof - as they say - is in the pudding. So we ran to another computer and, as
shown in figure 7.6, were able to initiate an interactive Remoting session to our original client
computer. We didn't configure anything except via GPO, and it's all working.

|8 Admmstrator vimdowspowersnel
4PS C:\> Enter-PSSession -ComputerName C3096161287
[c3e96161287]: PS C:\Users\Administrator.AD28@8R2\Documents> _

Figure 7-6: Initiating a 1-to-1 Remoting session with the GPO-configured client computer

What You Cant Do with a GPO

You can't use a GPO to start the WinRM service, as we've already stated. You also can't
create custom listeners via GPO, nor can you create custom PowerShell endpoints (session
configurations). However, once basic Remoting is enabled via GPO, you can use
PowerShell's Invoke-Command cmdlet to remotely perform those other tasks. You could
even use Invoke-Command to remotely disable the default HTTP listener, if that's what you
wanted.

Also keep in mind that PowerShell's WSMAN PSProvider can map remote computers'
WinRM configuration into your local WSMAN: drive. That's why, by default, the top-level
"folder" in that drive is "localhost;" so that there's a spot to add other computers, if desired.
That offers another way to configure listeners and other Remoting-related settings.

The real key is to use GPO to get Remoting up and running in this basic form, which is what
we've shown you how to do. From there, you can use Remoting itself to tweak, reconfigure,
and modify the configuration.

	ReadMe
	About this Book
	Remoting Basics
	Accessing Remote Computers
	Working with Endpoints, AKA Session Configurations
	Diagnostics and Troubleshooting
	Session Management
	PowerShell Remoting and Security
	Configuring Remoting via GPO

